|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package cmplx | 
|  |  | 
|  | import "math" | 
|  |  | 
|  | // The original C code, the long comment, and the constants | 
|  | // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. | 
|  | // The go code is a simplified version of the original C. | 
|  | // | 
|  | // Cephes Math Library Release 2.8:  June, 2000 | 
|  | // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier | 
|  | // | 
|  | // The readme file at http://netlib.sandia.gov/cephes/ says: | 
|  | //    Some software in this archive may be from the book _Methods and | 
|  | // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster | 
|  | // International, 1989) or from the Cephes Mathematical Library, a | 
|  | // commercial product. In either event, it is copyrighted by the author. | 
|  | // What you see here may be used freely but it comes with no support or | 
|  | // guarantee. | 
|  | // | 
|  | //   The two known misprints in the book are repaired here in the | 
|  | // source listings for the gamma function and the incomplete beta | 
|  | // integral. | 
|  | // | 
|  | //   Stephen L. Moshier | 
|  | //   moshier@na-net.ornl.gov | 
|  |  | 
|  | // Complex square root | 
|  | // | 
|  | // DESCRIPTION: | 
|  | // | 
|  | // If z = x + iy,  r = |z|, then | 
|  | // | 
|  | //                       1/2 | 
|  | // Re w  =  [ (r + x)/2 ]   , | 
|  | // | 
|  | //                       1/2 | 
|  | // Im w  =  [ (r - x)/2 ]   . | 
|  | // | 
|  | // Cancelation error in r-x or r+x is avoided by using the | 
|  | // identity  2 Re w Im w  =  y. | 
|  | // | 
|  | // Note that -w is also a square root of z. The root chosen | 
|  | // is always in the right half plane and Im w has the same sign as y. | 
|  | // | 
|  | // ACCURACY: | 
|  | // | 
|  | //                      Relative error: | 
|  | // arithmetic   domain     # trials      peak         rms | 
|  | //    DEC       -10,+10     25000       3.2e-17     9.6e-18 | 
|  | //    IEEE      -10,+10   1,000,000     2.9e-16     6.1e-17 | 
|  |  | 
|  | // Sqrt returns the square root of x. | 
|  | // The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x). | 
|  | func Sqrt(x complex128) complex128 { | 
|  | if imag(x) == 0 { | 
|  | // Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero. | 
|  | if real(x) == 0 { | 
|  | return complex(0, imag(x)) | 
|  | } | 
|  | if real(x) < 0 { | 
|  | return complex(0, math.Copysign(math.Sqrt(-real(x)), imag(x))) | 
|  | } | 
|  | return complex(math.Sqrt(real(x)), imag(x)) | 
|  | } | 
|  | if real(x) == 0 { | 
|  | if imag(x) < 0 { | 
|  | r := math.Sqrt(-0.5 * imag(x)) | 
|  | return complex(r, -r) | 
|  | } | 
|  | r := math.Sqrt(0.5 * imag(x)) | 
|  | return complex(r, r) | 
|  | } | 
|  | a := real(x) | 
|  | b := imag(x) | 
|  | var scale float64 | 
|  | // Rescale to avoid internal overflow or underflow. | 
|  | if math.Abs(a) > 4 || math.Abs(b) > 4 { | 
|  | a *= 0.25 | 
|  | b *= 0.25 | 
|  | scale = 2 | 
|  | } else { | 
|  | a *= 1.8014398509481984e16 // 2**54 | 
|  | b *= 1.8014398509481984e16 | 
|  | scale = 7.450580596923828125e-9 // 2**-27 | 
|  | } | 
|  | r := math.Hypot(a, b) | 
|  | var t float64 | 
|  | if a > 0 { | 
|  | t = math.Sqrt(0.5*r + 0.5*a) | 
|  | r = scale * math.Abs((0.5*b)/t) | 
|  | t *= scale | 
|  | } else { | 
|  | r = math.Sqrt(0.5*r - 0.5*a) | 
|  | t = scale * math.Abs((0.5*b)/r) | 
|  | r *= scale | 
|  | } | 
|  | if b < 0 { | 
|  | return complex(t, -r) | 
|  | } | 
|  | return complex(t, r) | 
|  | } |