blob: 73ec1de544c08fa552b6c5b3fb89ed960e1e4cc6 [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// IR visitors for walking the IR tree.
//
// The lowest level helpers are DoChildren and EditChildren, which
// nodes help implement and provide control over whether and when
// recursion happens during the walk of the IR.
//
// Although these are both useful directly, two simpler patterns
// are fairly common and also provided: Visit and Any.
package ir
// DoChildren calls do(x) on each of n's non-nil child nodes x.
// If any call returns true, DoChildren stops and returns true.
// Otherwise, DoChildren returns false.
//
// Note that DoChildren(n, do) only calls do(x) for n's immediate children.
// If x's children should be processed, then do(x) must call DoChildren(x, do).
//
// DoChildren allows constructing general traversals of the IR graph
// that can stop early if needed. The most general usage is:
//
// var do func(ir.Node) bool
// do = func(x ir.Node) bool {
// ... processing BEFORE visiting children ...
// if ... should visit children ... {
// ir.DoChildren(x, do)
// ... processing AFTER visiting children ...
// }
// if ... should stop parent DoChildren call from visiting siblings ... {
// return true
// }
// return false
// }
// do(root)
//
// Since DoChildren does not return true itself, if the do function
// never wants to stop the traversal, it can assume that DoChildren
// itself will always return false, simplifying to:
//
// var do func(ir.Node) bool
// do = func(x ir.Node) bool {
// ... processing BEFORE visiting children ...
// if ... should visit children ... {
// ir.DoChildren(x, do)
// }
// ... processing AFTER visiting children ...
// return false
// }
// do(root)
//
// The Visit function illustrates a further simplification of the pattern,
// only processing before visiting children and never stopping:
//
// func Visit(n ir.Node, visit func(ir.Node)) {
// if n == nil {
// return
// }
// var do func(ir.Node) bool
// do = func(x ir.Node) bool {
// visit(x)
// return ir.DoChildren(x, do)
// }
// do(n)
// }
//
// The Any function illustrates a different simplification of the pattern,
// visiting each node and then its children, recursively, until finding
// a node x for which cond(x) returns true, at which point the entire
// traversal stops and returns true.
//
// func Any(n ir.Node, cond(ir.Node) bool) bool {
// if n == nil {
// return false
// }
// var do func(ir.Node) bool
// do = func(x ir.Node) bool {
// return cond(x) || ir.DoChildren(x, do)
// }
// return do(n)
// }
//
// Visit and Any are presented above as examples of how to use
// DoChildren effectively, but of course, usage that fits within the
// simplifications captured by Visit or Any will be best served
// by directly calling the ones provided by this package.
func DoChildren(n Node, do func(Node) bool) bool {
if n == nil {
return false
}
return n.doChildren(do)
}
// Visit visits each non-nil node x in the IR tree rooted at n
// in a depth-first preorder traversal, calling visit on each node visited.
func Visit(n Node, visit func(Node)) {
if n == nil {
return
}
var do func(Node) bool
do = func(x Node) bool {
visit(x)
return DoChildren(x, do)
}
do(n)
}
// VisitList calls Visit(x, visit) for each node x in the list.
func VisitList(list Nodes, visit func(Node)) {
for _, x := range list {
Visit(x, visit)
}
}
// VisitFuncAndClosures calls visit on each non-nil node in fn.Body,
// including any nested closure bodies.
func VisitFuncAndClosures(fn *Func, visit func(n Node)) {
VisitList(fn.Body, func(n Node) {
visit(n)
if n, ok := n.(*ClosureExpr); ok && n.Op() == OCLOSURE {
VisitFuncAndClosures(n.Func, visit)
}
})
}
// Any looks for a non-nil node x in the IR tree rooted at n
// for which cond(x) returns true.
// Any considers nodes in a depth-first, preorder traversal.
// When Any finds a node x such that cond(x) is true,
// Any ends the traversal and returns true immediately.
// Otherwise Any returns false after completing the entire traversal.
func Any(n Node, cond func(Node) bool) bool {
if n == nil {
return false
}
var do func(Node) bool
do = func(x Node) bool {
return cond(x) || DoChildren(x, do)
}
return do(n)
}
// AnyList calls Any(x, cond) for each node x in the list, in order.
// If any call returns true, AnyList stops and returns true.
// Otherwise, AnyList returns false after calling Any(x, cond)
// for every x in the list.
func AnyList(list Nodes, cond func(Node) bool) bool {
for _, x := range list {
if Any(x, cond) {
return true
}
}
return false
}
// EditChildren edits the child nodes of n, replacing each child x with edit(x).
//
// Note that EditChildren(n, edit) only calls edit(x) for n's immediate children.
// If x's children should be processed, then edit(x) must call EditChildren(x, edit).
//
// EditChildren allows constructing general editing passes of the IR graph.
// The most general usage is:
//
// var edit func(ir.Node) ir.Node
// edit = func(x ir.Node) ir.Node {
// ... processing BEFORE editing children ...
// if ... should edit children ... {
// EditChildren(x, edit)
// ... processing AFTER editing children ...
// }
// ... return x ...
// }
// n = edit(n)
//
// EditChildren edits the node in place. To edit a copy, call Copy first.
// As an example, a simple deep copy implementation would be:
//
// func deepCopy(n ir.Node) ir.Node {
// var edit func(ir.Node) ir.Node
// edit = func(x ir.Node) ir.Node {
// x = ir.Copy(x)
// ir.EditChildren(x, edit)
// return x
// }
// return edit(n)
// }
//
// Of course, in this case it is better to call ir.DeepCopy than to build one anew.
func EditChildren(n Node, edit func(Node) Node) {
if n == nil {
return
}
n.editChildren(edit)
}
// EditChildrenWithHidden is like EditChildren, but also edits
// Node-typed fields tagged with `mknode:"-"`.
//
// TODO(mdempsky): Remove the `mknode:"-"` tags so this function can
// go away.
func EditChildrenWithHidden(n Node, edit func(Node) Node) {
if n == nil {
return
}
n.editChildrenWithHidden(edit)
}