| // Copyright 2022 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ecdsa |
| |
| import ( |
| "crypto/elliptic" |
| "errors" |
| "io" |
| "math/big" |
| |
| "golang.org/x/crypto/cryptobyte" |
| "golang.org/x/crypto/cryptobyte/asn1" |
| ) |
| |
| // This file contains a math/big implementation of ECDSA that is only used for |
| // deprecated custom curves. |
| |
| func generateLegacy(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { |
| k, err := randFieldElement(c, rand) |
| if err != nil { |
| return nil, err |
| } |
| |
| priv := new(PrivateKey) |
| priv.PublicKey.Curve = c |
| priv.D = k |
| priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) |
| return priv, nil |
| } |
| |
| // hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4, |
| // we use the left-most bits of the hash to match the bit-length of the order of |
| // the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3. |
| func hashToInt(hash []byte, c elliptic.Curve) *big.Int { |
| orderBits := c.Params().N.BitLen() |
| orderBytes := (orderBits + 7) / 8 |
| if len(hash) > orderBytes { |
| hash = hash[:orderBytes] |
| } |
| |
| ret := new(big.Int).SetBytes(hash) |
| excess := len(hash)*8 - orderBits |
| if excess > 0 { |
| ret.Rsh(ret, uint(excess)) |
| } |
| return ret |
| } |
| |
| var errZeroParam = errors.New("zero parameter") |
| |
| // Sign signs a hash (which should be the result of hashing a larger message) |
| // using the private key, priv. If the hash is longer than the bit-length of the |
| // private key's curve order, the hash will be truncated to that length. It |
| // returns the signature as a pair of integers. Most applications should use |
| // [SignASN1] instead of dealing directly with r, s. |
| func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { |
| sig, err := SignASN1(rand, priv, hash) |
| if err != nil { |
| return nil, nil, err |
| } |
| |
| r, s = new(big.Int), new(big.Int) |
| var inner cryptobyte.String |
| input := cryptobyte.String(sig) |
| if !input.ReadASN1(&inner, asn1.SEQUENCE) || |
| !input.Empty() || |
| !inner.ReadASN1Integer(r) || |
| !inner.ReadASN1Integer(s) || |
| !inner.Empty() { |
| return nil, nil, errors.New("invalid ASN.1 from SignASN1") |
| } |
| return r, s, nil |
| } |
| |
| func signLegacy(priv *PrivateKey, csprng io.Reader, hash []byte) (sig []byte, err error) { |
| c := priv.Curve |
| |
| // SEC 1, Version 2.0, Section 4.1.3 |
| N := c.Params().N |
| if N.Sign() == 0 { |
| return nil, errZeroParam |
| } |
| var k, kInv, r, s *big.Int |
| for { |
| for { |
| k, err = randFieldElement(c, csprng) |
| if err != nil { |
| return nil, err |
| } |
| |
| kInv = new(big.Int).ModInverse(k, N) |
| |
| r, _ = c.ScalarBaseMult(k.Bytes()) |
| r.Mod(r, N) |
| if r.Sign() != 0 { |
| break |
| } |
| } |
| |
| e := hashToInt(hash, c) |
| s = new(big.Int).Mul(priv.D, r) |
| s.Add(s, e) |
| s.Mul(s, kInv) |
| s.Mod(s, N) // N != 0 |
| if s.Sign() != 0 { |
| break |
| } |
| } |
| |
| return encodeSignature(r.Bytes(), s.Bytes()) |
| } |
| |
| // Verify verifies the signature in r, s of hash using the public key, pub. Its |
| // return value records whether the signature is valid. Most applications should |
| // use VerifyASN1 instead of dealing directly with r, s. |
| func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { |
| if r.Sign() <= 0 || s.Sign() <= 0 { |
| return false |
| } |
| sig, err := encodeSignature(r.Bytes(), s.Bytes()) |
| if err != nil { |
| return false |
| } |
| return VerifyASN1(pub, hash, sig) |
| } |
| |
| func verifyLegacy(pub *PublicKey, hash []byte, sig []byte) bool { |
| rBytes, sBytes, err := parseSignature(sig) |
| if err != nil { |
| return false |
| } |
| r, s := new(big.Int).SetBytes(rBytes), new(big.Int).SetBytes(sBytes) |
| |
| c := pub.Curve |
| N := c.Params().N |
| |
| if r.Sign() <= 0 || s.Sign() <= 0 { |
| return false |
| } |
| if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { |
| return false |
| } |
| |
| // SEC 1, Version 2.0, Section 4.1.4 |
| e := hashToInt(hash, c) |
| w := new(big.Int).ModInverse(s, N) |
| |
| u1 := e.Mul(e, w) |
| u1.Mod(u1, N) |
| u2 := w.Mul(r, w) |
| u2.Mod(u2, N) |
| |
| x1, y1 := c.ScalarBaseMult(u1.Bytes()) |
| x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) |
| x, y := c.Add(x1, y1, x2, y2) |
| |
| if x.Sign() == 0 && y.Sign() == 0 { |
| return false |
| } |
| x.Mod(x, N) |
| return x.Cmp(r) == 0 |
| } |
| |
| var one = new(big.Int).SetInt64(1) |
| |
| // randFieldElement returns a random element of the order of the given |
| // curve using the procedure given in FIPS 186-4, Appendix B.5.2. |
| func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { |
| // See randomPoint for notes on the algorithm. This has to match, or s390x |
| // signatures will come out different from other architectures, which will |
| // break TLS recorded tests. |
| for { |
| N := c.Params().N |
| b := make([]byte, (N.BitLen()+7)/8) |
| if _, err = io.ReadFull(rand, b); err != nil { |
| return |
| } |
| if excess := len(b)*8 - N.BitLen(); excess > 0 { |
| b[0] >>= excess |
| } |
| k = new(big.Int).SetBytes(b) |
| if k.Sign() != 0 && k.Cmp(N) < 0 { |
| return |
| } |
| } |
| } |