blob: ee2f23dbba2774f3373c19175f0695a769ea712a [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package binary implements translation between
// unsigned integer values and byte sequences
// and the reading and writing of fixed-size values.
package binary
import (
"math"
"io"
"os"
"reflect"
)
// A ByteOrder specifies how to convert byte sequences into
// 16-, 32-, or 64-bit unsigned integers.
type ByteOrder interface {
Uint16(b []byte) uint16
Uint32(b []byte) uint32
Uint64(b []byte) uint64
PutUint16([]byte, uint16)
PutUint32([]byte, uint32)
PutUint64([]byte, uint64)
String() string
}
// This is byte instead of struct{} so that it can be compared,
// allowing, e.g., order == binary.LittleEndian.
type unused byte
// LittleEndian is the little-endian implementation of ByteOrder.
var LittleEndian littleEndian
// BigEndian is the big-endian implementation of ByteOrder.
var BigEndian bigEndian
type littleEndian unused
func (littleEndian) Uint16(b []byte) uint16 { return uint16(b[0]) | uint16(b[1])<<8 }
func (littleEndian) PutUint16(b []byte, v uint16) {
b[0] = byte(v)
b[1] = byte(v >> 8)
}
func (littleEndian) Uint32(b []byte) uint32 {
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func (littleEndian) PutUint32(b []byte, v uint32) {
b[0] = byte(v)
b[1] = byte(v >> 8)
b[2] = byte(v >> 16)
b[3] = byte(v >> 24)
}
func (littleEndian) Uint64(b []byte) uint64 {
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
}
func (littleEndian) PutUint64(b []byte, v uint64) {
b[0] = byte(v)
b[1] = byte(v >> 8)
b[2] = byte(v >> 16)
b[3] = byte(v >> 24)
b[4] = byte(v >> 32)
b[5] = byte(v >> 40)
b[6] = byte(v >> 48)
b[7] = byte(v >> 56)
}
func (littleEndian) String() string { return "LittleEndian" }
func (littleEndian) GoString() string { return "binary.LittleEndian" }
type bigEndian unused
func (bigEndian) Uint16(b []byte) uint16 { return uint16(b[1]) | uint16(b[0])<<8 }
func (bigEndian) PutUint16(b []byte, v uint16) {
b[0] = byte(v >> 8)
b[1] = byte(v)
}
func (bigEndian) Uint32(b []byte) uint32 {
return uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
}
func (bigEndian) PutUint32(b []byte, v uint32) {
b[0] = byte(v >> 24)
b[1] = byte(v >> 16)
b[2] = byte(v >> 8)
b[3] = byte(v)
}
func (bigEndian) Uint64(b []byte) uint64 {
return uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 |
uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56
}
func (bigEndian) PutUint64(b []byte, v uint64) {
b[0] = byte(v >> 56)
b[1] = byte(v >> 48)
b[2] = byte(v >> 40)
b[3] = byte(v >> 32)
b[4] = byte(v >> 24)
b[5] = byte(v >> 16)
b[6] = byte(v >> 8)
b[7] = byte(v)
}
func (bigEndian) String() string { return "BigEndian" }
func (bigEndian) GoString() string { return "binary.BigEndian" }
// Read reads structured binary data from r into data.
// Data must be a pointer to a fixed-size value or a slice
// of fixed-size values.
// A fixed-size value is either a fixed-size arithmetic
// type (int8, uint8, int16, float32, complex64, ...)
// or an array or struct containing only fixed-size values.
// Bytes read from r are decoded using the specified byte order
// and written to successive fields of the data.
func Read(r io.Reader, order ByteOrder, data interface{}) os.Error {
var v reflect.Value
switch d := reflect.NewValue(data).(type) {
case *reflect.PtrValue:
v = d.Elem()
case *reflect.SliceValue:
v = d
default:
return os.NewError("binary.Read: invalid type " + d.Type().String())
}
size := TotalSize(v)
if size < 0 {
return os.NewError("binary.Read: invalid type " + v.Type().String())
}
d := &decoder{order: order, buf: make([]byte, size)}
if _, err := io.ReadFull(r, d.buf); err != nil {
return err
}
d.value(v)
return nil
}
// Write writes the binary representation of data into w.
// Data must be a fixed-size value or a pointer to
// a fixed-size value.
// A fixed-size value is either a fixed-size arithmetic
// type (int8, uint8, int16, float32, complex64, ...)
// or an array or struct containing only fixed-size values.
// Bytes written to w are encoded using the specified byte order
// and read from successive fields of the data.
func Write(w io.Writer, order ByteOrder, data interface{}) os.Error {
v := reflect.Indirect(reflect.NewValue(data))
size := TotalSize(v)
if size < 0 {
return os.NewError("binary.Write: invalid type " + v.Type().String())
}
buf := make([]byte, size)
e := &encoder{order: order, buf: buf}
e.value(v)
_, err := w.Write(buf)
return err
}
func TotalSize(v reflect.Value) int {
if sv, ok := v.(*reflect.SliceValue); ok {
elem := sizeof(v.Type().(*reflect.SliceType).Elem())
if elem < 0 {
return -1
}
return sv.Len() * elem
}
return sizeof(v.Type())
}
func sizeof(v reflect.Type) int {
switch t := v.(type) {
case *reflect.ArrayType:
n := sizeof(t.Elem())
if n < 0 {
return -1
}
return t.Len() * n
case *reflect.StructType:
sum := 0
for i, n := 0, t.NumField(); i < n; i++ {
s := sizeof(t.Field(i).Type)
if s < 0 {
return -1
}
sum += s
}
return sum
case *reflect.UintType, *reflect.IntType, *reflect.FloatType, *reflect.ComplexType:
switch t := t.Kind(); t {
case reflect.Int, reflect.Uint, reflect.Uintptr:
return -1
}
return int(v.Size())
}
return -1
}
type decoder struct {
order ByteOrder
buf []byte
}
type encoder struct {
order ByteOrder
buf []byte
}
func (d *decoder) uint8() uint8 {
x := d.buf[0]
d.buf = d.buf[1:]
return x
}
func (e *encoder) uint8(x uint8) {
e.buf[0] = x
e.buf = e.buf[1:]
}
func (d *decoder) uint16() uint16 {
x := d.order.Uint16(d.buf[0:2])
d.buf = d.buf[2:]
return x
}
func (e *encoder) uint16(x uint16) {
e.order.PutUint16(e.buf[0:2], x)
e.buf = e.buf[2:]
}
func (d *decoder) uint32() uint32 {
x := d.order.Uint32(d.buf[0:4])
d.buf = d.buf[4:]
return x
}
func (e *encoder) uint32(x uint32) {
e.order.PutUint32(e.buf[0:4], x)
e.buf = e.buf[4:]
}
func (d *decoder) uint64() uint64 {
x := d.order.Uint64(d.buf[0:8])
d.buf = d.buf[8:]
return x
}
func (e *encoder) uint64(x uint64) {
e.order.PutUint64(e.buf[0:8], x)
e.buf = e.buf[8:]
}
func (d *decoder) int8() int8 { return int8(d.uint8()) }
func (e *encoder) int8(x int8) { e.uint8(uint8(x)) }
func (d *decoder) int16() int16 { return int16(d.uint16()) }
func (e *encoder) int16(x int16) { e.uint16(uint16(x)) }
func (d *decoder) int32() int32 { return int32(d.uint32()) }
func (e *encoder) int32(x int32) { e.uint32(uint32(x)) }
func (d *decoder) int64() int64 { return int64(d.uint64()) }
func (e *encoder) int64(x int64) { e.uint64(uint64(x)) }
func (d *decoder) value(v reflect.Value) {
switch v := v.(type) {
case *reflect.ArrayValue:
l := v.Len()
for i := 0; i < l; i++ {
d.value(v.Elem(i))
}
case *reflect.StructValue:
l := v.NumField()
for i := 0; i < l; i++ {
d.value(v.Field(i))
}
case *reflect.SliceValue:
l := v.Len()
for i := 0; i < l; i++ {
d.value(v.Elem(i))
}
case *reflect.IntValue:
switch v.Type().Kind() {
case reflect.Int8:
v.Set(int64(d.int8()))
case reflect.Int16:
v.Set(int64(d.int16()))
case reflect.Int32:
v.Set(int64(d.int32()))
case reflect.Int64:
v.Set(d.int64())
}
case *reflect.UintValue:
switch v.Type().Kind() {
case reflect.Uint8:
v.Set(uint64(d.uint8()))
case reflect.Uint16:
v.Set(uint64(d.uint16()))
case reflect.Uint32:
v.Set(uint64(d.uint32()))
case reflect.Uint64:
v.Set(d.uint64())
}
case *reflect.FloatValue:
switch v.Type().Kind() {
case reflect.Float32:
v.Set(float64(math.Float32frombits(d.uint32())))
case reflect.Float64:
v.Set(math.Float64frombits(d.uint64()))
}
case *reflect.ComplexValue:
switch v.Type().Kind() {
case reflect.Complex64:
v.Set(complex(
float64(math.Float32frombits(d.uint32())),
float64(math.Float32frombits(d.uint32())),
))
case reflect.Complex128:
v.Set(complex(
math.Float64frombits(d.uint64()),
math.Float64frombits(d.uint64()),
))
}
}
}
func (e *encoder) value(v reflect.Value) {
switch v := v.(type) {
case *reflect.ArrayValue:
l := v.Len()
for i := 0; i < l; i++ {
e.value(v.Elem(i))
}
case *reflect.StructValue:
l := v.NumField()
for i := 0; i < l; i++ {
e.value(v.Field(i))
}
case *reflect.SliceValue:
l := v.Len()
for i := 0; i < l; i++ {
e.value(v.Elem(i))
}
case *reflect.IntValue:
switch v.Type().Kind() {
case reflect.Int8:
e.int8(int8(v.Get()))
case reflect.Int16:
e.int16(int16(v.Get()))
case reflect.Int32:
e.int32(int32(v.Get()))
case reflect.Int64:
e.int64(v.Get())
}
case *reflect.UintValue:
switch v.Type().Kind() {
case reflect.Uint8:
e.uint8(uint8(v.Get()))
case reflect.Uint16:
e.uint16(uint16(v.Get()))
case reflect.Uint32:
e.uint32(uint32(v.Get()))
case reflect.Uint64:
e.uint64(v.Get())
}
case *reflect.FloatValue:
switch v.Type().Kind() {
case reflect.Float32:
e.uint32(math.Float32bits(float32(v.Get())))
case reflect.Float64:
e.uint64(math.Float64bits(v.Get()))
}
case *reflect.ComplexValue:
switch v.Type().Kind() {
case reflect.Complex64:
x := v.Get()
e.uint32(math.Float32bits(float32(real(x))))
e.uint32(math.Float32bits(float32(imag(x))))
case reflect.Complex128:
x := v.Get()
e.uint64(math.Float64bits(real(x)))
e.uint64(math.Float64bits(imag(x)))
}
}
}