blob: 6e326ec1c91c92921c1c9bcc7818e8212517fe59 [file] [log] [blame]
// Derived from Inferno utils/6l/obj.c and utils/6l/span.c
// http://code.google.com/p/inferno-os/source/browse/utils/6l/obj.c
// http://code.google.com/p/inferno-os/source/browse/utils/6l/span.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package ld
import (
"cmd/internal/gcprog"
"cmd/internal/obj"
"cmd/internal/sys"
"fmt"
"log"
"os"
"sort"
"strconv"
"strings"
"sync"
)
func Symgrow(ctxt *Link, s *LSym, siz int64) {
if int64(int(siz)) != siz {
log.Fatalf("symgrow size %d too long", siz)
}
if int64(len(s.P)) >= siz {
return
}
if cap(s.P) < int(siz) {
p := make([]byte, 2*(siz+1))
s.P = append(p[:0], s.P...)
}
s.P = s.P[:siz]
}
func Addrel(s *LSym) *Reloc {
s.R = append(s.R, Reloc{})
return &s.R[len(s.R)-1]
}
func setuintxx(ctxt *Link, s *LSym, off int64, v uint64, wid int64) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
if s.Size < off+wid {
s.Size = off + wid
Symgrow(ctxt, s, s.Size)
}
switch wid {
case 1:
s.P[off] = uint8(v)
case 2:
ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v))
case 4:
ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v))
case 8:
ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v)
}
return off + wid
}
func Addbytes(ctxt *Link, s *LSym, bytes []byte) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
s.P = append(s.P, bytes...)
s.Size = int64(len(s.P))
return s.Size
}
func adduintxx(ctxt *Link, s *LSym, v uint64, wid int) int64 {
off := s.Size
setuintxx(ctxt, s, off, v, int64(wid))
return off
}
func Adduint8(ctxt *Link, s *LSym, v uint8) int64 {
off := s.Size
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
s.Size++
s.P = append(s.P, v)
return off
}
func Adduint16(ctxt *Link, s *LSym, v uint16) int64 {
return adduintxx(ctxt, s, uint64(v), 2)
}
func Adduint32(ctxt *Link, s *LSym, v uint32) int64 {
return adduintxx(ctxt, s, uint64(v), 4)
}
func Adduint64(ctxt *Link, s *LSym, v uint64) int64 {
return adduintxx(ctxt, s, v, 8)
}
func adduint(ctxt *Link, s *LSym, v uint64) int64 {
return adduintxx(ctxt, s, v, SysArch.IntSize)
}
func setuint8(ctxt *Link, s *LSym, r int64, v uint8) int64 {
return setuintxx(ctxt, s, r, uint64(v), 1)
}
func setuint32(ctxt *Link, s *LSym, r int64, v uint32) int64 {
return setuintxx(ctxt, s, r, uint64(v), 4)
}
func Addaddrplus(ctxt *Link, s *LSym, t *LSym, add int64) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
i := s.Size
s.Size += int64(ctxt.Arch.PtrSize)
Symgrow(ctxt, s, s.Size)
r := Addrel(s)
r.Sym = t
r.Off = int32(i)
r.Siz = uint8(ctxt.Arch.PtrSize)
r.Type = obj.R_ADDR
r.Add = add
return i + int64(r.Siz)
}
func Addpcrelplus(ctxt *Link, s *LSym, t *LSym, add int64) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
i := s.Size
s.Size += 4
Symgrow(ctxt, s, s.Size)
r := Addrel(s)
r.Sym = t
r.Off = int32(i)
r.Add = add
r.Type = obj.R_PCREL
r.Siz = 4
if SysArch.Family == sys.S390X {
r.Variant = RV_390_DBL
}
return i + int64(r.Siz)
}
func Addaddr(ctxt *Link, s *LSym, t *LSym) int64 {
return Addaddrplus(ctxt, s, t, 0)
}
func setaddrplus(ctxt *Link, s *LSym, off int64, t *LSym, add int64) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
if off+int64(ctxt.Arch.PtrSize) > s.Size {
s.Size = off + int64(ctxt.Arch.PtrSize)
Symgrow(ctxt, s, s.Size)
}
r := Addrel(s)
r.Sym = t
r.Off = int32(off)
r.Siz = uint8(ctxt.Arch.PtrSize)
r.Type = obj.R_ADDR
r.Add = add
return off + int64(r.Siz)
}
func setaddr(ctxt *Link, s *LSym, off int64, t *LSym) int64 {
return setaddrplus(ctxt, s, off, t, 0)
}
func addsize(ctxt *Link, s *LSym, t *LSym) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
i := s.Size
s.Size += int64(ctxt.Arch.PtrSize)
Symgrow(ctxt, s, s.Size)
r := Addrel(s)
r.Sym = t
r.Off = int32(i)
r.Siz = uint8(ctxt.Arch.PtrSize)
r.Type = obj.R_SIZE
return i + int64(r.Siz)
}
func addaddrplus4(ctxt *Link, s *LSym, t *LSym, add int64) int64 {
if s.Type == 0 {
s.Type = obj.SDATA
}
s.Attr |= AttrReachable
i := s.Size
s.Size += 4
Symgrow(ctxt, s, s.Size)
r := Addrel(s)
r.Sym = t
r.Off = int32(i)
r.Siz = 4
r.Type = obj.R_ADDR
r.Add = add
return i + int64(r.Siz)
}
/*
* divide-and-conquer list-link
* sort of LSym* structures.
* Used for the data block.
*/
func listsubp(s *LSym) **LSym {
return &s.Sub
}
func listsort(l *LSym, cmp func(*LSym, *LSym) int, nextp func(*LSym) **LSym) *LSym {
if l == nil || *nextp(l) == nil {
return l
}
l1 := l
l2 := l
for {
l2 = *nextp(l2)
if l2 == nil {
break
}
l2 = *nextp(l2)
if l2 == nil {
break
}
l1 = *nextp(l1)
}
l2 = *nextp(l1)
*nextp(l1) = nil
l1 = listsort(l, cmp, nextp)
l2 = listsort(l2, cmp, nextp)
/* set up lead element */
if cmp(l1, l2) < 0 {
l = l1
l1 = *nextp(l1)
} else {
l = l2
l2 = *nextp(l2)
}
le := l
for {
if l1 == nil {
for l2 != nil {
*nextp(le) = l2
le = l2
l2 = *nextp(l2)
}
*nextp(le) = nil
break
}
if l2 == nil {
for l1 != nil {
*nextp(le) = l1
le = l1
l1 = *nextp(l1)
}
break
}
if cmp(l1, l2) < 0 {
*nextp(le) = l1
le = l1
l1 = *nextp(l1)
} else {
*nextp(le) = l2
le = l2
l2 = *nextp(l2)
}
}
*nextp(le) = nil
return l
}
func relocsym(s *LSym) {
var r *Reloc
var rs *LSym
var i16 int16
var off int32
var siz int32
var fl int32
var o int64
Ctxt.Cursym = s
for ri := int32(0); ri < int32(len(s.R)); ri++ {
r = &s.R[ri]
r.Done = 1
off = r.Off
siz = int32(r.Siz)
if off < 0 || off+siz > int32(len(s.P)) {
Diag("%s: invalid relocation %d+%d not in [%d,%d)", s.Name, off, siz, 0, len(s.P))
continue
}
if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) {
// When putting the runtime but not main into a shared library
// these symbols are undefined and that's OK.
if Buildmode == BuildmodeShared && (r.Sym.Name == "main.main" || r.Sym.Name == "main.init") {
r.Sym.Type = obj.SDYNIMPORT
} else {
Diag("%s: not defined", r.Sym.Name)
continue
}
}
if r.Type >= 256 {
continue
}
if r.Siz == 0 { // informational relocation - no work to do
continue
}
// We need to be able to reference dynimport symbols when linking against
// shared libraries, and Solaris needs it always
if HEADTYPE != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !DynlinkingGo() {
if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") {
Diag("unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type)
}
}
if r.Sym != nil && r.Sym.Type != obj.STLSBSS && !r.Sym.Attr.Reachable() {
Diag("unreachable sym in relocation: %s %s", s.Name, r.Sym.Name)
}
// TODO(mundaym): remove this special case - see issue 14218.
if SysArch.Family == sys.S390X {
switch r.Type {
case obj.R_PCRELDBL:
r.Type = obj.R_PCREL
r.Variant = RV_390_DBL
case obj.R_CALL:
r.Variant = RV_390_DBL
}
}
switch r.Type {
default:
switch siz {
default:
Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
case 1:
o = int64(s.P[off])
case 2:
o = int64(Ctxt.Arch.ByteOrder.Uint16(s.P[off:]))
case 4:
o = int64(Ctxt.Arch.ByteOrder.Uint32(s.P[off:]))
case 8:
o = int64(Ctxt.Arch.ByteOrder.Uint64(s.P[off:]))
}
if Thearch.Archreloc(r, s, &o) < 0 {
Diag("unknown reloc %d", r.Type)
}
case obj.R_TLS_LE:
isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 {
r.Done = 0
if r.Sym == nil {
r.Sym = Ctxt.Tlsg
}
r.Xsym = r.Sym
r.Xadd = r.Add
o = 0
if SysArch.Family != sys.AMD64 {
o = r.Add
}
break
}
if Iself && SysArch.Family == sys.ARM {
// On ELF ARM, the thread pointer is 8 bytes before
// the start of the thread-local data block, so add 8
// to the actual TLS offset (r->sym->value).
// This 8 seems to be a fundamental constant of
// ELF on ARM (or maybe Glibc on ARM); it is not
// related to the fact that our own TLS storage happens
// to take up 8 bytes.
o = 8 + r.Sym.Value
} else if Iself || Ctxt.Headtype == obj.Hplan9 || Ctxt.Headtype == obj.Hdarwin || isAndroidX86 {
o = int64(Ctxt.Tlsoffset) + r.Add
} else if Ctxt.Headtype == obj.Hwindows {
o = r.Add
} else {
log.Fatalf("unexpected R_TLS_LE relocation for %s", Headstr(Ctxt.Headtype))
}
case obj.R_TLS_IE:
isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 {
r.Done = 0
if r.Sym == nil {
r.Sym = Ctxt.Tlsg
}
r.Xsym = r.Sym
r.Xadd = r.Add
o = 0
if SysArch.Family != sys.AMD64 {
o = r.Add
}
break
}
log.Fatalf("cannot handle R_TLS_IE when linking internally")
case obj.R_ADDR:
if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST {
r.Done = 0
// set up addend for eventual relocation via outer symbol.
rs = r.Sym
r.Xadd = r.Add
for rs.Outer != nil {
r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
rs = rs.Outer
}
if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
Diag("missing section for %s", rs.Name)
}
r.Xsym = rs
o = r.Xadd
if Iself {
if SysArch.Family == sys.AMD64 {
o = 0
}
} else if HEADTYPE == obj.Hdarwin {
// ld64 for arm64 has a bug where if the address pointed to by o exists in the
// symbol table (dynid >= 0), or is inside a symbol that exists in the symbol
// table, then it will add o twice into the relocated value.
// The workaround is that on arm64 don't ever add symaddr to o and always use
// extern relocation by requiring rs->dynid >= 0.
if rs.Type != obj.SHOSTOBJ {
if SysArch.Family == sys.ARM64 && rs.Dynid < 0 {
Diag("R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o)
}
if SysArch.Family != sys.ARM64 {
o += Symaddr(rs)
}
}
} else if HEADTYPE == obj.Hwindows {
// nothing to do
} else {
Diag("unhandled pcrel relocation for %s", headstring)
}
break
}
o = Symaddr(r.Sym) + r.Add
// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
// access more than 2GB of static data; fail at link time is better than
// fail at runtime. See https://golang.org/issue/7980.
// Instead of special casing only amd64, we treat this as an error on all
// 64-bit architectures so as to be future-proof.
if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 {
Diag("non-pc-relative relocation address is too big: %#x (%#x + %#x)", uint64(o), Symaddr(r.Sym), r.Add)
errorexit()
}
case obj.R_DWARFREF:
if r.Sym.Sect == nil {
Diag("missing DWARF section: %s from %s", r.Sym.Name, s.Name)
}
if Linkmode == LinkExternal {
r.Done = 0
r.Type = obj.R_ADDR
r.Xsym = Linkrlookup(Ctxt, r.Sym.Sect.Name, 0)
r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr)
o = r.Xadd
rs = r.Xsym
if Iself && SysArch.Family == sys.AMD64 {
o = 0
}
break
}
o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr)
case obj.R_ADDROFF:
o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add
// r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call.
case obj.R_CALL, obj.R_GOTPCREL, obj.R_PCREL:
if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != Ctxt.Cursym.Sect || r.Type == obj.R_GOTPCREL) {
r.Done = 0
// set up addend for eventual relocation via outer symbol.
rs = r.Sym
r.Xadd = r.Add
for rs.Outer != nil {
r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
rs = rs.Outer
}
r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
Diag("missing section for %s", rs.Name)
}
r.Xsym = rs
o = r.Xadd
if Iself {
if SysArch.Family == sys.AMD64 {
o = 0
}
} else if HEADTYPE == obj.Hdarwin {
if r.Type == obj.R_CALL {
if rs.Type != obj.SHOSTOBJ {
o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr)
}
o -= int64(r.Off) // relative to section offset, not symbol
} else if SysArch.Family == sys.ARM {
// see ../arm/asm.go:/machoreloc1
o += Symaddr(rs) - int64(Ctxt.Cursym.Value) - int64(r.Off)
} else {
o += int64(r.Siz)
}
} else if HEADTYPE == obj.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL
// PE/COFF's PC32 relocation uses the address after the relocated
// bytes as the base. Compensate by skewing the addend.
o += int64(r.Siz)
// GNU ld always add VirtualAddress of the .text section to the
// relocated address, compensate that.
o -= int64(s.Sect.Vaddr - PEBASE)
} else {
Diag("unhandled pcrel relocation for %s", headstring)
}
break
}
o = 0
if r.Sym != nil {
o += Symaddr(r.Sym)
}
// NOTE: The (int32) cast on the next line works around a bug in Plan 9's 8c
// compiler. The expression s->value + r->off + r->siz is int32 + int32 +
// uchar, and Plan 9 8c incorrectly treats the expression as type uint32
// instead of int32, causing incorrect values when sign extended for adding
// to o. The bug only occurs on Plan 9, because this C program is compiled by
// the standard host compiler (gcc on most other systems).
o += r.Add - (s.Value + int64(r.Off) + int64(int32(r.Siz)))
case obj.R_SIZE:
o = r.Sym.Size + r.Add
}
if r.Variant != RV_NONE {
o = Thearch.Archrelocvariant(r, s, o)
}
if false {
nam := "<nil>"
if r.Sym != nil {
nam = r.Sym.Name
}
fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o)
}
switch siz {
default:
Ctxt.Cursym = s
Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
fallthrough
// TODO(rsc): Remove.
case 1:
s.P[off] = byte(int8(o))
case 2:
if o != int64(int16(o)) {
Diag("relocation address is too big: %#x", o)
}
i16 = int16(o)
Ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16))
case 4:
if r.Type == obj.R_PCREL || r.Type == obj.R_CALL {
if o != int64(int32(o)) {
Diag("pc-relative relocation address is too big: %#x", o)
}
} else {
if o != int64(int32(o)) && o != int64(uint32(o)) {
Diag("non-pc-relative relocation address is too big: %#x", uint64(o))
}
}
fl = int32(o)
Ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl))
case 8:
Ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o))
}
}
}
func reloc() {
if Debug['v'] != 0 {
fmt.Fprintf(Bso, "%5.2f reloc\n", obj.Cputime())
}
Bso.Flush()
for _, s := range Ctxt.Textp {
relocsym(s)
}
for _, sym := range datap {
relocsym(sym)
}
for s := dwarfp; s != nil; s = s.Next {
relocsym(s)
}
}
func dynrelocsym(s *LSym) {
if HEADTYPE == obj.Hwindows && Linkmode != LinkExternal {
rel := Linklookup(Ctxt, ".rel", 0)
if s == rel {
return
}
for ri := 0; ri < len(s.R); ri++ {
r := &s.R[ri]
targ := r.Sym
if targ == nil {
continue
}
if !targ.Attr.Reachable() {
Diag("internal inconsistency: dynamic symbol %s is not reachable.", targ.Name)
}
if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files.
targ.Plt = int32(rel.Size)
r.Sym = rel
r.Add = int64(targ.Plt)
// jmp *addr
if SysArch.Family == sys.I386 {
Adduint8(Ctxt, rel, 0xff)
Adduint8(Ctxt, rel, 0x25)
Addaddr(Ctxt, rel, targ)
Adduint8(Ctxt, rel, 0x90)
Adduint8(Ctxt, rel, 0x90)
} else {
Adduint8(Ctxt, rel, 0xff)
Adduint8(Ctxt, rel, 0x24)
Adduint8(Ctxt, rel, 0x25)
addaddrplus4(Ctxt, rel, targ, 0)
Adduint8(Ctxt, rel, 0x90)
}
} else if r.Sym.Plt >= 0 {
r.Sym = rel
r.Add = int64(targ.Plt)
}
}
return
}
for ri := 0; ri < len(s.R); ri++ {
r := &s.R[ri]
if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 {
if r.Sym != nil && !r.Sym.Attr.Reachable() {
Diag("internal inconsistency: dynamic symbol %s is not reachable.", r.Sym.Name)
}
Thearch.Adddynrel(s, r)
}
}
}
func dynreloc(data *[obj.SXREF][]*LSym) {
// -d suppresses dynamic loader format, so we may as well not
// compute these sections or mark their symbols as reachable.
if Debug['d'] != 0 && HEADTYPE != obj.Hwindows {
return
}
if Debug['v'] != 0 {
fmt.Fprintf(Bso, "%5.2f reloc\n", obj.Cputime())
}
Bso.Flush()
for _, s := range Ctxt.Textp {
dynrelocsym(s)
}
for _, syms := range data {
for _, sym := range syms {
dynrelocsym(sym)
}
}
if Iself {
elfdynhash()
}
}
func blk(start *LSym, addr int64, size int64) {
var sym *LSym
for sym = start; sym != nil; sym = sym.Next {
if sym.Type&obj.SSUB == 0 && sym.Value >= addr {
break
}
}
eaddr := addr + size
for ; sym != nil; sym = sym.Next {
if sym.Type&obj.SSUB != 0 {
continue
}
if sym.Value >= eaddr {
break
}
Ctxt.Cursym = sym
if sym.Value < addr {
Diag("phase error: addr=%#x but sym=%#x type=%d", addr, sym.Value, sym.Type)
errorexit()
}
if addr < sym.Value {
strnput("", int(sym.Value-addr))
addr = sym.Value
}
Cwrite(sym.P)
addr += int64(len(sym.P))
if addr < sym.Value+sym.Size {
strnput("", int(sym.Value+sym.Size-addr))
addr = sym.Value + sym.Size
}
if addr != sym.Value+sym.Size {
Diag("phase error: addr=%#x value+size=%#x", addr, sym.Value+sym.Size)
errorexit()
}
if sym.Value+sym.Size >= eaddr {
break
}
}
if addr < eaddr {
strnput("", int(eaddr-addr))
}
Cflush()
}
func Codeblk(addr int64, size int64) {
if Debug['a'] != 0 {
fmt.Fprintf(Bso, "codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos())
}
blkSlice(Ctxt.Textp, addr, size)
/* again for printing */
if Debug['a'] == 0 {
return
}
syms := Ctxt.Textp
for i, sym := range syms {
if !sym.Attr.Reachable() {
continue
}
if sym.Value >= addr {
syms = syms[i:]
break
}
}
eaddr := addr + size
var q []byte
for _, sym := range syms {
if !sym.Attr.Reachable() {
continue
}
if sym.Value >= eaddr {
break
}
if addr < sym.Value {
fmt.Fprintf(Bso, "%-20s %.8x|", "_", uint64(addr))
for ; addr < sym.Value; addr++ {
fmt.Fprintf(Bso, " %.2x", 0)
}
fmt.Fprintf(Bso, "\n")
}
fmt.Fprintf(Bso, "%.6x\t%-20s\n", uint64(addr), sym.Name)
q = sym.P
for len(q) >= 16 {
fmt.Fprintf(Bso, "%.6x\t% x\n", uint64(addr), q[:16])
addr += 16
q = q[16:]
}
if len(q) > 0 {
fmt.Fprintf(Bso, "%.6x\t% x\n", uint64(addr), q)
addr += int64(len(q))
}
}
if addr < eaddr {
fmt.Fprintf(Bso, "%-20s %.8x|", "_", uint64(addr))
for ; addr < eaddr; addr++ {
fmt.Fprintf(Bso, " %.2x", 0)
}
}
Bso.Flush()
}
// blkSlice is a variant of blk that processes slices.
// After text symbols are converted from a linked list to a slice,
// delete blk and give this function its name.
func blkSlice(syms []*LSym, addr, size int64) {
for i, s := range syms {
if s.Type&obj.SSUB == 0 && s.Value >= addr {
syms = syms[i:]
break
}
}
eaddr := addr + size
for _, s := range syms {
if s.Type&obj.SSUB != 0 {
continue
}
if s.Value >= eaddr {
break
}
Ctxt.Cursym = s
if s.Value < addr {
Diag("phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type)
errorexit()
}
if addr < s.Value {
strnput("", int(s.Value-addr))
addr = s.Value
}
Cwrite(s.P)
addr += int64(len(s.P))
if addr < s.Value+s.Size {
strnput("", int(s.Value+s.Size-addr))
addr = s.Value + s.Size
}
if addr != s.Value+s.Size {
Diag("phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size)
errorexit()
}
if s.Value+s.Size >= eaddr {
break
}
}
if addr < eaddr {
strnput("", int(eaddr-addr))
}
Cflush()
}
func Datblk(addr int64, size int64) {
if Debug['a'] != 0 {
fmt.Fprintf(Bso, "datblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos())
}
blkSlice(datap, addr, size)
/* again for printing */
if Debug['a'] == 0 {
return
}
syms := datap
for i, sym := range syms {
if sym.Value >= addr {
syms = syms[i:]
break
}
}
eaddr := addr + size
for _, sym := range syms {
if sym.Value >= eaddr {
break
}
if addr < sym.Value {
fmt.Fprintf(Bso, "\t%.8x| 00 ...\n", uint64(addr))
addr = sym.Value
}
fmt.Fprintf(Bso, "%s\n\t%.8x|", sym.Name, uint64(addr))
for i, b := range sym.P {
if i > 0 && i%16 == 0 {
fmt.Fprintf(Bso, "\n\t%.8x|", uint64(addr)+uint64(i))
}
fmt.Fprintf(Bso, " %.2x", b)
}
addr += int64(len(sym.P))
for ; addr < sym.Value+sym.Size; addr++ {
fmt.Fprintf(Bso, " %.2x", 0)
}
fmt.Fprintf(Bso, "\n")
if Linkmode != LinkExternal {
continue
}
for _, r := range sym.R {
rsname := ""
if r.Sym != nil {
rsname = r.Sym.Name
}
typ := "?"
switch r.Type {
case obj.R_ADDR:
typ = "addr"
case obj.R_PCREL:
typ = "pcrel"
case obj.R_CALL:
typ = "call"
}
fmt.Fprintf(Bso, "\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add)
}
}
if addr < eaddr {
fmt.Fprintf(Bso, "\t%.8x| 00 ...\n", uint(addr))
}
fmt.Fprintf(Bso, "\t%.8x|\n", uint(eaddr))
}
func Dwarfblk(addr int64, size int64) {
if Debug['a'] != 0 {
fmt.Fprintf(Bso, "dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos())
}
blk(dwarfp, addr, size)
}
var zeros [512]byte
// strnput writes the first n bytes of s.
// If n is larger then len(s),
// it is padded with NUL bytes.
func strnput(s string, n int) {
if len(s) >= n {
Cwritestring(s[:n])
} else {
Cwritestring(s)
n -= len(s)
for n > 0 {
if len(zeros) >= n {
Cwrite(zeros[:n])
return
} else {
Cwrite(zeros[:])
n -= len(zeros)
}
}
}
}
var strdata []*LSym
func addstrdata1(arg string) {
i := strings.Index(arg, "=")
if i < 0 {
Exitf("-X flag requires argument of the form importpath.name=value")
}
addstrdata(arg[:i], arg[i+1:])
}
func addstrdata(name string, value string) {
p := fmt.Sprintf("%s.str", name)
sp := Linklookup(Ctxt, p, 0)
Addstring(sp, value)
sp.Type = obj.SRODATA
s := Linklookup(Ctxt, name, 0)
s.Size = 0
s.Attr |= AttrDuplicateOK
reachable := s.Attr.Reachable()
Addaddr(Ctxt, s, sp)
adduintxx(Ctxt, s, uint64(len(value)), SysArch.PtrSize)
// addstring, addaddr, etc., mark the symbols as reachable.
// In this case that is not necessarily true, so stick to what
// we know before entering this function.
s.Attr.Set(AttrReachable, reachable)
strdata = append(strdata, s)
sp.Attr.Set(AttrReachable, reachable)
}
func checkstrdata() {
for _, s := range strdata {
if s.Type == obj.STEXT {
Diag("cannot use -X with text symbol %s", s.Name)
} else if s.Gotype != nil && s.Gotype.Name != "type.string" {
Diag("cannot use -X with non-string symbol %s", s.Name)
}
}
}
func Addstring(s *LSym, str string) int64 {
if s.Type == 0 {
s.Type = obj.SNOPTRDATA
}
s.Attr |= AttrReachable
r := s.Size
if s.Name == ".shstrtab" {
elfsetstring(str, int(r))
}
s.P = append(s.P, str...)
s.P = append(s.P, 0)
s.Size = int64(len(s.P))
return r
}
// addgostring adds str, as a Go string value, to s. symname is the name of the
// symbol used to define the string data and must be unique per linked object.
func addgostring(s *LSym, symname, str string) {
sym := Linklookup(Ctxt, symname, 0)
if sym.Type != obj.Sxxx {
Diag("duplicate symname in addgostring: %s", symname)
}
sym.Attr |= AttrReachable
sym.Attr |= AttrLocal
sym.Type = obj.SRODATA
sym.Size = int64(len(str))
sym.P = []byte(str)
Addaddr(Ctxt, s, sym)
adduint(Ctxt, s, uint64(len(str)))
}
func addinitarrdata(s *LSym) {
p := s.Name + ".ptr"
sp := Linklookup(Ctxt, p, 0)
sp.Type = obj.SINITARR
sp.Size = 0
sp.Attr |= AttrDuplicateOK
Addaddr(Ctxt, sp, s)
}
func dosymtype() {
for _, s := range Ctxt.Allsym {
if len(s.P) > 0 {
if s.Type == obj.SBSS {
s.Type = obj.SDATA
}
if s.Type == obj.SNOPTRBSS {
s.Type = obj.SNOPTRDATA
}
}
// Create a new entry in the .init_array section that points to the
// library initializer function.
switch Buildmode {
case BuildmodeCArchive, BuildmodeCShared:
if s.Name == INITENTRY {
addinitarrdata(s)
}
}
}
}
// symalign returns the required alignment for the given symbol s.
func symalign(s *LSym) int32 {
min := int32(Thearch.Minalign)
if s.Align >= min {
return s.Align
} else if s.Align != 0 {
return min
}
if (strings.HasPrefix(s.Name, "go.string.") && !strings.HasPrefix(s.Name, "go.string.hdr.")) || strings.HasPrefix(s.Name, "type..namedata.") {
// String data is just bytes.
// If we align it, we waste a lot of space to padding.
return min
}
align := int32(Thearch.Maxalign)
for int64(align) > s.Size && align > min {
align >>= 1
}
return align
}
func aligndatsize(datsize int64, s *LSym) int64 {
return Rnd(datsize, int64(symalign(s)))
}
const debugGCProg = false
type GCProg struct {
sym *LSym
w gcprog.Writer
}
func (p *GCProg) Init(name string) {
p.sym = Linklookup(Ctxt, name, 0)
p.w.Init(p.writeByte)
if debugGCProg {
fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
p.w.Debug(os.Stderr)
}
}
func (p *GCProg) writeByte(x byte) {
Adduint8(Ctxt, p.sym, x)
}
func (p *GCProg) End(size int64) {
p.w.ZeroUntil(size / int64(SysArch.PtrSize))
p.w.End()
if debugGCProg {
fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
}
}
func (p *GCProg) AddSym(s *LSym) {
typ := s.Gotype
// Things without pointers should be in SNOPTRDATA or SNOPTRBSS;
// everything we see should have pointers and should therefore have a type.
if typ == nil {
Diag("missing Go type information for global symbol: %s size %d", s.Name, int(s.Size))
return
}
ptrsize := int64(SysArch.PtrSize)
nptr := decodetype_ptrdata(typ) / ptrsize
if debugGCProg {
fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
}
if decodetype_usegcprog(typ) == 0 {
// Copy pointers from mask into program.
mask := decodetype_gcmask(typ)
for i := int64(0); i < nptr; i++ {
if (mask[i/8]>>uint(i%8))&1 != 0 {
p.w.Ptr(s.Value/ptrsize + i)
}
}
return
}
// Copy program.
prog := decodetype_gcprog(typ)
p.w.ZeroUntil(s.Value / ptrsize)
p.w.Append(prog[4:], nptr)
}
// dataSortKey is used to sort a slice of data symbol *LSym pointers.
// The sort keys are kept inline to improve cache behaviour while sorting.
type dataSortKey struct {
size int64
name string
lsym *LSym
}
type bySizeAndName []dataSortKey
func (d bySizeAndName) Len() int { return len(d) }
func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
func (d bySizeAndName) Less(i, j int) bool {
s1, s2 := d[i], d[j]
if s1.size != s2.size {
return s1.size < s2.size
}
return s1.name < s2.name
}
const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31)
func checkdatsize(datsize int64, symn int) {
if datsize > cutoff {
Diag("too much data in section %v (over %d bytes)", symn, cutoff)
}
}
func list2slice(s *LSym) []*LSym {
var syms []*LSym
for ; s != nil; s = s.Next {
syms = append(syms, s)
}
return syms
}
// datap is a collection of reachable data symbols in address order.
// Generated by dodata.
var datap []*LSym
func dodata() {
if Debug['v'] != 0 {
fmt.Fprintf(Bso, "%5.2f dodata\n", obj.Cputime())
}
Bso.Flush()
// Collect data symbols by type into data.
var data [obj.SXREF][]*LSym
for _, s := range Ctxt.Allsym {
if !s.Attr.Reachable() || s.Attr.Special() {
continue
}
if s.Type <= obj.STEXT || s.Type >= obj.SXREF {
continue
}
data[s.Type] = append(data[s.Type], s)
}
// Now that we have the data symbols, but before we start
// to assign addresses, record all the necessary
// dynamic relocations. These will grow the relocation
// symbol, which is itself data.
//
// On darwin, we need the symbol table numbers for dynreloc.
if HEADTYPE == obj.Hdarwin {
machosymorder()
}
dynreloc(&data)
if UseRelro() {
// "read only" data with relocations needs to go in its own section
// when building a shared library. We do this by boosting objects of
// type SXXX with relocations to type SXXXRELRO.
for symnro := int16(obj.STYPE); symnro < obj.STYPERELRO; symnro++ {
symnrelro := symnro + obj.STYPERELRO - obj.STYPE
ro := []*LSym{}
relro := data[symnrelro]
for _, s := range data[symnro] {
isRelro := len(s.R) > 0
switch s.Type {
case obj.STYPE, obj.SGOSTRINGHDR, obj.STYPERELRO, obj.SGOSTRINGHDRRELRO:
// Symbols are not sorted yet, so it is possible
// that an Outer symbol has been changed to a
// relro Type before it reaches here.
isRelro = true
}
if isRelro {
s.Type = symnrelro
if s.Outer != nil {
s.Outer.Type = s.Type
}
relro = append(relro, s)
} else {
ro = append(ro, s)
}
}
// Check that we haven't made two symbols with the same .Outer into
// different types (because references two symbols with non-nil Outer
// become references to the outer symbol + offset it's vital that the
// symbol and the outer end up in the same section).
for _, s := range relro {
if s.Outer != nil && s.Outer.Type != s.Type {
Diag("inconsistent types for %s and its Outer %s (%d != %d)",
s.Name, s.Outer.Name, s.Type, s.Outer.Type)
}
}
data[symnro] = ro
data[symnrelro] = relro
}
}
// Sort symbols.
var dataMaxAlign [obj.SXREF]int32
var wg sync.WaitGroup
for symn := range data {
symn := symn
wg.Add(1)
go func() {
data[symn], dataMaxAlign[symn] = dodataSect(symn, data[symn])
wg.Done()
}()
}
wg.Wait()
// Allocate sections.
// Data is processed before segtext, because we need
// to see all symbols in the .data and .bss sections in order
// to generate garbage collection information.
datsize := int64(0)
// Writable sections.
writableSects := []int{
obj.SELFSECT,
obj.SMACHO,
obj.SMACHOGOT,
obj.SWINDOWS,
}
for _, symn := range writableSects {
for _, s := range data[symn] {
sect := addsection(&Segdata, s.Name, 06)
sect.Align = symalign(s)
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
s.Sect = sect
s.Type = obj.SDATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
sect.Length = uint64(datsize) - sect.Vaddr
}
checkdatsize(datsize, symn)
}
// .got (and .toc on ppc64)
if len(data[obj.SELFGOT]) > 0 {
sect := addsection(&Segdata, ".got", 06)
sect.Align = dataMaxAlign[obj.SELFGOT]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
var toc *LSym
for _, s := range data[obj.SELFGOT] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SDATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
// Resolve .TOC. symbol for this object file (ppc64)
toc = Linkrlookup(Ctxt, ".TOC.", int(s.Version))
if toc != nil {
toc.Sect = sect
toc.Outer = s
toc.Sub = s.Sub
s.Sub = toc
toc.Value = 0x8000
}
datsize += s.Size
}
checkdatsize(datsize, obj.SELFGOT)
sect.Length = uint64(datsize) - sect.Vaddr
}
/* pointer-free data */
sect := addsection(&Segdata, ".noptrdata", 06)
sect.Align = dataMaxAlign[obj.SNOPTRDATA]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.noptrdata", 0).Sect = sect
Linklookup(Ctxt, "runtime.enoptrdata", 0).Sect = sect
for _, s := range data[obj.SNOPTRDATA] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SDATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, obj.SNOPTRDATA)
sect.Length = uint64(datsize) - sect.Vaddr
hasinitarr := Linkshared
/* shared library initializer */
switch Buildmode {
case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared:
hasinitarr = true
}
if hasinitarr {
sect := addsection(&Segdata, ".init_array", 06)
sect.Align = dataMaxAlign[obj.SINITARR]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
for _, s := range data[obj.SINITARR] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
sect.Length = uint64(datsize) - sect.Vaddr
checkdatsize(datsize, obj.SINITARR)
}
/* data */
sect = addsection(&Segdata, ".data", 06)
sect.Align = dataMaxAlign[obj.SDATA]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.data", 0).Sect = sect
Linklookup(Ctxt, "runtime.edata", 0).Sect = sect
var gc GCProg
gc.Init("runtime.gcdata")
for _, s := range data[obj.SDATA] {
s.Sect = sect
s.Type = obj.SDATA
datsize = aligndatsize(datsize, s)
s.Value = int64(uint64(datsize) - sect.Vaddr)
gc.AddSym(s)
datsize += s.Size
}
checkdatsize(datsize, obj.SDATA)
sect.Length = uint64(datsize) - sect.Vaddr
gc.End(int64(sect.Length))
/* bss */
sect = addsection(&Segdata, ".bss", 06)
sect.Align = dataMaxAlign[obj.SBSS]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.bss", 0).Sect = sect
Linklookup(Ctxt, "runtime.ebss", 0).Sect = sect
gc = GCProg{}
gc.Init("runtime.gcbss")
for _, s := range data[obj.SBSS] {
s.Sect = sect
datsize = aligndatsize(datsize, s)
s.Value = int64(uint64(datsize) - sect.Vaddr)
gc.AddSym(s)
datsize += s.Size
}
checkdatsize(datsize, obj.SBSS)
sect.Length = uint64(datsize) - sect.Vaddr
gc.End(int64(sect.Length))
/* pointer-free bss */
sect = addsection(&Segdata, ".noptrbss", 06)
sect.Align = dataMaxAlign[obj.SNOPTRBSS]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.noptrbss", 0).Sect = sect
Linklookup(Ctxt, "runtime.enoptrbss", 0).Sect = sect
for _, s := range data[obj.SNOPTRBSS] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
sect.Length = uint64(datsize) - sect.Vaddr
Linklookup(Ctxt, "runtime.end", 0).Sect = sect
checkdatsize(datsize, obj.SNOPTRBSS)
if len(data[obj.STLSBSS]) > 0 {
var sect *Section
if Iself && (Linkmode == LinkExternal || Debug['d'] == 0) && HEADTYPE != obj.Hopenbsd {
sect = addsection(&Segdata, ".tbss", 06)
sect.Align = int32(SysArch.PtrSize)
sect.Vaddr = 0
}
datsize = 0
for _, s := range data[obj.STLSBSS] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Value = datsize
datsize += s.Size
}
checkdatsize(datsize, obj.STLSBSS)
if sect != nil {
sect.Length = uint64(datsize)
}
}
/*
* We finished data, begin read-only data.
* Not all systems support a separate read-only non-executable data section.
* ELF systems do.
* OS X and Plan 9 do not.
* Windows PE may, but if so we have not implemented it.
* And if we're using external linking mode, the point is moot,
* since it's not our decision; that code expects the sections in
* segtext.
*/
var segro *Segment
if Iself && Linkmode == LinkInternal {
segro = &Segrodata
} else {
segro = &Segtext
}
datsize = 0
/* read-only executable ELF, Mach-O sections */
if len(data[obj.STEXT]) != 0 {
Diag("dodata found an STEXT symbol: %s", data[obj.STEXT][0].Name)
}
for _, s := range data[obj.SELFRXSECT] {
sect := addsection(&Segtext, s.Name, 04)
sect.Align = symalign(s)
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
sect.Length = uint64(datsize) - sect.Vaddr
checkdatsize(datsize, obj.SELFRXSECT)
}
/* read-only data */
sect = addsection(segro, ".rodata", 04)
sect.Vaddr = 0
Linklookup(Ctxt, "runtime.rodata", 0).Sect = sect
Linklookup(Ctxt, "runtime.erodata", 0).Sect = sect
if !UseRelro() {
Linklookup(Ctxt, "runtime.types", 0).Sect = sect
Linklookup(Ctxt, "runtime.etypes", 0).Sect = sect
}
roSects := []int{
obj.STYPE,
obj.SSTRING,
obj.SGOSTRING,
obj.SGOSTRINGHDR,
obj.SGOFUNC,
obj.SGCBITS,
obj.SRODATA,
obj.SFUNCTAB,
}
for _, symn := range roSects {
align := dataMaxAlign[symn]
if sect.Align < align {
sect.Align = align
}
}
datsize = Rnd(datsize, int64(sect.Align))
for _, symn := range roSects {
for _, s := range data[symn] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, symn)
}
sect.Length = uint64(datsize) - sect.Vaddr
// There is some data that are conceptually read-only but are written to by
// relocations. On GNU systems, we can arrange for the dynamic linker to
// mprotect sections after relocations are applied by giving them write
// permissions in the object file and calling them ".data.rel.ro.FOO". We
// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
// but for the other sections that this applies to, we just write a read-only
// .FOO section or a read-write .data.rel.ro.FOO section depending on the
// situation.
// TODO(mwhudson): It would make sense to do this more widely, but it makes
// the system linker segfault on darwin.
relro_perms := 04
relro_prefix := ""
if UseRelro() {
relro_perms = 06
relro_prefix = ".data.rel.ro"
/* data only written by relocations */
sect = addsection(segro, ".data.rel.ro", 06)
sect.Vaddr = 0
Linklookup(Ctxt, "runtime.types", 0).Sect = sect
Linklookup(Ctxt, "runtime.etypes", 0).Sect = sect
relroSects := []int{
obj.STYPERELRO,
obj.SSTRINGRELRO,
obj.SGOSTRINGRELRO,
obj.SGOSTRINGHDRRELRO,
obj.SGOFUNCRELRO,
obj.SGCBITSRELRO,
obj.SRODATARELRO,
obj.SFUNCTABRELRO,
}
for _, symn := range relroSects {
align := dataMaxAlign[symn]
if sect.Align < align {
sect.Align = align
}
}
datsize = Rnd(datsize, int64(sect.Align))
for _, symn := range relroSects {
for _, s := range data[symn] {
datsize = aligndatsize(datsize, s)
if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
Diag("s.Outer (%s) in different section from s (%s)", s.Outer.Name, s.Name)
}
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, symn)
}
sect.Length = uint64(datsize) - sect.Vaddr
}
/* typelink */
sect = addsection(segro, relro_prefix+".typelink", relro_perms)
sect.Align = dataMaxAlign[obj.STYPELINK]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.typelink", 0).Sect = sect
Linklookup(Ctxt, "runtime.etypelink", 0).Sect = sect
for _, s := range data[obj.STYPELINK] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, obj.STYPELINK)
sect.Length = uint64(datsize) - sect.Vaddr
/* itablink */
sect = addsection(segro, relro_prefix+".itablink", relro_perms)
sect.Align = dataMaxAlign[obj.SITABLINK]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.itablink", 0).Sect = sect
Linklookup(Ctxt, "runtime.eitablink", 0).Sect = sect
for _, s := range data[obj.SITABLINK] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, obj.SITABLINK)
sect.Length = uint64(datsize) - sect.Vaddr
/* gosymtab */
sect = addsection(segro, relro_prefix+".gosymtab", relro_perms)
sect.Align = dataMaxAlign[obj.SSYMTAB]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.symtab", 0).Sect = sect
Linklookup(Ctxt, "runtime.esymtab", 0).Sect = sect
for _, s := range data[obj.SSYMTAB] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, obj.SSYMTAB)
sect.Length = uint64(datsize) - sect.Vaddr
/* gopclntab */
sect = addsection(segro, relro_prefix+".gopclntab", relro_perms)
sect.Align = dataMaxAlign[obj.SPCLNTAB]
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
Linklookup(Ctxt, "runtime.pclntab", 0).Sect = sect
Linklookup(Ctxt, "runtime.epclntab", 0).Sect = sect
for _, s := range data[obj.SPCLNTAB] {
datsize = aligndatsize(datsize, s)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
}
checkdatsize(datsize, obj.SRODATA)
sect.Length = uint64(datsize) - sect.Vaddr
/* read-only ELF, Mach-O sections */
for _, s := range data[obj.SELFROSECT] {
sect = addsection(segro, s.Name, 04)
sect.Align = symalign(s)
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
sect.Length = uint64(datsize) - sect.Vaddr
}
checkdatsize(datsize, obj.SELFROSECT)
for _, s := range data[obj.SMACHOPLT] {
sect = addsection(segro, s.Name, 04)
sect.Align = symalign(s)
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
sect.Length = uint64(datsize) - sect.Vaddr
}
checkdatsize(datsize, obj.SMACHOPLT)
// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
if datsize != int64(uint32(datsize)) {
Diag("read-only data segment too large")
}
for symn := obj.SELFRXSECT; symn < obj.SXREF; symn++ {
datap = append(datap, data[symn]...)
}
dwarfgeneratedebugsyms()
var s *LSym
for s = dwarfp; s != nil && s.Type == obj.SDWARFSECT; s = s.Next {
sect = addsection(&Segdwarf, s.Name, 04)
sect.Align = 1
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
datsize += s.Size
sect.Length = uint64(datsize) - sect.Vaddr
}
checkdatsize(datsize, obj.SDWARFSECT)
if s != nil {
sect = addsection(&Segdwarf, ".debug_info", 04)
sect.Align = 1
datsize = Rnd(datsize, int64(sect.Align))
sect.Vaddr = uint64(datsize)
for ; s != nil && s.Type == obj.SDWARFINFO; s = s.Next {
s.Sect = sect
s.Type = obj.SRODATA
s.Value = int64(uint64(datsize) - sect.Vaddr)
s.Attr |= AttrLocal
datsize += s.Size
}
sect.Length = uint64(datsize) - sect.Vaddr
checkdatsize(datsize, obj.SDWARFINFO)
}
/* number the sections */
n := int32(1)
for sect := Segtext.Sect; sect != nil; sect = sect.Next {
sect.Extnum = int16(n)
n++
}
for sect := Segrodata.Sect; sect != nil; sect = sect.Next {
sect.Extnum = int16(n)
n++
}
for sect := Segdata.Sect; sect != nil; sect = sect.Next {
sect.Extnum = int16(n)
n++
}
for sect := Segdwarf.Sect; sect != nil; sect = sect.Next {
sect.Extnum = int16(n)
n++
}
}
func dodataSect(symn int, syms []*LSym) (result []*LSym, maxAlign int32) {
if HEADTYPE == obj.Hdarwin {
// Some symbols may no longer belong in syms
// due to movement in machosymorder.
newSyms := make([]*LSym, 0, len(syms))
for _, s := range syms {
if int(s.Type) == symn {
newSyms = append(newSyms, s)
}
}
syms = newSyms
}
symsSort := make([]dataSortKey, len(syms))
for i, s := range syms {
if s.Attr.OnList() {
log.Fatalf("symbol %s listed multiple times", s.Name)
}
s.Attr |= AttrOnList
switch {
case s.Size < int64(len(s.P)):
Diag("%s: initialize bounds (%d < %d)", s.Name, s.Size, len(s.P))
case s.Size < 0:
Diag("%s: negative size (%d bytes)", s.Name, s.Size)
case s.Size > cutoff:
Diag("%s: symbol too large (%d bytes)", s.Name, s.Size)
}
symsSort[i] = dataSortKey{
size: s.Size,
name: s.Name,
lsym: s,
}
switch s.Type {
case obj.SELFGOT:
// For ppc64, we want to interleave the .got and .toc sections
// from input files. Both are type SELFGOT, so in that case
// we skip size comparison and fall through to the name
// comparison (conveniently, .got sorts before .toc).
symsSort[i].size = 0
case obj.STYPELINK:
// Sort typelinks by the rtype.string field so the reflect
// package can binary search type links.
symsSort[i].name = string(decodetype_str(s.R[0].Sym))
}
}
sort.Sort(bySizeAndName(symsSort))
for i, symSort := range symsSort {
syms[i] = symSort.lsym
align := symalign(symSort.lsym)
if maxAlign < align {
maxAlign = align
}
}
if Iself && symn == obj.SELFROSECT {
// Make .rela and .rela.plt contiguous, the ELF ABI requires this
// and Solaris actually cares.
reli, plti := -1, -1
for i, s := range syms {
switch s.Name {
case ".rel.plt", ".rela.plt":
plti = i
case ".rel", ".rela":
reli = i
}
}
if reli >= 0 && plti >= 0 && plti != reli+1 {
var first, second int
if plti > reli {
first, second = reli, plti
} else {
first, second = plti, reli
}
rel, plt := syms[reli], syms[plti]
copy(syms[first+2:], syms[first+1:second])
syms[first+0] = rel
syms[first+1] = plt
}
}
return syms, maxAlign
}
// Add buildid to beginning of text segment, on non-ELF systems.
// Non-ELF binary formats are not always flexible enough to
// give us a place to put the Go build ID. On those systems, we put it
// at the very beginning of the text segment.
// This ``header'' is read by cmd/go.
func textbuildid() {
if Iself || buildid == "" {
return
}
sym := Linklookup(Ctxt, "go.buildid", 0)
sym.Attr |= AttrReachable
// The \xff is invalid UTF-8, meant to make it less likely
// to find one of these accidentally.
data := "\xff Go build ID: " + strconv.Quote(buildid) + "\n \xff"
sym.Type = obj.STEXT
sym.P = []byte(data)
sym.Size = int64(len(sym.P))
Ctxt.Textp = append(Ctxt.Textp, nil)
copy(Ctxt.Textp[1:], Ctxt.Textp)
Ctxt.Textp[0] = sym
}
// assign addresses to text
func textaddress() {
addsection(&Segtext, ".text", 05)
// Assign PCs in text segment.
// Could parallelize, by assigning to text
// and then letting threads copy down, but probably not worth it.
sect := Segtext.Sect
sect.Align = int32(Funcalign)
Linklookup(Ctxt, "runtime.text", 0).Sect = sect
Linklookup(Ctxt, "runtime.etext", 0).Sect = sect
if HEADTYPE == obj.Hwindows {
Linklookup(Ctxt, ".text", 0).Sect = sect
}
va := uint64(INITTEXT)
sect.Vaddr = va
for _, sym := range Ctxt.Textp {
sym.Sect = sect
if sym.Type&obj.SSUB != 0 {
continue
}
if sym.Align != 0 {
va = uint64(Rnd(int64(va), int64(sym.Align)))
} else {
va = uint64(Rnd(int64(va), int64(Funcalign)))
}
sym.Value = 0
for sub := sym; sub != nil; sub = sub.Sub {
sub.Value += int64(va)
}
if sym.Size == 0 && sym.Sub != nil {
Ctxt.Cursym = sym
}
if sym.Size < MINFUNC {
va += MINFUNC // spacing required for findfunctab
} else {
va += uint64(sym.Size)
}
}
sect.Length = va - sect.Vaddr
}
// assign addresses
func address() {
va := uint64(INITTEXT)
Segtext.Rwx = 05
Segtext.Vaddr = va
Segtext.Fileoff = uint64(HEADR)
for s := Segtext.Sect; s != nil; s = s.Next {
va = uint64(Rnd(int64(va), int64(s.Align)))
s.Vaddr = va
va += s.Length
}
Segtext.Length = va - uint64(INITTEXT)
Segtext.Filelen = Segtext.Length
if HEADTYPE == obj.Hnacl {
va += 32 // room for the "halt sled"
}
if Segrodata.Sect != nil {
// align to page boundary so as not to mix
// rodata and executable text.
va = uint64(Rnd(int64(va), int64(INITRND)))
Segrodata.Rwx = 04
Segrodata.Vaddr = va
Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
Segrodata.Filelen = 0
for s := Segrodata.Sect; s != nil; s = s.Next {
va = uint64(Rnd(int64(va), int64(s.Align)))
s.Vaddr = va
va += s.Length
}
Segrodata.Length = va - Segrodata.Vaddr
Segrodata.Filelen = Segrodata.Length
}
va = uint64(Rnd(int64(va), int64(INITRND)))
Segdata.Rwx = 06
Segdata.Vaddr = va
Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
Segdata.Filelen = 0
if HEADTYPE == obj.Hwindows {
Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN))
}
if HEADTYPE == obj.Hplan9 {
Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen
}
var data *Section
var noptr *Section
var bss *Section
var noptrbss *Section
var vlen int64
for s := Segdata.Sect; s != nil; s = s.Next {
if Iself && s.Name == ".tbss" {
continue
}
vlen = int64(s.Length)
if s.Next != nil && !(Iself && s.Next.Name == ".tbss") {
vlen = int64(s.Next.Vaddr - s.Vaddr)
}
s.Vaddr = va
va += uint64(vlen)
Segdata.Length = va - Segdata.Vaddr
if s.Name == ".data" {
data = s
}
if s.Name == ".noptrdata" {
noptr = s
}
if s.Name == ".bss" {
bss = s
}
if s.Name == ".noptrbss" {
noptrbss = s
}
}
Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
va = uint64(Rnd(int64(va), int64(INITRND)))
Segdwarf.Rwx = 06
Segdwarf.Vaddr = va
Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(INITRND)))
Segdwarf.Filelen = 0
if HEADTYPE == obj.Hwindows {
Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN)))
}
for s := Segdwarf.Sect; s != nil; s = s.Next {
vlen = int64(s.Length)
if s.Next != nil {
vlen = int64(s.Next.Vaddr - s.Vaddr)
}
s.Vaddr = va
va += uint64(vlen)
if HEADTYPE == obj.Hwindows {
va = uint64(Rnd(int64(va), PEFILEALIGN))
}
Segdwarf.Length = va - Segdwarf.Vaddr
}
Segdwarf.Filelen = va - Segdwarf.Vaddr
text := Segtext.Sect
var rodata *Section
if Segrodata.Sect != nil {
rodata = Segrodata.Sect
} else {
rodata = text.Next
}
var relrodata *Section
typelink := rodata.Next
if UseRelro() {
// There is another section (.data.rel.ro) when building a shared
// object on elf systems.
relrodata = typelink
typelink = typelink.Next
}
itablink := typelink.Next
symtab := itablink.Next
pclntab := symtab.Next
for _, s := range datap {
Ctxt.Cursym = s
if s.Sect != nil {
s.Value += int64(s.Sect.Vaddr)
}
for sub := s.Sub; sub != nil; sub = sub.Sub {
sub.Value += s.Value
}
}
for sym := dwarfp; sym != nil; sym = sym.Next {
Ctxt.Cursym = sym
if sym.Sect != nil {
sym.Value += int64(sym.Sect.Vaddr)
}
for sub := sym.Sub; sub != nil; sub = sub.Sub {
sub.Value += sym.Value
}
}
if Buildmode == BuildmodeShared {
s := Linklookup(Ctxt, "go.link.abihashbytes", 0)
sectSym := Linklookup(Ctxt, ".note.go.abihash", 0)
s.Sect = sectSym.Sect
s.Value = int64(sectSym.Sect.Vaddr + 16)
}
types := relrodata
if types == nil {
types = rodata
}
xdefine("runtime.text", obj.STEXT, int64(text.Vaddr))
xdefine("runtime.etext", obj.STEXT, int64(text.Vaddr+text.Length))
if HEADTYPE == obj.Hwindows {
xdefine(".text", obj.STEXT, int64(text.Vaddr))
}
xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr))
xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length))
xdefine("runtime.types", obj.SRODATA, int64(types.Vaddr))
xdefine("runtime.etypes", obj.SRODATA, int64(types.Vaddr+types.Length))
xdefine("runtime.typelink", obj.SRODATA, int64(typelink.Vaddr))
xdefine("runtime.etypelink", obj.SRODATA, int64(typelink.Vaddr+typelink.Length))
xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr))
xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length))
sym := Linklookup(Ctxt, "runtime.gcdata", 0)
sym.Attr |= AttrLocal
xdefine("runtime.egcdata", obj.SRODATA, Symaddr(sym)+sym.Size)
Linklookup(Ctxt, "runtime.egcdata", 0).Sect = sym.Sect
sym = Linklookup(Ctxt, "runtime.gcbss", 0)
sym.Attr |= AttrLocal
xdefine("runtime.egcbss", obj.SRODATA, Symaddr(sym)+sym.Size)
Linklookup(Ctxt, "runtime.egcbss", 0).Sect = sym.Sect
xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr))
xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length))
xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr))
xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr))
xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr))
xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length))
xdefine("runtime.data", obj.SDATA, int64(data.Vaddr))
xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length))
xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr))
xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length))
}