blob: 0b8489ab66fdc3a07cf951eb53894b2970100a88 [file] [log] [blame]
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ecdsa
import (
"crypto/elliptic"
"errors"
"io"
"math/big"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// This file contains a math/big implementation of ECDSA that is only used for
// deprecated custom curves.
func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
k, err := randFieldElement(c, rand)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return priv, nil
}
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
// we use the left-most bits of the hash to match the bit-length of the order of
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
var errZeroParam = errors.New("zero parameter")
// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. Most applications should use
// [SignASN1] instead of dealing directly with r, s.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
sig, err := SignASN1(rand, priv, hash)
if err != nil {
return nil, nil, err
}
r, s = new(big.Int), new(big.Int)
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1 from SignASN1")
}
return r, s, nil
}
func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) {
c := priv.Curve
// SEC 1, Version 2.0, Section 4.1.3
N := c.Params().N
if N.Sign() == 0 {
return nil, errZeroParam
}
var k, kInv, r, s *big.Int
for {
for {
k, err = randFieldElement(c, csprng)
if err != nil {
return nil, err
}
kInv = new(big.Int).ModInverse(k, N)
r, _ = c.ScalarBaseMult(k.Bytes())
r.Mod(r, N)
if r.Sign() != 0 {
break
}
}
e := hashToInt(hash, c)
s = new(big.Int).Mul(priv.D, r)
s.Add(s, e)
s.Mul(s, kInv)
s.Mod(s, N) // N != 0
if s.Sign() != 0 {
break
}
}
return encodeSignature(r.Bytes(), s.Bytes())
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid. Most applications should
// use VerifyASN1 instead of dealing directly with r, s.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
sig, err := encodeSignature(r.Bytes(), s.Bytes())
if err != nil {
return false
}
return VerifyASN1(pub, hash, sig)
}
func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool {
rBytes, sBytes, err := parseSignature(sig)
if err != nil {
return false
}
r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes)
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
// SEC 1, Version 2.0, Section 4.1.4
e := hashToInt(hash, c)
w := new(big.Int).ModInverse(s, N)
u1 := e.Mul(e, w)
u1.Mod(u1, N)
u2 := w.Mul(r, w)
u2.Mod(u2, N)
x1, y1 := c.ScalarBaseMult(u1.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
x, y := c.Add(x1, y1, x2, y2)
if x.Sign() == 0 && y.Sign() == 0 {
return false
}
x.Mod(x, N)
return x.Cmp(r) == 0
}
var one = new(big.Int).SetInt64(1)
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.2.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
// See randomPoint for notes on the algorithm. This has to match, or s390x
// signatures will come out different from other architectures, which will
// break TLS recorded tests.
for {
N := c.Params().N
b := make([]byte, (N.BitLen()+7)/8)
if _, err = io.ReadFull(rand, b); err != nil {
return
}
if excess := len(b)*8 - N.BitLen(); excess > 0 {
b[0] >>= excess
}
k = new(big.Int).SetBytes(b)
if k.Sign() != 0 && k.Cmp(N) < 0 {
return
}
}
}