| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package reflectdata |
| |
| import ( |
| "fmt" |
| "math/bits" |
| "sort" |
| |
| "cmd/compile/internal/base" |
| "cmd/compile/internal/ir" |
| "cmd/compile/internal/objw" |
| "cmd/compile/internal/typecheck" |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| ) |
| |
| // isRegularMemory reports whether t can be compared/hashed as regular memory. |
| func isRegularMemory(t *types.Type) bool { |
| a, _ := types.AlgType(t) |
| return a == types.AMEM |
| } |
| |
| // eqCanPanic reports whether == on type t could panic (has an interface somewhere). |
| // t must be comparable. |
| func eqCanPanic(t *types.Type) bool { |
| switch t.Kind() { |
| default: |
| return false |
| case types.TINTER: |
| return true |
| case types.TARRAY: |
| return eqCanPanic(t.Elem()) |
| case types.TSTRUCT: |
| for _, f := range t.FieldSlice() { |
| if !f.Sym.IsBlank() && eqCanPanic(f.Type) { |
| return true |
| } |
| } |
| return false |
| } |
| } |
| |
| // AlgType returns the fixed-width AMEMxx variants instead of the general |
| // AMEM kind when possible. |
| func AlgType(t *types.Type) types.AlgKind { |
| a, _ := types.AlgType(t) |
| if a == types.AMEM { |
| if t.Alignment() < int64(base.Ctxt.Arch.Alignment) && t.Alignment() < t.Size() { |
| // For example, we can't treat [2]int16 as an int32 if int32s require |
| // 4-byte alignment. See issue 46283. |
| return a |
| } |
| switch t.Size() { |
| case 0: |
| return types.AMEM0 |
| case 1: |
| return types.AMEM8 |
| case 2: |
| return types.AMEM16 |
| case 4: |
| return types.AMEM32 |
| case 8: |
| return types.AMEM64 |
| case 16: |
| return types.AMEM128 |
| } |
| } |
| |
| return a |
| } |
| |
| // genhash returns a symbol which is the closure used to compute |
| // the hash of a value of type t. |
| // Note: the generated function must match runtime.typehash exactly. |
| func genhash(t *types.Type) *obj.LSym { |
| switch AlgType(t) { |
| default: |
| // genhash is only called for types that have equality |
| base.Fatalf("genhash %v", t) |
| case types.AMEM0: |
| return sysClosure("memhash0") |
| case types.AMEM8: |
| return sysClosure("memhash8") |
| case types.AMEM16: |
| return sysClosure("memhash16") |
| case types.AMEM32: |
| return sysClosure("memhash32") |
| case types.AMEM64: |
| return sysClosure("memhash64") |
| case types.AMEM128: |
| return sysClosure("memhash128") |
| case types.ASTRING: |
| return sysClosure("strhash") |
| case types.AINTER: |
| return sysClosure("interhash") |
| case types.ANILINTER: |
| return sysClosure("nilinterhash") |
| case types.AFLOAT32: |
| return sysClosure("f32hash") |
| case types.AFLOAT64: |
| return sysClosure("f64hash") |
| case types.ACPLX64: |
| return sysClosure("c64hash") |
| case types.ACPLX128: |
| return sysClosure("c128hash") |
| case types.AMEM: |
| // For other sizes of plain memory, we build a closure |
| // that calls memhash_varlen. The size of the memory is |
| // encoded in the first slot of the closure. |
| closure := TypeLinksymLookup(fmt.Sprintf(".hashfunc%d", t.Size())) |
| if len(closure.P) > 0 { // already generated |
| return closure |
| } |
| if memhashvarlen == nil { |
| memhashvarlen = typecheck.LookupRuntimeFunc("memhash_varlen") |
| } |
| ot := 0 |
| ot = objw.SymPtr(closure, ot, memhashvarlen, 0) |
| ot = objw.Uintptr(closure, ot, uint64(t.Size())) // size encoded in closure |
| objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA) |
| return closure |
| case types.ASPECIAL: |
| break |
| } |
| |
| closure := TypeLinksymPrefix(".hashfunc", t) |
| if len(closure.P) > 0 { // already generated |
| return closure |
| } |
| |
| // Generate hash functions for subtypes. |
| // There are cases where we might not use these hashes, |
| // but in that case they will get dead-code eliminated. |
| // (And the closure generated by genhash will also get |
| // dead-code eliminated, as we call the subtype hashers |
| // directly.) |
| switch t.Kind() { |
| case types.TARRAY: |
| genhash(t.Elem()) |
| case types.TSTRUCT: |
| for _, f := range t.FieldSlice() { |
| genhash(f.Type) |
| } |
| } |
| |
| sym := TypeSymPrefix(".hash", t) |
| if base.Flag.LowerR != 0 { |
| fmt.Printf("genhash %v %v %v\n", closure, sym, t) |
| } |
| |
| base.Pos = base.AutogeneratedPos // less confusing than end of input |
| typecheck.DeclContext = ir.PEXTERN |
| |
| // func sym(p *T, h uintptr) uintptr |
| args := []*ir.Field{ |
| ir.NewField(base.Pos, typecheck.Lookup("p"), nil, types.NewPtr(t)), |
| ir.NewField(base.Pos, typecheck.Lookup("h"), nil, types.Types[types.TUINTPTR]), |
| } |
| results := []*ir.Field{ir.NewField(base.Pos, nil, nil, types.Types[types.TUINTPTR])} |
| tfn := ir.NewFuncType(base.Pos, nil, args, results) |
| |
| fn := typecheck.DeclFunc(sym, tfn) |
| np := ir.AsNode(tfn.Type().Params().Field(0).Nname) |
| nh := ir.AsNode(tfn.Type().Params().Field(1).Nname) |
| |
| switch t.Kind() { |
| case types.TARRAY: |
| // An array of pure memory would be handled by the |
| // standard algorithm, so the element type must not be |
| // pure memory. |
| hashel := hashfor(t.Elem()) |
| |
| // for i := 0; i < nelem; i++ |
| ni := typecheck.Temp(types.Types[types.TINT]) |
| init := ir.NewAssignStmt(base.Pos, ni, ir.NewInt(0)) |
| cond := ir.NewBinaryExpr(base.Pos, ir.OLT, ni, ir.NewInt(t.NumElem())) |
| post := ir.NewAssignStmt(base.Pos, ni, ir.NewBinaryExpr(base.Pos, ir.OADD, ni, ir.NewInt(1))) |
| loop := ir.NewForStmt(base.Pos, nil, cond, post, nil) |
| loop.PtrInit().Append(init) |
| |
| // h = hashel(&p[i], h) |
| call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil) |
| |
| nx := ir.NewIndexExpr(base.Pos, np, ni) |
| nx.SetBounded(true) |
| na := typecheck.NodAddr(nx) |
| call.Args.Append(na) |
| call.Args.Append(nh) |
| loop.Body.Append(ir.NewAssignStmt(base.Pos, nh, call)) |
| |
| fn.Body.Append(loop) |
| |
| case types.TSTRUCT: |
| // Walk the struct using memhash for runs of AMEM |
| // and calling specific hash functions for the others. |
| for i, fields := 0, t.FieldSlice(); i < len(fields); { |
| f := fields[i] |
| |
| // Skip blank fields. |
| if f.Sym.IsBlank() { |
| i++ |
| continue |
| } |
| |
| // Hash non-memory fields with appropriate hash function. |
| if !isRegularMemory(f.Type) { |
| hashel := hashfor(f.Type) |
| call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil) |
| nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages? |
| na := typecheck.NodAddr(nx) |
| call.Args.Append(na) |
| call.Args.Append(nh) |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call)) |
| i++ |
| continue |
| } |
| |
| // Otherwise, hash a maximal length run of raw memory. |
| size, next := memrun(t, i) |
| |
| // h = hashel(&p.first, size, h) |
| hashel := hashmem(f.Type) |
| call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil) |
| nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages? |
| na := typecheck.NodAddr(nx) |
| call.Args.Append(na) |
| call.Args.Append(nh) |
| call.Args.Append(ir.NewInt(size)) |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call)) |
| |
| i = next |
| } |
| } |
| |
| r := ir.NewReturnStmt(base.Pos, nil) |
| r.Results.Append(nh) |
| fn.Body.Append(r) |
| |
| if base.Flag.LowerR != 0 { |
| ir.DumpList("genhash body", fn.Body) |
| } |
| |
| typecheck.FinishFuncBody() |
| |
| fn.SetDupok(true) |
| typecheck.Func(fn) |
| |
| ir.CurFunc = fn |
| typecheck.Stmts(fn.Body) |
| ir.CurFunc = nil |
| |
| if base.Debug.DclStack != 0 { |
| types.CheckDclstack() |
| } |
| |
| fn.SetNilCheckDisabled(true) |
| typecheck.Target.Decls = append(typecheck.Target.Decls, fn) |
| |
| // Build closure. It doesn't close over any variables, so |
| // it contains just the function pointer. |
| objw.SymPtr(closure, 0, fn.Linksym(), 0) |
| objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA) |
| |
| return closure |
| } |
| |
| func hashfor(t *types.Type) ir.Node { |
| var sym *types.Sym |
| |
| switch a, _ := types.AlgType(t); a { |
| case types.AMEM: |
| base.Fatalf("hashfor with AMEM type") |
| case types.AINTER: |
| sym = ir.Pkgs.Runtime.Lookup("interhash") |
| case types.ANILINTER: |
| sym = ir.Pkgs.Runtime.Lookup("nilinterhash") |
| case types.ASTRING: |
| sym = ir.Pkgs.Runtime.Lookup("strhash") |
| case types.AFLOAT32: |
| sym = ir.Pkgs.Runtime.Lookup("f32hash") |
| case types.AFLOAT64: |
| sym = ir.Pkgs.Runtime.Lookup("f64hash") |
| case types.ACPLX64: |
| sym = ir.Pkgs.Runtime.Lookup("c64hash") |
| case types.ACPLX128: |
| sym = ir.Pkgs.Runtime.Lookup("c128hash") |
| default: |
| // Note: the caller of hashfor ensured that this symbol |
| // exists and has a body by calling genhash for t. |
| sym = TypeSymPrefix(".hash", t) |
| } |
| |
| // TODO(austin): This creates an ir.Name with a nil Func. |
| n := typecheck.NewName(sym) |
| ir.MarkFunc(n) |
| n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{ |
| types.NewField(base.Pos, nil, types.NewPtr(t)), |
| types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]), |
| }, []*types.Field{ |
| types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]), |
| })) |
| return n |
| } |
| |
| // sysClosure returns a closure which will call the |
| // given runtime function (with no closed-over variables). |
| func sysClosure(name string) *obj.LSym { |
| s := typecheck.LookupRuntimeVar(name + "·f") |
| if len(s.P) == 0 { |
| f := typecheck.LookupRuntimeFunc(name) |
| objw.SymPtr(s, 0, f, 0) |
| objw.Global(s, int32(types.PtrSize), obj.DUPOK|obj.RODATA) |
| } |
| return s |
| } |
| |
| // geneq returns a symbol which is the closure used to compute |
| // equality for two objects of type t. |
| func geneq(t *types.Type) *obj.LSym { |
| switch AlgType(t) { |
| case types.ANOEQ: |
| // The runtime will panic if it tries to compare |
| // a type with a nil equality function. |
| return nil |
| case types.AMEM0: |
| return sysClosure("memequal0") |
| case types.AMEM8: |
| return sysClosure("memequal8") |
| case types.AMEM16: |
| return sysClosure("memequal16") |
| case types.AMEM32: |
| return sysClosure("memequal32") |
| case types.AMEM64: |
| return sysClosure("memequal64") |
| case types.AMEM128: |
| return sysClosure("memequal128") |
| case types.ASTRING: |
| return sysClosure("strequal") |
| case types.AINTER: |
| return sysClosure("interequal") |
| case types.ANILINTER: |
| return sysClosure("nilinterequal") |
| case types.AFLOAT32: |
| return sysClosure("f32equal") |
| case types.AFLOAT64: |
| return sysClosure("f64equal") |
| case types.ACPLX64: |
| return sysClosure("c64equal") |
| case types.ACPLX128: |
| return sysClosure("c128equal") |
| case types.AMEM: |
| // make equality closure. The size of the type |
| // is encoded in the closure. |
| closure := TypeLinksymLookup(fmt.Sprintf(".eqfunc%d", t.Size())) |
| if len(closure.P) != 0 { |
| return closure |
| } |
| if memequalvarlen == nil { |
| memequalvarlen = typecheck.LookupRuntimeFunc("memequal_varlen") |
| } |
| ot := 0 |
| ot = objw.SymPtr(closure, ot, memequalvarlen, 0) |
| ot = objw.Uintptr(closure, ot, uint64(t.Size())) |
| objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA) |
| return closure |
| case types.ASPECIAL: |
| break |
| } |
| |
| closure := TypeLinksymPrefix(".eqfunc", t) |
| if len(closure.P) > 0 { // already generated |
| return closure |
| } |
| sym := TypeSymPrefix(".eq", t) |
| if base.Flag.LowerR != 0 { |
| fmt.Printf("geneq %v\n", t) |
| } |
| |
| // Autogenerate code for equality of structs and arrays. |
| |
| base.Pos = base.AutogeneratedPos // less confusing than end of input |
| typecheck.DeclContext = ir.PEXTERN |
| |
| // func sym(p, q *T) bool |
| tfn := ir.NewFuncType(base.Pos, nil, |
| []*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("p"), nil, types.NewPtr(t)), ir.NewField(base.Pos, typecheck.Lookup("q"), nil, types.NewPtr(t))}, |
| []*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("r"), nil, types.Types[types.TBOOL])}) |
| |
| fn := typecheck.DeclFunc(sym, tfn) |
| np := ir.AsNode(tfn.Type().Params().Field(0).Nname) |
| nq := ir.AsNode(tfn.Type().Params().Field(1).Nname) |
| nr := ir.AsNode(tfn.Type().Results().Field(0).Nname) |
| |
| // Label to jump to if an equality test fails. |
| neq := typecheck.AutoLabel(".neq") |
| |
| // We reach here only for types that have equality but |
| // cannot be handled by the standard algorithms, |
| // so t must be either an array or a struct. |
| switch t.Kind() { |
| default: |
| base.Fatalf("geneq %v", t) |
| |
| case types.TARRAY: |
| nelem := t.NumElem() |
| |
| // checkAll generates code to check the equality of all array elements. |
| // If unroll is greater than nelem, checkAll generates: |
| // |
| // if eq(p[0], q[0]) && eq(p[1], q[1]) && ... { |
| // } else { |
| // return |
| // } |
| // |
| // And so on. |
| // |
| // Otherwise it generates: |
| // |
| // for i := 0; i < nelem; i++ { |
| // if eq(p[i], q[i]) { |
| // } else { |
| // goto neq |
| // } |
| // } |
| // |
| // TODO(josharian): consider doing some loop unrolling |
| // for larger nelem as well, processing a few elements at a time in a loop. |
| checkAll := func(unroll int64, last bool, eq func(pi, qi ir.Node) ir.Node) { |
| // checkIdx generates a node to check for equality at index i. |
| checkIdx := func(i ir.Node) ir.Node { |
| // pi := p[i] |
| pi := ir.NewIndexExpr(base.Pos, np, i) |
| pi.SetBounded(true) |
| pi.SetType(t.Elem()) |
| // qi := q[i] |
| qi := ir.NewIndexExpr(base.Pos, nq, i) |
| qi.SetBounded(true) |
| qi.SetType(t.Elem()) |
| return eq(pi, qi) |
| } |
| |
| if nelem <= unroll { |
| if last { |
| // Do last comparison in a different manner. |
| nelem-- |
| } |
| // Generate a series of checks. |
| for i := int64(0); i < nelem; i++ { |
| // if check {} else { goto neq } |
| nif := ir.NewIfStmt(base.Pos, checkIdx(ir.NewInt(i)), nil, nil) |
| nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq)) |
| fn.Body.Append(nif) |
| } |
| if last { |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, checkIdx(ir.NewInt(nelem)))) |
| } |
| } else { |
| // Generate a for loop. |
| // for i := 0; i < nelem; i++ |
| i := typecheck.Temp(types.Types[types.TINT]) |
| init := ir.NewAssignStmt(base.Pos, i, ir.NewInt(0)) |
| cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(nelem)) |
| post := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(1))) |
| loop := ir.NewForStmt(base.Pos, nil, cond, post, nil) |
| loop.PtrInit().Append(init) |
| // if eq(pi, qi) {} else { goto neq } |
| nif := ir.NewIfStmt(base.Pos, checkIdx(i), nil, nil) |
| nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq)) |
| loop.Body.Append(nif) |
| fn.Body.Append(loop) |
| if last { |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true))) |
| } |
| } |
| } |
| |
| switch t.Elem().Kind() { |
| case types.TSTRING: |
| // Do two loops. First, check that all the lengths match (cheap). |
| // Second, check that all the contents match (expensive). |
| // TODO: when the array size is small, unroll the length match checks. |
| checkAll(3, false, func(pi, qi ir.Node) ir.Node { |
| // Compare lengths. |
| eqlen, _ := EqString(pi, qi) |
| return eqlen |
| }) |
| checkAll(1, true, func(pi, qi ir.Node) ir.Node { |
| // Compare contents. |
| _, eqmem := EqString(pi, qi) |
| return eqmem |
| }) |
| case types.TFLOAT32, types.TFLOAT64: |
| checkAll(2, true, func(pi, qi ir.Node) ir.Node { |
| // p[i] == q[i] |
| return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi) |
| }) |
| // TODO: pick apart structs, do them piecemeal too |
| default: |
| checkAll(1, true, func(pi, qi ir.Node) ir.Node { |
| // p[i] == q[i] |
| return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi) |
| }) |
| } |
| |
| case types.TSTRUCT: |
| // Build a list of conditions to satisfy. |
| // The conditions are a list-of-lists. Conditions are reorderable |
| // within each inner list. The outer lists must be evaluated in order. |
| var conds [][]ir.Node |
| conds = append(conds, []ir.Node{}) |
| and := func(n ir.Node) { |
| i := len(conds) - 1 |
| conds[i] = append(conds[i], n) |
| } |
| |
| // Walk the struct using memequal for runs of AMEM |
| // and calling specific equality tests for the others. |
| for i, fields := 0, t.FieldSlice(); i < len(fields); { |
| f := fields[i] |
| |
| // Skip blank-named fields. |
| if f.Sym.IsBlank() { |
| i++ |
| continue |
| } |
| |
| // Compare non-memory fields with field equality. |
| if !isRegularMemory(f.Type) { |
| if eqCanPanic(f.Type) { |
| // Enforce ordering by starting a new set of reorderable conditions. |
| conds = append(conds, []ir.Node{}) |
| } |
| p := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) |
| q := ir.NewSelectorExpr(base.Pos, ir.OXDOT, nq, f.Sym) |
| switch { |
| case f.Type.IsString(): |
| eqlen, eqmem := EqString(p, q) |
| and(eqlen) |
| and(eqmem) |
| default: |
| and(ir.NewBinaryExpr(base.Pos, ir.OEQ, p, q)) |
| } |
| if eqCanPanic(f.Type) { |
| // Also enforce ordering after something that can panic. |
| conds = append(conds, []ir.Node{}) |
| } |
| i++ |
| continue |
| } |
| |
| // Find maximal length run of memory-only fields. |
| size, next := memrun(t, i) |
| |
| // TODO(rsc): All the calls to newname are wrong for |
| // cross-package unexported fields. |
| if s := fields[i:next]; len(s) <= 2 { |
| // Two or fewer fields: use plain field equality. |
| for _, f := range s { |
| and(eqfield(np, nq, f.Sym)) |
| } |
| } else { |
| // More than two fields: use memequal. |
| and(eqmem(np, nq, f.Sym, size)) |
| } |
| i = next |
| } |
| |
| // Sort conditions to put runtime calls last. |
| // Preserve the rest of the ordering. |
| var flatConds []ir.Node |
| for _, c := range conds { |
| isCall := func(n ir.Node) bool { |
| return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC |
| } |
| sort.SliceStable(c, func(i, j int) bool { |
| return !isCall(c[i]) && isCall(c[j]) |
| }) |
| flatConds = append(flatConds, c...) |
| } |
| |
| if len(flatConds) == 0 { |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true))) |
| } else { |
| for _, c := range flatConds[:len(flatConds)-1] { |
| // if cond {} else { goto neq } |
| n := ir.NewIfStmt(base.Pos, c, nil, nil) |
| n.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq)) |
| fn.Body.Append(n) |
| } |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, flatConds[len(flatConds)-1])) |
| } |
| } |
| |
| // ret: |
| // return |
| ret := typecheck.AutoLabel(".ret") |
| fn.Body.Append(ir.NewLabelStmt(base.Pos, ret)) |
| fn.Body.Append(ir.NewReturnStmt(base.Pos, nil)) |
| |
| // neq: |
| // r = false |
| // return (or goto ret) |
| fn.Body.Append(ir.NewLabelStmt(base.Pos, neq)) |
| fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(false))) |
| if eqCanPanic(t) || anyCall(fn) { |
| // Epilogue is large, so share it with the equal case. |
| fn.Body.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, ret)) |
| } else { |
| // Epilogue is small, so don't bother sharing. |
| fn.Body.Append(ir.NewReturnStmt(base.Pos, nil)) |
| } |
| // TODO(khr): the epilogue size detection condition above isn't perfect. |
| // We should really do a generic CL that shares epilogues across |
| // the board. See #24936. |
| |
| if base.Flag.LowerR != 0 { |
| ir.DumpList("geneq body", fn.Body) |
| } |
| |
| typecheck.FinishFuncBody() |
| |
| fn.SetDupok(true) |
| typecheck.Func(fn) |
| |
| ir.CurFunc = fn |
| typecheck.Stmts(fn.Body) |
| ir.CurFunc = nil |
| |
| if base.Debug.DclStack != 0 { |
| types.CheckDclstack() |
| } |
| |
| // Disable checknils while compiling this code. |
| // We are comparing a struct or an array, |
| // neither of which can be nil, and our comparisons |
| // are shallow. |
| fn.SetNilCheckDisabled(true) |
| typecheck.Target.Decls = append(typecheck.Target.Decls, fn) |
| |
| // Generate a closure which points at the function we just generated. |
| objw.SymPtr(closure, 0, fn.Linksym(), 0) |
| objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA) |
| return closure |
| } |
| |
| func anyCall(fn *ir.Func) bool { |
| return ir.Any(fn, func(n ir.Node) bool { |
| // TODO(rsc): No methods? |
| op := n.Op() |
| return op == ir.OCALL || op == ir.OCALLFUNC |
| }) |
| } |
| |
| // eqfield returns the node |
| // p.field == q.field |
| func eqfield(p ir.Node, q ir.Node, field *types.Sym) ir.Node { |
| nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field) |
| ny := ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field) |
| ne := ir.NewBinaryExpr(base.Pos, ir.OEQ, nx, ny) |
| return ne |
| } |
| |
| // EqString returns the nodes |
| // len(s) == len(t) |
| // and |
| // memequal(s.ptr, t.ptr, len(s)) |
| // which can be used to construct string equality comparison. |
| // eqlen must be evaluated before eqmem, and shortcircuiting is required. |
| func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) { |
| s = typecheck.Conv(s, types.Types[types.TSTRING]) |
| t = typecheck.Conv(t, types.Types[types.TSTRING]) |
| sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s) |
| tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t) |
| slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR]) |
| tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR]) |
| |
| fn := typecheck.LookupRuntime("memequal") |
| fn = typecheck.SubstArgTypes(fn, types.Types[types.TUINT8], types.Types[types.TUINT8]) |
| call := typecheck.Call(base.Pos, fn, []ir.Node{sptr, tptr, ir.Copy(slen)}, false).(*ir.CallExpr) |
| |
| cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen) |
| cmp = typecheck.Expr(cmp).(*ir.BinaryExpr) |
| cmp.SetType(types.Types[types.TBOOL]) |
| return cmp, call |
| } |
| |
| // EqInterface returns the nodes |
| // s.tab == t.tab (or s.typ == t.typ, as appropriate) |
| // and |
| // ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate) |
| // which can be used to construct interface equality comparison. |
| // eqtab must be evaluated before eqdata, and shortcircuiting is required. |
| func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) { |
| if !types.Identical(s.Type(), t.Type()) { |
| base.Fatalf("EqInterface %v %v", s.Type(), t.Type()) |
| } |
| // func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool) |
| // func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool) |
| var fn ir.Node |
| if s.Type().IsEmptyInterface() { |
| fn = typecheck.LookupRuntime("efaceeq") |
| } else { |
| fn = typecheck.LookupRuntime("ifaceeq") |
| } |
| |
| stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s) |
| ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t) |
| sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s) |
| tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t) |
| sdata.SetType(types.Types[types.TUNSAFEPTR]) |
| tdata.SetType(types.Types[types.TUNSAFEPTR]) |
| sdata.SetTypecheck(1) |
| tdata.SetTypecheck(1) |
| |
| call := typecheck.Call(base.Pos, fn, []ir.Node{stab, sdata, tdata}, false).(*ir.CallExpr) |
| |
| cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab) |
| cmp = typecheck.Expr(cmp).(*ir.BinaryExpr) |
| cmp.SetType(types.Types[types.TBOOL]) |
| return cmp, call |
| } |
| |
| // eqmem returns the node |
| // memequal(&p.field, &q.field [, size]) |
| func eqmem(p ir.Node, q ir.Node, field *types.Sym, size int64) ir.Node { |
| nx := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field))) |
| ny := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field))) |
| |
| fn, needsize := eqmemfunc(size, nx.Type().Elem()) |
| call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil) |
| call.Args.Append(nx) |
| call.Args.Append(ny) |
| if needsize { |
| call.Args.Append(ir.NewInt(size)) |
| } |
| |
| return call |
| } |
| |
| func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) { |
| switch size { |
| default: |
| fn = typecheck.LookupRuntime("memequal") |
| needsize = true |
| case 1, 2, 4, 8, 16: |
| buf := fmt.Sprintf("memequal%d", int(size)*8) |
| fn = typecheck.LookupRuntime(buf) |
| } |
| |
| fn = typecheck.SubstArgTypes(fn, t, t) |
| return fn, needsize |
| } |
| |
| // memrun finds runs of struct fields for which memory-only algs are appropriate. |
| // t is the parent struct type, and start is the field index at which to start the run. |
| // size is the length in bytes of the memory included in the run. |
| // next is the index just after the end of the memory run. |
| func memrun(t *types.Type, start int) (size int64, next int) { |
| next = start |
| for { |
| next++ |
| if next == t.NumFields() { |
| break |
| } |
| // Stop run after a padded field. |
| if types.IsPaddedField(t, next-1) { |
| break |
| } |
| // Also, stop before a blank or non-memory field. |
| if f := t.Field(next); f.Sym.IsBlank() || !isRegularMemory(f.Type) { |
| break |
| } |
| // For issue 46283, don't combine fields if the resulting load would |
| // require a larger alignment than the component fields. |
| if base.Ctxt.Arch.Alignment > 1 { |
| align := t.Alignment() |
| if off := t.Field(start).Offset; off&(align-1) != 0 { |
| // Offset is less aligned than the containing type. |
| // Use offset to determine alignment. |
| align = 1 << uint(bits.TrailingZeros64(uint64(off))) |
| } |
| size := t.Field(next).End() - t.Field(start).Offset |
| if size > align { |
| break |
| } |
| } |
| } |
| return t.Field(next-1).End() - t.Field(start).Offset, next |
| } |
| |
| func hashmem(t *types.Type) ir.Node { |
| sym := ir.Pkgs.Runtime.Lookup("memhash") |
| |
| // TODO(austin): This creates an ir.Name with a nil Func. |
| n := typecheck.NewName(sym) |
| ir.MarkFunc(n) |
| n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{ |
| types.NewField(base.Pos, nil, types.NewPtr(t)), |
| types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]), |
| types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]), |
| }, []*types.Field{ |
| types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]), |
| })) |
| return n |
| } |