| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| // mark values |
| const ( |
| notFound = 0 // block has not been discovered yet |
| notExplored = 1 // discovered and in queue, outedges not processed yet |
| explored = 2 // discovered and in queue, outedges processed |
| done = 3 // all done, in output ordering |
| ) |
| |
| // This file contains code to compute the dominator tree |
| // of a control-flow graph. |
| |
| // postorder computes a postorder traversal ordering for the |
| // basic blocks in f. Unreachable blocks will not appear. |
| func postorder(f *Func) []*Block { |
| mark := make([]byte, f.NumBlocks()) |
| |
| // result ordering |
| var order []*Block |
| |
| // stack of blocks |
| var s []*Block |
| s = append(s, f.Entry) |
| mark[f.Entry.ID] = notExplored |
| for len(s) > 0 { |
| b := s[len(s)-1] |
| switch mark[b.ID] { |
| case explored: |
| // Children have all been visited. Pop & output block. |
| s = s[:len(s)-1] |
| mark[b.ID] = done |
| order = append(order, b) |
| case notExplored: |
| // Children have not been visited yet. Mark as explored |
| // and queue any children we haven't seen yet. |
| mark[b.ID] = explored |
| for _, c := range b.Succs { |
| if mark[c.ID] == notFound { |
| mark[c.ID] = notExplored |
| s = append(s, c) |
| } |
| } |
| default: |
| b.Fatalf("bad stack state %v %d", b, mark[b.ID]) |
| } |
| } |
| return order |
| } |
| |
| type linkedBlocks func(*Block) []*Block |
| |
| // dfs performs a depth first search over the blocks starting at the set of |
| // blocks in the entries list (in arbitrary order). dfnum contains a mapping |
| // from block id to an int indicating the order the block was reached or |
| // notFound if the block was not reached. order contains a mapping from dfnum |
| // to block. |
| func dfs(entries []*Block, succFn linkedBlocks) (dfnum []int, order []*Block, parent []*Block) { |
| maxBlockID := entries[0].Func.NumBlocks() |
| |
| dfnum = make([]int, maxBlockID) |
| order = make([]*Block, maxBlockID) |
| parent = make([]*Block, maxBlockID) |
| |
| n := 0 |
| s := make([]*Block, 0, 256) |
| for _, entry := range entries { |
| if dfnum[entry.ID] != notFound { |
| continue // already found from a previous entry |
| } |
| s = append(s, entry) |
| parent[entry.ID] = entry |
| for len(s) > 0 { |
| node := s[len(s)-1] |
| s = s[:len(s)-1] |
| |
| n++ |
| for _, w := range succFn(node) { |
| // if it has a dfnum, we've already visited it |
| if dfnum[w.ID] == notFound { |
| s = append(s, w) |
| parent[w.ID] = node |
| dfnum[w.ID] = notExplored |
| } |
| } |
| dfnum[node.ID] = n |
| order[n] = node |
| } |
| } |
| |
| return |
| } |
| |
| // dominators computes the dominator tree for f. It returns a slice |
| // which maps block ID to the immediate dominator of that block. |
| // Unreachable blocks map to nil. The entry block maps to nil. |
| func dominators(f *Func) []*Block { |
| preds := func(b *Block) []*Block { return b.Preds } |
| succs := func(b *Block) []*Block { return b.Succs } |
| |
| //TODO: benchmark and try to find criteria for swapping between |
| // dominatorsSimple and dominatorsLT |
| return dominatorsLT([]*Block{f.Entry}, preds, succs) |
| } |
| |
| // postDominators computes the post-dominator tree for f. |
| func postDominators(f *Func) []*Block { |
| preds := func(b *Block) []*Block { return b.Preds } |
| succs := func(b *Block) []*Block { return b.Succs } |
| |
| if len(f.Blocks) == 0 { |
| return nil |
| } |
| |
| // find the exit blocks |
| var exits []*Block |
| for i := len(f.Blocks) - 1; i >= 0; i-- { |
| switch f.Blocks[i].Kind { |
| case BlockExit, BlockRet, BlockRetJmp, BlockCall: |
| exits = append(exits, f.Blocks[i]) |
| break |
| } |
| } |
| |
| // infinite loop with no exit |
| if exits == nil { |
| return make([]*Block, f.NumBlocks()) |
| } |
| return dominatorsLT(exits, succs, preds) |
| } |
| |
| // dominatorsLt runs Lengauer-Tarjan to compute a dominator tree starting at |
| // entry and using predFn/succFn to find predecessors/successors to allow |
| // computing both dominator and post-dominator trees. |
| func dominatorsLT(entries []*Block, predFn linkedBlocks, succFn linkedBlocks) []*Block { |
| // Based on Lengauer-Tarjan from Modern Compiler Implementation in C - |
| // Appel with optimizations from Finding Dominators in Practice - |
| // Georgiadis |
| |
| // Step 1. Carry out a depth first search of the problem graph. Number |
| // the vertices from 1 to n as they are reached during the search. |
| dfnum, vertex, parent := dfs(entries, succFn) |
| |
| maxBlockID := entries[0].Func.NumBlocks() |
| semi := make([]*Block, maxBlockID) |
| samedom := make([]*Block, maxBlockID) |
| idom := make([]*Block, maxBlockID) |
| ancestor := make([]*Block, maxBlockID) |
| best := make([]*Block, maxBlockID) |
| bucket := make([]*Block, maxBlockID) |
| |
| // Step 2. Compute the semidominators of all vertices by applying |
| // Theorem 4. Carry out the computation vertex by vertex in decreasing |
| // order by number. |
| for i := maxBlockID - 1; i > 0; i-- { |
| w := vertex[i] |
| if w == nil { |
| continue |
| } |
| |
| if dfnum[w.ID] == notFound { |
| // skip unreachable node |
| continue |
| } |
| |
| // Step 3. Implicitly define the immediate dominator of each |
| // vertex by applying Corollary 1. (reordered) |
| for v := bucket[w.ID]; v != nil; v = bucket[v.ID] { |
| u := eval(v, ancestor, semi, dfnum, best) |
| if semi[u.ID] == semi[v.ID] { |
| idom[v.ID] = w // true dominator |
| } else { |
| samedom[v.ID] = u // v has same dominator as u |
| } |
| } |
| |
| p := parent[w.ID] |
| s := p // semidominator |
| |
| var sp *Block |
| // calculate the semidominator of w |
| for _, v := range w.Preds { |
| if dfnum[v.ID] == notFound { |
| // skip unreachable predecessor |
| continue |
| } |
| |
| if dfnum[v.ID] <= dfnum[w.ID] { |
| sp = v |
| } else { |
| sp = semi[eval(v, ancestor, semi, dfnum, best).ID] |
| } |
| |
| if dfnum[sp.ID] < dfnum[s.ID] { |
| s = sp |
| } |
| } |
| |
| // link |
| ancestor[w.ID] = p |
| best[w.ID] = w |
| |
| semi[w.ID] = s |
| if semi[s.ID] != parent[s.ID] { |
| bucket[w.ID] = bucket[s.ID] |
| bucket[s.ID] = w |
| } |
| } |
| |
| // Final pass of step 3 |
| for v := bucket[0]; v != nil; v = bucket[v.ID] { |
| idom[v.ID] = bucket[0] |
| } |
| |
| // Step 4. Explictly define the immediate dominator of each vertex, |
| // carrying out the computation vertex by vertex in increasing order by |
| // number. |
| for i := 1; i < maxBlockID-1; i++ { |
| w := vertex[i] |
| if w == nil { |
| continue |
| } |
| // w has the same dominator as samedom[w.ID] |
| if samedom[w.ID] != nil { |
| idom[w.ID] = idom[samedom[w.ID].ID] |
| } |
| } |
| return idom |
| } |
| |
| // eval function from LT paper with path compression |
| func eval(v *Block, ancestor []*Block, semi []*Block, dfnum []int, best []*Block) *Block { |
| a := ancestor[v.ID] |
| if ancestor[a.ID] != nil { |
| b := eval(a, ancestor, semi, dfnum, best) |
| ancestor[v.ID] = ancestor[a.ID] |
| if dfnum[semi[b.ID].ID] < dfnum[semi[best[v.ID].ID].ID] { |
| best[v.ID] = b |
| } |
| } |
| return best[v.ID] |
| } |
| |
| // dominators computes the dominator tree for f. It returns a slice |
| // which maps block ID to the immediate dominator of that block. |
| // Unreachable blocks map to nil. The entry block maps to nil. |
| func dominatorsSimple(f *Func) []*Block { |
| // A simple algorithm for now |
| // Cooper, Harvey, Kennedy |
| idom := make([]*Block, f.NumBlocks()) |
| |
| // Compute postorder walk |
| post := postorder(f) |
| |
| // Make map from block id to order index (for intersect call) |
| postnum := make([]int, f.NumBlocks()) |
| for i, b := range post { |
| postnum[b.ID] = i |
| } |
| |
| // Make the entry block a self-loop |
| idom[f.Entry.ID] = f.Entry |
| if postnum[f.Entry.ID] != len(post)-1 { |
| f.Fatalf("entry block %v not last in postorder", f.Entry) |
| } |
| |
| // Compute relaxation of idom entries |
| for { |
| changed := false |
| |
| for i := len(post) - 2; i >= 0; i-- { |
| b := post[i] |
| var d *Block |
| for _, p := range b.Preds { |
| if idom[p.ID] == nil { |
| continue |
| } |
| if d == nil { |
| d = p |
| continue |
| } |
| d = intersect(d, p, postnum, idom) |
| } |
| if d != idom[b.ID] { |
| idom[b.ID] = d |
| changed = true |
| } |
| } |
| if !changed { |
| break |
| } |
| } |
| // Set idom of entry block to nil instead of itself. |
| idom[f.Entry.ID] = nil |
| return idom |
| } |
| |
| // intersect finds the closest dominator of both b and c. |
| // It requires a postorder numbering of all the blocks. |
| func intersect(b, c *Block, postnum []int, idom []*Block) *Block { |
| // TODO: This loop is O(n^2). See BenchmarkNilCheckDeep*. |
| for b != c { |
| if postnum[b.ID] < postnum[c.ID] { |
| b = idom[b.ID] |
| } else { |
| c = idom[c.ID] |
| } |
| } |
| return b |
| } |