blob: 3122c7a130524e3dee2ad7f22ccbda116471bc85 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Register allocation.
//
// We use a version of a linear scan register allocator. We treat the
// whole function as a single long basic block and run through
// it using a greedy register allocator. Then all merge edges
// (those targeting a block with len(Preds)>1) are processed to
// shuffle data into the place that the target of the edge expects.
//
// The greedy allocator moves values into registers just before they
// are used, spills registers only when necessary, and spills the
// value whose next use is farthest in the future.
//
// The register allocator requires that a block is not scheduled until
// at least one of its predecessors have been scheduled. The most recent
// such predecessor provides the starting register state for a block.
//
// It also requires that there are no critical edges (critical =
// comes from a block with >1 successor and goes to a block with >1
// predecessor). This makes it easy to add fixup code on merge edges -
// the source of a merge edge has only one successor, so we can add
// fixup code to the end of that block.
// Spilling
//
// For every value, we generate a spill immediately after the value itself.
// x = Op y z : AX
// x2 = StoreReg x
// While AX still holds x, any uses of x will use that value. When AX is needed
// for another value, we simply reuse AX. Spill code has already been generated
// so there is no code generated at "spill" time. When x is referenced
// subsequently, we issue a load to restore x to a register using x2 as
// its argument:
// x3 = Restore x2 : CX
// x3 can then be used wherever x is referenced again.
// If the spill (x2) is never used, it will be removed at the end of regalloc.
//
// Flags values are special. Instead of attempting to spill and restore the flags
// register, we recalculate it if needed.
// There are more efficient schemes (see the discussion in CL 13844),
// but flag restoration is empirically rare, and this approach is simple
// and architecture-independent.
//
// Phi values are special, as always. We define two kinds of phis, those
// where the merge happens in a register (a "register" phi) and those where
// the merge happens in a stack location (a "stack" phi).
//
// A register phi must have the phi and all of its inputs allocated to the
// same register. Register phis are spilled similarly to regular ops:
// b1: y = ... : AX b2: z = ... : AX
// goto b3 goto b3
// b3: x = phi(y, z) : AX
// x2 = StoreReg x
//
// A stack phi must have the phi and all of its inputs allocated to the same
// stack location. Stack phis start out life already spilled - each phi
// input must be a store (using StoreReg) at the end of the corresponding
// predecessor block.
// b1: y = ... : AX b2: z = ... : BX
// y2 = StoreReg y z2 = StoreReg z
// goto b3 goto b3
// b3: x = phi(y2, z2)
// The stack allocator knows that StoreReg args of stack-allocated phis
// must be allocated to the same stack slot as the phi that uses them.
// x is now a spilled value and a restore must appear before its first use.
// TODO
// Use an affinity graph to mark two values which should use the
// same register. This affinity graph will be used to prefer certain
// registers for allocation. This affinity helps eliminate moves that
// are required for phi implementations and helps generate allocations
// for 2-register architectures.
// Note: regalloc generates a not-quite-SSA output. If we have:
//
// b1: x = ... : AX
// x2 = StoreReg x
// ... AX gets reused for something else ...
// if ... goto b3 else b4
//
// b3: x3 = LoadReg x2 : BX b4: x4 = LoadReg x2 : CX
// ... use x3 ... ... use x4 ...
//
// b2: ... use x3 ...
//
// If b3 is the primary predecessor of b2, then we use x3 in b2 and
// add a x4:CX->BX copy at the end of b4.
// But the definition of x3 doesn't dominate b2. We should really
// insert a dummy phi at the start of b2 (x5=phi(x3,x4):BX) to keep
// SSA form. For now, we ignore this problem as remaining in strict
// SSA form isn't needed after regalloc. We'll just leave the use
// of x3 not dominated by the definition of x3, and the CX->BX copy
// will have no use (so don't run deadcode after regalloc!).
// TODO: maybe we should introduce these extra phis?
package ssa
import (
"fmt"
"unsafe"
)
const regDebug = false
const logSpills = false
// regalloc performs register allocation on f. It sets f.RegAlloc
// to the resulting allocation.
func regalloc(f *Func) {
var s regAllocState
s.init(f)
s.regalloc(f)
}
type register uint8
const noRegister register = 255
type regMask uint64
func (m regMask) String() string {
s := ""
for r := register(0); r < numRegs; r++ {
if m>>r&1 == 0 {
continue
}
if s != "" {
s += " "
}
s += fmt.Sprintf("r%d", r)
}
return s
}
// TODO: make arch-dependent
var numRegs register = 64
var registers = [...]Register{
Register{0, "AX"},
Register{1, "CX"},
Register{2, "DX"},
Register{3, "BX"},
Register{4, "SP"},
Register{5, "BP"},
Register{6, "SI"},
Register{7, "DI"},
Register{8, "R8"},
Register{9, "R9"},
Register{10, "R10"},
Register{11, "R11"},
Register{12, "R12"},
Register{13, "R13"},
Register{14, "R14"},
Register{15, "R15"},
Register{16, "X0"},
Register{17, "X1"},
Register{18, "X2"},
Register{19, "X3"},
Register{20, "X4"},
Register{21, "X5"},
Register{22, "X6"},
Register{23, "X7"},
Register{24, "X8"},
Register{25, "X9"},
Register{26, "X10"},
Register{27, "X11"},
Register{28, "X12"},
Register{29, "X13"},
Register{30, "X14"},
Register{31, "X15"},
Register{32, "SB"}, // pseudo-register for global base pointer (aka %rip)
Register{33, "FLAGS"},
// TODO: make arch-dependent
}
// countRegs returns the number of set bits in the register mask.
func countRegs(r regMask) int {
n := 0
for r != 0 {
n += int(r & 1)
r >>= 1
}
return n
}
// pickReg picks an arbitrary register from the register mask.
func pickReg(r regMask) register {
// pick the lowest one
if r == 0 {
panic("can't pick a register from an empty set")
}
for i := register(0); ; i++ {
if r&1 != 0 {
return i
}
r >>= 1
}
}
// A use is a record of a position (2*pc for value uses, odd numbers for other uses)
// and a value ID that is used at that position.
type use struct {
idx int32
vid ID
}
type valState struct {
regs regMask // the set of registers holding a Value (usually just one)
uses []int32 // sorted list of places where Value is used
usestorage [2]int32
spill *Value // spilled copy of the Value
spill2 *Value // special alternate spill location used for phi resolution
spillUsed bool
spill2used bool
}
type regState struct {
v *Value // Original (preregalloc) Value stored in this register.
c *Value // A Value equal to v which is currently in register. Might be v or a copy of it.
// If a register is unused, v==c==nil
}
type regAllocState struct {
f *Func
// for each block, its primary predecessor.
// A predecessor of b is primary if it is the closest
// predecessor that appears before b in the layout order.
// We record the index in the Preds list where the primary predecessor sits.
primary []int32
// live values on each edge. live[b.ID][idx] is a list of value IDs
// which are live on b's idx'th successor edge.
live [][][]ID
// current state of each (preregalloc) Value
values []valState
// current state of each register
regs []regState
// registers that contain values which can't be kicked out
nospill regMask
// mask of registers currently in use
used regMask
// An ordered list (by idx) of all uses in the function
uses []use
// Home locations (registers) for Values
home []Location
// current block we're working on
curBlock *Block
}
// freeReg frees up register r. Any current user of r is kicked out.
func (s *regAllocState) freeReg(r register) {
v := s.regs[r].v
if v == nil {
s.f.Fatalf("tried to free an already free register %d\n", r)
}
// Mark r as unused.
if regDebug {
fmt.Printf("freeReg %d (dump %s/%s)\n", r, v, s.regs[r].c)
}
s.regs[r] = regState{}
s.values[v.ID].regs &^= regMask(1) << r
s.used &^= regMask(1) << r
}
// freeRegs frees up all registers listed in m.
func (s *regAllocState) freeRegs(m regMask) {
for m&s.used != 0 {
s.freeReg(pickReg(m & s.used))
}
}
func (s *regAllocState) setHome(v *Value, r register) {
// Remember assignment.
for int(v.ID) >= len(s.home) {
s.home = append(s.home, nil)
s.home = s.home[:cap(s.home)]
}
s.home[v.ID] = &registers[r]
}
func (s *regAllocState) getHome(v *Value) register {
if int(v.ID) >= len(s.home) || s.home[v.ID] == nil {
return noRegister
}
return register(s.home[v.ID].(*Register).Num)
}
// assignReg assigns register r to hold c, a copy of v.
// r must be unused.
func (s *regAllocState) assignReg(r register, v *Value, c *Value) {
if regDebug {
fmt.Printf("assignReg %d %s/%s\n", r, v, c)
}
if s.regs[r].v != nil {
s.f.Fatalf("tried to assign register %d to %s/%s but it is already used by %s", r, v, c, s.regs[r].v)
}
// Update state.
s.regs[r] = regState{v, c}
s.values[v.ID].regs |= regMask(1) << r
s.used |= regMask(1) << r
s.setHome(c, r)
}
// allocReg picks an unused register from regmask. If there is no unused register,
// a Value will be kicked out of a register to make room.
func (s *regAllocState) allocReg(mask regMask) register {
// Pick a register to use.
mask &^= s.nospill
if mask == 0 {
s.f.Fatalf("no register available")
}
var r register
if unused := mask & ^s.used; unused != 0 {
// Pick an unused register.
return pickReg(unused)
// TODO: use affinity graph to pick a good register
}
// Pick a value to spill. Spill the value with the
// farthest-in-the-future use.
// TODO: Prefer registers with already spilled Values?
// TODO: Modify preference using affinity graph.
mask &^= 1<<4 | 1<<32 // don't spill SP or SB
maxuse := int32(-1)
for t := register(0); t < numRegs; t++ {
if mask>>t&1 == 0 {
continue
}
v := s.regs[t].v
if len(s.values[v.ID].uses) == 0 {
// This can happen when fixing up merge blocks at the end.
// We've already run through the use lists so they are empty.
// Any register would be ok at this point.
r = t
maxuse = 0
break
}
if n := s.values[v.ID].uses[0]; n > maxuse {
r = t
maxuse = n
}
}
if maxuse == -1 {
s.f.Unimplementedf("couldn't find register to spill")
}
s.freeReg(r)
return r
}
// allocValToReg allocates v to a register selected from regMask and
// returns the register copy of v. Any previous user is kicked out and spilled
// (if necessary). Load code is added at the current pc. If nospill is set the
// allocated register is marked nospill so the assignment cannot be
// undone until the caller allows it by clearing nospill. Returns a
// *Value which is either v or a copy of v allocated to the chosen register.
func (s *regAllocState) allocValToReg(v *Value, mask regMask, nospill bool) *Value {
vi := &s.values[v.ID]
// Check if v is already in a requested register.
if mask&vi.regs != 0 {
r := pickReg(mask & vi.regs)
if s.regs[r].v != v || s.regs[r].c == nil {
panic("bad register state")
}
if nospill {
s.nospill |= regMask(1) << r
}
return s.regs[r].c
}
// SP and SB are allocated specially. No regular value should
// be allocated to them.
mask &^= 1<<4 | 1<<32
// Allocate a register.
r := s.allocReg(mask)
// Allocate v to the new register.
var c *Value
if vi.regs != 0 {
// Copy from a register that v is already in.
r2 := pickReg(vi.regs)
if s.regs[r2].v != v {
panic("bad register state")
}
c = s.curBlock.NewValue1(v.Line, OpCopy, v.Type, s.regs[r2].c)
} else {
switch {
// It is difficult to spill and reload flags on many architectures.
// Instead, we regenerate the flags register by issuing the same instruction again.
// This requires (possibly) spilling and reloading that instruction's args.
case v.Type.IsFlags():
if logSpills {
fmt.Println("regalloc: regenerating flags")
}
ns := s.nospill
// Place v's arguments in registers, spilling and loading as needed
args := make([]*Value, 0, len(v.Args))
regspec := opcodeTable[v.Op].reg
for _, i := range regspec.inputs {
a := v.Args[i.idx]
// Extract the original arguments to v
for a.Op == OpLoadReg || a.Op == OpStoreReg || a.Op == OpCopy {
a = a.Args[0]
}
if a.Type.IsFlags() {
s.f.Fatalf("cannot load flags value with flags arg: %v has unwrapped arg %v", v.LongString(), a.LongString())
}
cc := s.allocValToReg(a, i.regs, true)
args = append(args, cc)
}
s.nospill = ns
// Recalculate v
c = s.curBlock.NewValue0(v.Line, v.Op, v.Type)
c.Aux = v.Aux
c.AuxInt = v.AuxInt
c.resetArgs()
c.AddArgs(args...)
// Load v from its spill location.
// TODO: rematerialize if we can.
case vi.spill2 != nil:
if logSpills {
fmt.Println("regalloc: load spill2")
}
c = s.curBlock.NewValue1(v.Line, OpLoadReg, v.Type, vi.spill2)
vi.spill2used = true
case vi.spill != nil:
if logSpills {
fmt.Println("regalloc: load spill")
}
c = s.curBlock.NewValue1(v.Line, OpLoadReg, v.Type, vi.spill)
vi.spillUsed = true
default:
s.f.Fatalf("attempt to load unspilled value %v", v.LongString())
}
}
s.assignReg(r, v, c)
if nospill {
s.nospill |= regMask(1) << r
}
return c
}
func (s *regAllocState) init(f *Func) {
if numRegs > noRegister || numRegs > register(unsafe.Sizeof(regMask(0))*8) {
panic("too many registers")
}
s.f = f
s.regs = make([]regState, numRegs)
s.values = make([]valState, f.NumValues())
for i := range s.values {
s.values[i].uses = s.values[i].usestorage[:0]
}
s.live = f.live()
// Compute block order. This array allows us to distinguish forward edges
// from backward edges and compute how far they go.
blockOrder := make([]int32, f.NumBlocks())
for i, b := range f.Blocks {
blockOrder[b.ID] = int32(i)
}
// Compute primary predecessors.
s.primary = make([]int32, f.NumBlocks())
for _, b := range f.Blocks {
best := -1
for i, p := range b.Preds {
if blockOrder[p.ID] >= blockOrder[b.ID] {
continue // backward edge
}
if best == -1 || blockOrder[p.ID] > blockOrder[b.Preds[best].ID] {
best = i
}
}
s.primary[b.ID] = int32(best)
}
// Compute uses. We assign a PC to each Value in the program, in f.Blocks
// and then b.Values order. Uses are recorded using this numbering.
// Uses by Values are recorded as 2*PC. Special uses (block control values,
// pseudo-uses for backedges) are recorded as 2*(last PC in block)+1.
var pc int32
for _, b := range f.Blocks {
// uses in regular Values
for _, v := range b.Values {
for _, a := range v.Args {
s.values[a.ID].uses = append(s.values[a.ID].uses, pc*2)
s.uses = append(s.uses, use{pc * 2, a.ID})
}
pc++
}
// use as a block control value
endIdx := pc*2 - 1
if b.Control != nil {
s.values[b.Control.ID].uses = append(s.values[b.Control.ID].uses, endIdx)
s.uses = append(s.uses, use{endIdx, b.Control.ID})
}
// uses by backedges
// Backedges are treated as uses so that the uses span the entire live
// range of the value.
for i, c := range b.Succs {
if blockOrder[c.ID] > blockOrder[b.ID] {
continue // forward edge
}
for _, vid := range s.live[b.ID][i] {
s.values[vid].uses = append(s.values[vid].uses, endIdx)
s.uses = append(s.uses, use{endIdx, vid})
}
}
}
if pc*2 < 0 {
f.Fatalf("pc too large: function too big")
}
}
// clearUses drops any uses <= useIdx. Any values which have no future
// uses are dropped from registers.
func (s *regAllocState) clearUses(useIdx int32) {
for len(s.uses) > 0 && s.uses[0].idx <= useIdx {
idx := s.uses[0].idx
vid := s.uses[0].vid
s.uses = s.uses[1:]
vi := &s.values[vid]
if vi.uses[0] != idx {
s.f.Fatalf("use mismatch for v%d\n", vid)
}
vi.uses = vi.uses[1:]
if len(vi.uses) != 0 {
continue
}
// Value is dead, free all registers that hold it (except SP & SB).
s.freeRegs(vi.regs &^ (1<<4 | 1<<32))
}
}
// Sets the state of the registers to that encoded in state.
func (s *regAllocState) setState(state []regState) {
s.freeRegs(s.used)
for r, x := range state {
if x.c == nil {
continue
}
s.assignReg(register(r), x.v, x.c)
}
}
// compatReg returns a register compatible with the a value and is used when
// spilling/loading.
// TODO: choose a better default register (set of reg by type?).
func compatReg(v *Value) regMask {
if v.Type.IsFloat() {
return 1 << 16 // X0
}
return 1 << 0 // AX
}
func (s *regAllocState) regalloc(f *Func) {
liveset := newSparseSet(f.NumValues())
argset := newSparseSet(f.NumValues())
var oldSched []*Value
var phis []*Value
var stackPhis []*Value
var regPhis []*Value
if f.Entry != f.Blocks[0] {
f.Fatalf("entry block must be first")
}
var phiRegs []register
// For each merge block, we record the starting register state (after phi ops)
// for that merge block. Indexed by blockid/regnum.
startRegs := make([][]*Value, f.NumBlocks())
// end state of registers for each block, idexed by blockid/regnum.
endRegs := make([][]regState, f.NumBlocks())
var pc int32
for _, b := range f.Blocks {
s.curBlock = b
// Make a copy of the block schedule so we can generate a new one in place.
// We make a separate copy for phis and regular values.
nphi := 0
for _, v := range b.Values {
if v.Op != OpPhi {
break
}
nphi++
}
phis = append(phis[:0], b.Values[:nphi]...)
oldSched = append(oldSched[:0], b.Values[nphi:]...)
b.Values = b.Values[:0]
// Initialize start state of block.
if b == f.Entry {
// Regalloc state is empty to start.
if nphi > 0 {
f.Fatalf("phis in entry block")
}
} else if len(b.Preds) == 1 {
// Start regalloc state with the end state of the previous block.
s.setState(endRegs[b.Preds[0].ID])
if nphi > 0 {
f.Fatalf("phis in single-predecessor block")
}
} else {
// This is the complicated case. We have more than one predecessor,
// which means we may have Phi ops.
// Copy phi ops into new schedule.
b.Values = append(b.Values, phis...)
// Start with the final register state of the primary predecessor
idx := s.primary[b.ID]
if idx < 0 {
f.Fatalf("block with no primary predecessor %s", b)
}
p := b.Preds[idx]
s.setState(endRegs[p.ID])
// Drop anything not live on the c->b edge.
var idx2 int
for idx2 = 0; idx2 < len(p.Succs); idx2++ {
if p.Succs[idx2] == b {
break
}
}
liveset.clear()
liveset.addAll(s.live[p.ID][idx2])
for r := register(0); r < numRegs; r++ {
v := s.regs[r].v
if v == nil {
continue
}
if !liveset.contains(v.ID) {
s.freeReg(r)
}
}
// Decide on registers for phi ops. Use the registers determined
// by the primary predecessor if we can.
// TODO: pick best of (already processed) predecessors?
// Majority vote? Deepest nesting level?
phiRegs = phiRegs[:0]
var used regMask
for _, v := range phis {
if v.Type.IsMemory() {
phiRegs = append(phiRegs, noRegister)
continue
}
regs := s.values[v.Args[idx].ID].regs
m := regs &^ used
var r register
if m != 0 {
r = pickReg(m)
used |= regMask(1) << r
} else {
r = noRegister
}
phiRegs = append(phiRegs, r)
}
// Change register user from phi input to phi. Add phi spill code.
for i, v := range phis {
if v.Type.IsMemory() {
continue
}
r := phiRegs[i]
if r == noRegister {
// stack-based phi
// Spills will be inserted in all the predecessors below.
s.values[v.ID].spill = v // v starts life spilled
s.values[v.ID].spillUsed = true // use is guaranteed
continue
}
// register-based phi
// Transfer ownership of register from input arg to phi.
s.freeReg(r)
s.assignReg(r, v, v)
// Spill the phi in case we need to restore it later.
spill := b.NewValue1(v.Line, OpStoreReg, v.Type, v)
s.values[v.ID].spill = spill
s.values[v.ID].spillUsed = false
}
// Save the starting state for use by incoming edges below.
startRegs[b.ID] = make([]*Value, numRegs)
for r := register(0); r < numRegs; r++ {
startRegs[b.ID][r] = s.regs[r].v
}
}
// Process all the non-phi values.
pc += int32(nphi)
for _, v := range oldSched {
if v.Op == OpPhi {
f.Fatalf("phi %s not at start of block", v)
}
if v.Op == OpSP {
s.assignReg(4, v, v) // TODO: arch-dependent
b.Values = append(b.Values, v)
pc++
continue
}
if v.Op == OpSB {
s.assignReg(32, v, v) // TODO: arch-dependent
b.Values = append(b.Values, v)
pc++
continue
}
s.clearUses(pc*2 - 1)
regspec := opcodeTable[v.Op].reg
if regDebug {
fmt.Printf("%d: working on %s %s %v\n", pc, v, v.LongString(), regspec)
}
if len(regspec.inputs) == 0 && len(regspec.outputs) == 0 {
// No register allocation required (or none specified yet)
s.freeRegs(regspec.clobbers)
b.Values = append(b.Values, v)
pc++
continue
}
// TODO: If value is rematerializeable, don't issue it here.
// Instead, rely on argument loading code to put it in a register when needed.
// Move arguments to registers
for _, i := range regspec.inputs {
a := v.Args[i.idx]
v.Args[i.idx] = s.allocValToReg(a, i.regs, true)
}
// Now that all args are in regs, we're ready to issue the value itself.
// Before we pick a register for the value, allow input registers
// to be deallocated. We do this here so that the output can use the
// same register as a dying input.
s.nospill = 0
s.clearUses(pc * 2)
// Dump any registers which will be clobbered
s.freeRegs(regspec.clobbers)
// Pick register for output.
var r register
var mask regMask
if len(regspec.outputs) > 0 {
mask = regspec.outputs[0]
}
if mask != 0 {
r = s.allocReg(mask)
s.assignReg(r, v, v)
}
// Issue the Value itself.
b.Values = append(b.Values, v)
// Issue a spill for this value. We issue spills unconditionally,
// then at the end of regalloc delete the ones we never use.
if !v.Type.IsFlags() {
spill := b.NewValue1(v.Line, OpStoreReg, v.Type, v)
s.values[v.ID].spill = spill
s.values[v.ID].spillUsed = false
}
// Increment pc for next Value.
pc++
}
// Load control value into reg
if b.Control != nil && !b.Control.Type.IsMemory() {
// TODO: regspec for block control values, instead of using
// register set from the control op's output.
s.allocValToReg(b.Control, opcodeTable[b.Control.Op].reg.outputs[0], false)
}
// Record endRegs
endRegs[b.ID] = make([]regState, numRegs)
copy(endRegs[b.ID], s.regs)
// Allow control Values and Values live only on backedges to be dropped.
s.clearUses(pc*2 - 1)
}
// Process merge block input edges. They are the tricky ones.
dst := make([]*Value, numRegs)
for _, b := range f.Blocks {
if len(b.Preds) <= 1 {
continue
}
for i, p := range b.Preds {
if regDebug {
fmt.Printf("processing %s->%s\n", p, b)
}
// Find phis, separate them into stack & register classes.
stackPhis = stackPhis[:0]
regPhis = regPhis[:0]
for _, v := range b.Values {
if v.Op != OpPhi {
break
}
if v.Type.IsMemory() {
continue
}
if s.getHome(v) != noRegister {
regPhis = append(regPhis, v)
} else {
stackPhis = append(stackPhis, v)
}
}
// Start with the state that exists at the end of the
// predecessor block. We'll be adding instructions here
// to shuffle registers & stack phis into the right spot.
s.setState(endRegs[p.ID])
s.curBlock = p
// Handle stack-based phi ops first. We need to handle them
// first because we need a register with which to copy them.
// We must be careful not to overwrite any stack phis which are
// themselves args of other phis. For example:
// v1 = phi(v2, v3) : 8(SP)
// v2 = phi(v4, v5) : 16(SP)
// Here we must not write v2 until v2 is read and written to v1.
// The situation could be even more complicated, with cycles, etc.
// So in the interest of being simple, we find all the phis which
// are arguments of other phis and copy their values to a temporary
// location first. This temporary location is called "spill2" and
// represents a higher-priority but temporary spill location for the value.
// Note this is not a problem for register-based phis because
// if needed we will use the spilled location as the source, and
// the spill location is not clobbered by the code generated here.
argset.clear()
for _, v := range stackPhis {
argset.add(v.Args[i].ID)
}
for _, v := range regPhis {
argset.add(v.Args[i].ID)
}
for _, v := range stackPhis {
if !argset.contains(v.ID) {
continue
}
// This stack-based phi is the argument of some other
// phi in this block. We must make a copy of its
// value so that we don't clobber it prematurely.
c := s.allocValToReg(v, s.values[v.ID].regs|compatReg(v), false)
d := p.NewValue1(v.Line, OpStoreReg, v.Type, c)
s.values[v.ID].spill2 = d
}
// Assign to stack-based phis. We do stack phis first because
// we might need a register to do the assignment.
for _, v := range stackPhis {
// Load phi arg into a register, then store it with a StoreReg.
// If already in a register, use that. If not, pick a compatible
// register.
w := v.Args[i]
c := s.allocValToReg(w, s.values[w.ID].regs|compatReg(w), false)
v.Args[i] = p.NewValue1(v.Line, OpStoreReg, v.Type, c)
}
// Figure out what value goes in each register.
for r := register(0); r < numRegs; r++ {
dst[r] = startRegs[b.ID][r]
}
// Handle register-based phi ops.
for _, v := range regPhis {
r := s.getHome(v)
if dst[r] != v {
f.Fatalf("dst not right")
}
v.Args[i] = s.allocValToReg(v.Args[i], regMask(1)<<r, false)
dst[r] = nil // we've handled this one
}
// Move other non-phi register values to the right register.
for r := register(0); r < numRegs; r++ {
if dst[r] == nil {
continue
}
if s.regs[r].v == dst[r] {
continue
}
mv := s.allocValToReg(dst[r], regMask(1)<<r, false)
// TODO: ssa form is probably violated by this step.
// I don't know how to splice in the new value because
// I need to potentially make a phi and replace all uses.
_ = mv
}
// Reset spill2 fields
for _, v := range stackPhis {
spill2 := s.values[v.ID].spill2
if spill2 == nil {
continue
}
if !s.values[v.ID].spill2used {
spill2.Op = OpInvalid
spill2.Type = TypeInvalid
spill2.resetArgs()
} else if logSpills {
fmt.Println("regalloc: spilled phi")
}
s.values[v.ID].spill2 = nil
s.values[v.ID].spill2used = false
}
}
}
// TODO: be smarter about the order in which to shuffle registers around.
// if we need to do AX->CX and CX->DX, do the latter first. Now if we do the
// former first then the latter must be a restore instead of a register move.
// Erase any spills we never used
for i := range s.values {
vi := s.values[i]
if vi.spillUsed {
if logSpills {
fmt.Println("regalloc: spilled value")
}
continue
}
spill := vi.spill
if spill == nil {
// Constants, SP, SB, ...
continue
}
spill.Op = OpInvalid
spill.Type = TypeInvalid
spill.resetArgs()
}
for _, b := range f.Blocks {
i := 0
for _, v := range b.Values {
if v.Op == OpInvalid {
continue
}
b.Values[i] = v
i++
}
b.Values = b.Values[:i]
// TODO: zero b.Values[i:], recycle Values
// Not important now because this is the last phase that manipulates Values
}
// Set final regalloc result.
f.RegAlloc = s.home
}
// live returns a map from block ID and successor edge index to a list
// of value IDs live on that edge.
// TODO: this could be quadratic if lots of variables are live across lots of
// basic blocks. Figure out a way to make this function (or, more precisely, the user
// of this function) require only linear size & time.
func (f *Func) live() [][][]ID {
live := make([][][]ID, f.NumBlocks())
for _, b := range f.Blocks {
live[b.ID] = make([][]ID, len(b.Succs))
}
var phis []*Value
s := newSparseSet(f.NumValues())
t := newSparseSet(f.NumValues())
// Instead of iterating over f.Blocks, iterate over their postordering.
// Liveness information flows backward, so starting at the end
// increases the probability that we will stabilize quickly.
// TODO: Do a better job yet. Here's one possibility:
// Calculate the dominator tree and locate all strongly connected components.
// If a value is live in one block of an SCC, it is live in all.
// Walk the dominator tree from end to beginning, just once, treating SCC
// components as single blocks, duplicated calculated liveness information
// out to all of them.
po := postorder(f)
for {
for _, b := range po {
f.Logf("live %s %v\n", b, live[b.ID])
}
changed := false
for _, b := range po {
// Start with known live values at the end of the block
s.clear()
for i := 0; i < len(b.Succs); i++ {
s.addAll(live[b.ID][i])
}
// Mark control value as live
if b.Control != nil {
s.add(b.Control.ID)
}
// Propagate backwards to the start of the block
// Assumes Values have been scheduled.
phis := phis[:0]
for i := len(b.Values) - 1; i >= 0; i-- {
v := b.Values[i]
s.remove(v.ID)
if v.Op == OpPhi {
// save phi ops for later
phis = append(phis, v)
continue
}
s.addAllValues(v.Args)
}
// for each predecessor of b, expand its list of live-at-end values
// invariant: s contains the values live at the start of b (excluding phi inputs)
for i, p := range b.Preds {
// Find index of b in p's successors.
var j int
for j = 0; j < len(p.Succs); j++ {
if p.Succs[j] == b {
break
}
}
t.clear()
t.addAll(live[p.ID][j])
t.addAll(s.contents())
for _, v := range phis {
t.add(v.Args[i].ID)
}
if t.size() == len(live[p.ID][j]) {
continue
}
// grow p's live set
live[p.ID][j] = append(live[p.ID][j][:0], t.contents()...)
changed = true
}
}
if !changed {
break
}
}
return live
}