blob: 8b2d60207514d244f8949f77adcf751771bae42e [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package template
import (
"bytes"
"fmt"
"os"
"reflect"
"runtime"
"strconv"
"strings"
"unicode"
)
// Template is the representation of a parsed template.
type Template struct {
name string
root *listNode
funcs map[string]reflect.Value
// Parsing only; cleared after parse.
set *Set
lex *lexer
token item // token lookahead for parser
havePeek bool
}
// next returns the next token.
func (t *Template) next() item {
if t.havePeek {
t.havePeek = false
} else {
t.token = t.lex.nextItem()
}
return t.token
}
// backup backs the input stream up one token.
func (t *Template) backup() {
t.havePeek = true
}
// peek returns but does not consume the next token.
func (t *Template) peek() item {
if t.havePeek {
return t.token
}
t.token = t.lex.nextItem()
t.havePeek = true
return t.token
}
// A node is an element in the parse tree. The interface is trivial.
type node interface {
typ() nodeType
String() string
}
type nodeType int
func (t nodeType) typ() nodeType {
return t
}
const (
nodeText nodeType = iota
nodeAction
nodeCommand
nodeDot
nodeElse
nodeEnd
nodeField
nodeIdentifier
nodeIf
nodeList
nodeNumber
nodeRange
nodeString
nodeTemplate
nodeWith
)
// Nodes.
// listNode holds a sequence of nodes.
type listNode struct {
nodeType
nodes []node
}
func newList() *listNode {
return &listNode{nodeType: nodeList}
}
func (l *listNode) append(n node) {
l.nodes = append(l.nodes, n)
}
func (l *listNode) String() string {
b := new(bytes.Buffer)
fmt.Fprint(b, "[")
for _, n := range l.nodes {
fmt.Fprint(b, n)
}
fmt.Fprint(b, "]")
return b.String()
}
// textNode holds plain text.
type textNode struct {
nodeType
text []byte
}
func newText(text string) *textNode {
return &textNode{nodeType: nodeText, text: []byte(text)}
}
func (t *textNode) String() string {
return fmt.Sprintf("(text: %q)", t.text)
}
// actionNode holds an action (something bounded by delimiters).
type actionNode struct {
nodeType
line int
pipeline []*commandNode
}
func newAction(line int, pipeline []*commandNode) *actionNode {
return &actionNode{nodeType: nodeAction, line: line, pipeline: pipeline}
}
func (a *actionNode) append(command *commandNode) {
a.pipeline = append(a.pipeline, command)
}
func (a *actionNode) String() string {
return fmt.Sprintf("(action: %v)", a.pipeline)
}
// commandNode holds a command (a pipeline inside an evaluating action).
type commandNode struct {
nodeType
args []node // identifier, string, or number
}
func newCommand() *commandNode {
return &commandNode{nodeType: nodeCommand}
}
func (c *commandNode) append(arg node) {
c.args = append(c.args, arg)
}
func (c *commandNode) String() string {
return fmt.Sprintf("(command: %v)", c.args)
}
// identifierNode holds an identifier.
type identifierNode struct {
nodeType
ident string
}
func newIdentifier(ident string) *identifierNode {
return &identifierNode{nodeType: nodeIdentifier, ident: ident}
}
func (i *identifierNode) String() string {
return fmt.Sprintf("I=%s", i.ident)
}
// dotNode holds the special identifier '.'. It is represented by a nil pointer.
type dotNode bool
func newDot() *dotNode {
return nil
}
func (d *dotNode) typ() nodeType {
return nodeDot
}
func (d *dotNode) String() string {
return "{{<.>}}"
}
// fieldNode holds a field (identifier starting with '.').
// The names may be chained ('.x.y').
// The period is dropped from each ident.
type fieldNode struct {
nodeType
ident []string
}
func newField(ident string) *fieldNode {
return &fieldNode{nodeType: nodeField, ident: strings.Split(ident[1:], ".")} // [1:] to drop leading period
}
func (f *fieldNode) String() string {
return fmt.Sprintf("F=%s", f.ident)
}
// boolNode holds a boolean constant.
type boolNode struct {
nodeType
true bool
}
func newBool(true bool) *boolNode {
return &boolNode{nodeType: nodeString, true: true}
}
func (b *boolNode) String() string {
if b.true {
return fmt.Sprintf("B=true")
}
return fmt.Sprintf("B=false")
}
// numberNode holds a number, signed or unsigned integer, floating, or complex.
// The value is parsed and stored under all the types that can represent the value.
// This simulates in a small amount of code the behavior of Go's ideal constants.
type numberNode struct {
nodeType
isInt bool // number has an integral value
isUint bool // number has an unsigned integral value
isFloat bool // number has a floating-point value
isComplex bool // number is complex
int64 // the signed integer value
uint64 // the unsigned integer value
float64 // the floating-point value
complex128 // the complex value
text string
}
func newNumber(text string, isComplex bool) (*numberNode, os.Error) {
n := &numberNode{nodeType: nodeNumber, text: text}
if isComplex {
// fmt.Sscan can parse the pair, so let it do the work.
if _, err := fmt.Sscan(text, &n.complex128); err != nil {
return nil, err
}
n.isComplex = true
n.simplifyComplex()
return n, nil
}
// Imaginary constants can only be complex unless they are zero.
if len(text) > 0 && text[len(text)-1] == 'i' {
f, err := strconv.Atof64(text[:len(text)-1])
if err == nil {
n.isComplex = true
n.complex128 = complex(0, f)
n.simplifyComplex()
return n, nil
}
}
// Do integer test first so we get 0x123 etc.
u, err := strconv.Btoui64(text, 0) // will fail for -0; fixed below.
if err == nil {
n.isUint = true
n.uint64 = u
}
i, err := strconv.Btoi64(text, 0)
if err == nil {
n.isInt = true
n.int64 = i
if i == 0 {
n.isUint = true // in case of -0.
n.uint64 = u
}
}
// If an integer extraction succeeded, promote the float.
if n.isInt {
n.isFloat = true
n.float64 = float64(n.int64)
} else if n.isUint {
n.isFloat = true
n.float64 = float64(n.uint64)
} else {
f, err := strconv.Atof64(text)
if err == nil {
n.isFloat = true
n.float64 = f
// If a floating-point extraction succeeded, extract the int if needed.
if !n.isInt && float64(int64(f)) == f {
n.isInt = true
n.int64 = int64(f)
}
if !n.isUint && float64(uint64(f)) == f {
n.isUint = true
n.uint64 = uint64(f)
}
}
}
if !n.isInt && !n.isUint && !n.isFloat {
return nil, fmt.Errorf("illegal number syntax: %q", text)
}
return n, nil
}
// simplifyComplex pulls out any other types that are represented by the complex number.
// These all require that the imaginary part be zero.
func (n *numberNode) simplifyComplex() {
n.isFloat = imag(n.complex128) == 0
if n.isFloat {
n.float64 = real(n.complex128)
n.isInt = float64(int64(n.float64)) == n.float64
if n.isInt {
n.int64 = int64(n.float64)
}
n.isUint = float64(uint64(n.float64)) == n.float64
if n.isUint {
n.uint64 = uint64(n.float64)
}
}
}
func (n *numberNode) String() string {
return fmt.Sprintf("N=%s", n.text)
}
// stringNode holds a quoted string.
type stringNode struct {
nodeType
text string
}
func newString(text string) *stringNode {
return &stringNode{nodeType: nodeString, text: text}
}
func (s *stringNode) String() string {
return fmt.Sprintf("S=%#q", s.text)
}
// endNode represents an {{end}} action. It is represented by a nil pointer.
type endNode bool
func newEnd() *endNode {
return nil
}
func (e *endNode) typ() nodeType {
return nodeEnd
}
func (e *endNode) String() string {
return "{{end}}"
}
// elseNode represents an {{else}} action.
type elseNode struct {
nodeType
line int
}
func newElse(line int) *elseNode {
return &elseNode{nodeType: nodeElse, line: line}
}
func (e *elseNode) typ() nodeType {
return nodeElse
}
func (e *elseNode) String() string {
return "{{else}}"
}
// ifNode represents an {{if}} action and its commands.
// TODO: what should evaluation look like? is a pipeline enough?
type ifNode struct {
nodeType
line int
pipeline []*commandNode
list *listNode
elseList *listNode
}
func newIf(line int, pipeline []*commandNode, list, elseList *listNode) *ifNode {
return &ifNode{nodeType: nodeIf, line: line, pipeline: pipeline, list: list, elseList: elseList}
}
func (i *ifNode) String() string {
if i.elseList != nil {
return fmt.Sprintf("({{if %s}} %s {{else}} %s)", i.pipeline, i.list, i.elseList)
}
return fmt.Sprintf("({{if %s}} %s)", i.pipeline, i.list)
}
// rangeNode represents a {{range}} action and its commands.
type rangeNode struct {
nodeType
line int
pipeline []*commandNode
list *listNode
elseList *listNode
}
func newRange(line int, pipeline []*commandNode, list, elseList *listNode) *rangeNode {
return &rangeNode{nodeType: nodeRange, line: line, pipeline: pipeline, list: list, elseList: elseList}
}
func (r *rangeNode) String() string {
if r.elseList != nil {
return fmt.Sprintf("({{range %s}} %s {{else}} %s)", r.pipeline, r.list, r.elseList)
}
return fmt.Sprintf("({{range %s}} %s)", r.pipeline, r.list)
}
// templateNode represents a {{template}} action.
type templateNode struct {
nodeType
line int
name node
pipeline []*commandNode
}
func newTemplate(line int, name node, pipeline []*commandNode) *templateNode {
return &templateNode{nodeType: nodeTemplate, line: line, name: name, pipeline: pipeline}
}
func (t *templateNode) String() string {
return fmt.Sprintf("{{template %s %s}}", t.name, t.pipeline)
}
// withNode represents a {{with}} action and its commands.
type withNode struct {
nodeType
line int
pipeline []*commandNode
list *listNode
elseList *listNode
}
func newWith(line int, pipeline []*commandNode, list, elseList *listNode) *withNode {
return &withNode{nodeType: nodeWith, line: line, pipeline: pipeline, list: list, elseList: elseList}
}
func (w *withNode) String() string {
if w.elseList != nil {
return fmt.Sprintf("({{with %s}} %s {{else}} %s)", w.pipeline, w.list, w.elseList)
}
return fmt.Sprintf("({{with %s}} %s)", w.pipeline, w.list)
}
// Parsing.
// New allocates a new template with the given name.
func New(name string) *Template {
return &Template{
name: name,
funcs: make(map[string]reflect.Value),
}
}
// Funcs adds to the template's function map the elements of the
// argument map. It panics if a value in the map is not a function
// with appropriate return type.
// The return value is the template, so calls can be chained.
func (t *Template) Funcs(funcMap FuncMap) *Template {
addFuncs(t.funcs, funcMap)
return t
}
// errorf formats the error and terminates processing.
func (t *Template) errorf(format string, args ...interface{}) {
t.root = nil
format = fmt.Sprintf("template: %s:%d: %s", t.name, t.lex.lineNumber(), format)
panic(fmt.Errorf(format, args...))
}
// error terminates processing.
func (t *Template) error(err os.Error) {
t.errorf("%s", err)
}
// expect consumes the next token and guarantees it has the required type.
func (t *Template) expect(expected itemType, context string) item {
token := t.next()
if token.typ != expected {
t.errorf("expected %s in %s; got %s", expected, context, token)
}
return token
}
// unexpected complains about the token and terminates processing.
func (t *Template) unexpected(token item, context string) {
t.errorf("unexpected %s in %s", token, context)
}
// recover is the handler that turns panics into returns from the top
// level of Parse or Execute.
func (t *Template) recover(errp *os.Error) {
e := recover()
if e != nil {
if _, ok := e.(runtime.Error); ok {
panic(e)
}
t.stopParse()
*errp = e.(os.Error)
}
return
}
// startParse starts the template parsing from the lexer.
func (t *Template) startParse(set *Set, lex *lexer) {
t.root = nil
t.set = set
t.lex = lex
}
// stopParse terminates parsing.
func (t *Template) stopParse() {
t.set, t.lex = nil, nil
}
// atEOF returns true if, possibly after spaces, we're at EOF.
func (t *Template) atEOF() bool {
for {
token := t.peek()
switch token.typ {
case itemEOF:
return true
case itemText:
for _, r := range token.val {
if !unicode.IsSpace(r) {
return false
}
}
t.next() // skip spaces.
continue
}
break
}
return false
}
// Parse parses the template definition string to construct an internal representation
// of the template for execution.
func (t *Template) Parse(s string) (err os.Error) {
t.startParse(nil, lex(t.name, s))
defer t.recover(&err)
t.parse(true)
t.stopParse()
return
}
// ParseInSet parses the template definition string to construct an internal representation
// of the template for execution. Function bindings are checked against those in the set.
func (t *Template) ParseInSet(s string, set *Set) (err os.Error) {
t.startParse(set, lex(t.name, s))
defer t.recover(&err)
t.parse(true)
t.stopParse()
return
}
// parse is the helper for Parse. It triggers an error if we expect EOF but don't reach it.
func (t *Template) parse(toEOF bool) (next node) {
t.root, next = t.itemList(true)
if toEOF && next != nil {
t.errorf("unexpected %s", next)
}
return next
}
// itemList:
// textOrAction*
// Terminates at EOF and at {{end}} or {{else}}, which is returned separately.
// The toEOF flag tells whether we expect to reach EOF.
func (t *Template) itemList(toEOF bool) (list *listNode, next node) {
list = newList()
for t.peek().typ != itemEOF {
n := t.textOrAction()
switch n.typ() {
case nodeEnd, nodeElse:
return list, n
}
list.append(n)
}
if !toEOF {
t.unexpected(t.next(), "input")
}
return list, nil
}
// textOrAction:
// text | action
func (t *Template) textOrAction() node {
switch token := t.next(); token.typ {
case itemText:
return newText(token.val)
case itemLeftDelim:
return t.action()
default:
t.unexpected(token, "input")
}
return nil
}
// Action:
// control
// command ("|" command)*
// Left delim is past. Now get actions.
// First word could be a keyword such as range.
func (t *Template) action() (n node) {
switch token := t.next(); token.typ {
case itemElse:
return t.elseControl()
case itemEnd:
return t.endControl()
case itemIf:
return t.ifControl()
case itemRange:
return t.rangeControl()
case itemTemplate:
return t.templateControl()
case itemWith:
return t.withControl()
}
t.backup()
return newAction(t.lex.lineNumber(), t.pipeline("command"))
}
// Pipeline:
// field or command
// pipeline "|" pipeline
func (t *Template) pipeline(context string) (pipe []*commandNode) {
for {
switch token := t.next(); token.typ {
case itemRightDelim:
if len(pipe) == 0 {
t.errorf("missing value for %s", context)
}
return
case itemBool, itemComplex, itemDot, itemField, itemIdentifier, itemNumber, itemRawString, itemString:
t.backup()
pipe = append(pipe, t.command())
default:
t.unexpected(token, context)
}
}
return
}
func (t *Template) parseControl(context string) (lineNum int, pipe []*commandNode, list, elseList *listNode) {
lineNum = t.lex.lineNumber()
pipe = t.pipeline(context)
var next node
list, next = t.itemList(false)
switch next.typ() {
case nodeEnd: //done
case nodeElse:
elseList, next = t.itemList(false)
if next.typ() != nodeEnd {
t.errorf("expected end; found %s", next)
}
elseList = elseList
}
return lineNum, pipe, list, elseList
}
// If:
// {{if pipeline}} itemList {{end}}
// {{if pipeline}} itemList {{else}} itemList {{end}}
// If keyword is past.
func (t *Template) ifControl() node {
return newIf(t.parseControl("if"))
}
// Range:
// {{range pipeline}} itemList {{end}}
// {{range pipeline}} itemList {{else}} itemList {{end}}
// Range keyword is past.
func (t *Template) rangeControl() node {
return newRange(t.parseControl("range"))
}
// With:
// {{with pipeline}} itemList {{end}}
// {{with pipeline}} itemList {{else}} itemList {{end}}
// If keyword is past.
func (t *Template) withControl() node {
return newWith(t.parseControl("with"))
}
// End:
// {{end}}
// End keyword is past.
func (t *Template) endControl() node {
t.expect(itemRightDelim, "end")
return newEnd()
}
// Else:
// {{else}}
// Else keyword is past.
func (t *Template) elseControl() node {
t.expect(itemRightDelim, "else")
return newElse(t.lex.lineNumber())
}
// Template:
// {{template stringValue pipeline}}
// Template keyword is past. The name must be something that can evaluate
// to a string.
func (t *Template) templateControl() node {
var name node
switch token := t.next(); token.typ {
case itemIdentifier:
if _, ok := findFunction(token.val, t, t.set); !ok {
t.errorf("function %q not defined", token.val)
}
name = newIdentifier(token.val)
case itemDot:
name = newDot()
case itemField:
name = newField(token.val)
case itemString, itemRawString:
s, err := strconv.Unquote(token.val)
if err != nil {
t.error(err)
}
name = newString(s)
default:
t.unexpected(token, "template invocation")
}
pipeline := t.pipeline("template")
return newTemplate(t.lex.lineNumber(), name, pipeline)
}
// command:
// space-separated arguments up to a pipeline character or right delimiter.
// we consume the pipe character but leave the right delim to terminate the action.
func (t *Template) command() *commandNode {
cmd := newCommand()
Loop:
for {
switch token := t.next(); token.typ {
case itemRightDelim:
t.backup()
break Loop
case itemPipe:
break Loop
case itemError:
t.errorf("%s", token.val)
case itemIdentifier:
if _, ok := findFunction(token.val, t, t.set); !ok {
t.errorf("function %q not defined", token.val)
}
cmd.append(newIdentifier(token.val))
case itemDot:
cmd.append(newDot())
case itemField:
cmd.append(newField(token.val))
case itemBool:
cmd.append(newBool(token.val == "true"))
case itemComplex, itemNumber:
number, err := newNumber(token.val, token.typ == itemComplex)
if err != nil {
t.error(err)
}
cmd.append(number)
case itemString, itemRawString:
s, err := strconv.Unquote(token.val)
if err != nil {
t.error(err)
}
cmd.append(newString(s))
default:
t.unexpected(token, "command")
}
}
if len(cmd.args) == 0 {
t.errorf("empty command")
}
return cmd
}