blob: 505f55e526ba1382cedd7465f017da015e57197f [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package gc
// A Node is a single node in the syntax tree.
// Actually the syntax tree is a syntax DAG, because there is only one
// node with Op=ONAME for a given instance of a variable x.
// The same is true for Op=OTYPE and Op=OLITERAL.
type Node struct {
// Tree structure.
// Generic recursive walks should follow these fields.
Left *Node
Right *Node
Ninit Nodes
Nbody Nodes
List Nodes
Rlist Nodes
// most nodes
Type *Type
Orig *Node // original form, for printing, and tracking copies of ONAMEs
// func
Func *Func
// ONAME
Name *Name
Sym *Sym // various
E interface{} // Opt or Val, see methods below
Xoffset int64
Lineno int32
// OREGISTER, OINDREG
Reg int16
Esc uint16 // EscXXX
Op Op
Nointerface bool
Ullman uint8 // sethi/ullman number
Addable bool // addressable
Etype EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg
Bounded bool // bounds check unnecessary
Class Class // PPARAM, PAUTO, PEXTERN, etc
Embedded uint8 // ODCLFIELD embedded type
Colas bool // OAS resulting from :=
Diag uint8 // already printed error about this
Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
Walkdef uint8
Typecheck uint8
Local bool
Dodata uint8
Initorder uint8
Used bool
Isddd bool // is the argument variadic
Implicit bool
Addrtaken bool // address taken, even if not moved to heap
Assigned bool // is the variable ever assigned to
Likely int8 // likeliness of if statement
Hasbreak bool // has break statement
hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set
}
// Val returns the Val for the node.
func (n *Node) Val() Val {
if n.hasVal != +1 {
return Val{}
}
return Val{n.E}
}
// SetVal sets the Val for the node, which must not have been used with SetOpt.
func (n *Node) SetVal(v Val) {
if n.hasVal == -1 {
Debug['h'] = 1
Dump("have Opt", n)
Fatalf("have Opt")
}
n.hasVal = +1
n.E = v.U
}
// Opt returns the optimizer data for the node.
func (n *Node) Opt() interface{} {
if n.hasVal != -1 {
return nil
}
return n.E
}
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
func (n *Node) SetOpt(x interface{}) {
if x == nil && n.hasVal >= 0 {
return
}
if n.hasVal == +1 {
Debug['h'] = 1
Dump("have Val", n)
Fatalf("have Val")
}
n.hasVal = -1
n.E = x
}
// Name holds Node fields used only by named nodes (ONAME, OPACK, some OLITERAL).
type Name struct {
Pack *Node // real package for import . names
Pkg *Pkg // pkg for OPACK nodes
Heapaddr *Node // temp holding heap address of param
Inlvar *Node // ONAME substitute while inlining
Defn *Node // initializing assignment
Curfn *Node // function for local variables
Param *Param
Decldepth int32 // declaration loop depth, increased for every loop or label
Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one.
Iota int32 // value if this name is iota
Funcdepth int32
Method bool // OCALLMETH name
Readonly bool
Captured bool // is the variable captured by a closure
Byval bool // is the variable captured by value or by reference
Needzero bool // if it contains pointers, needs to be zeroed on function entry
Keepalive bool // mark value live across unknown assembly call
}
type Param struct {
Ntype *Node
// ONAME func param with PHEAP
Outerexpr *Node // expression copied into closure for variable
Stackparam *Node // OPARAM node referring to stack copy of param
// ONAME PPARAM
Field *Type // TFIELD in arg struct
// ONAME closure param with PPARAMREF
Outer *Node // outer PPARAMREF in nested closure
Closure *Node // ONAME/PHEAP <-> ONAME/PPARAMREF
}
// Func holds Node fields used only with function-like nodes.
type Func struct {
Shortname *Node
Enter Nodes // for example, allocate and initialize memory for escaping parameters
Exit Nodes
Cvars Nodes // closure params
Dcl []*Node // autodcl for this func/closure
Inldcl *[]*Node // copy of dcl for use in inlining
Closgen int
Outerfunc *Node
Fieldtrack []*Type
Outer *Node // outer func for closure
Ntype *Node // signature
Top int // top context (Ecall, Eproc, etc)
Closure *Node // OCLOSURE <-> ODCLFUNC
FCurfn *Node
Nname *Node
Inl Nodes // copy of the body for use in inlining
InlCost int32
Depth int32
Endlineno int32
WBLineno int32 // line number of first write barrier
Pragma Pragma // go:xxx function annotations
Dupok bool // duplicate definitions ok
Wrapper bool // is method wrapper
Needctxt bool // function uses context register (has closure variables)
}
type Op uint8
// Node ops.
const (
OXXX = Op(iota)
// names
ONAME // var, const or func name
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
OTYPE // type name
OPACK // import
OLITERAL // literal
// expressions
OADD // Left + Right
OSUB // Left - Right
OOR // Left | Right
OXOR // Left ^ Right
OADDSTR // +{List} (string addition, list elements are strings)
OADDR // &Left
OANDAND // Left && Right
OAPPEND // append(List)
OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte)
OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune)
OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string)
OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string)
OAS // Left = Right or (if Colas=true) Left := Right
OAS2 // List = Rlist (x, y, z = a, b, c)
OAS2FUNC // List = Rlist (x, y = f())
OAS2RECV // List = Rlist (x, ok = <-c)
OAS2MAPR // List = Rlist (x, ok = m["foo"])
OAS2DOTTYPE // List = Rlist (x, ok = I.(int))
OASOP // Left Etype= Right (x += y)
OASWB // Left = Right (with write barrier)
OCALL // Left(List) (function call, method call or type conversion)
OCALLFUNC // Left(List) (function call f(args))
OCALLMETH // Left(List) (direct method call x.Method(args))
OCALLINTER // Left(List) (interface method call x.Method(args))
OCALLPART // Left.Right (method expression x.Method, not called)
OCAP // cap(Left)
OCLOSE // close(Left)
OCLOSURE // func Type { Body } (func literal)
OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y)
OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc)
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array or slice)
OPTRLIT // &Left (left is composite literal)
OCONV // Type(Left) (type conversion)
OCONVIFACE // Type(Left) (type conversion, to interface)
OCONVNOP // Type(Left) (type conversion, no effect)
OCOPY // copy(Left, Right)
ODCL // var Left (declares Left of type Left.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLFIELD // struct field, interface field, or func/method argument/return value.
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int
ODELETE // delete(Left, Right)
ODOT // Left.Right (Left is of struct type)
ODOTPTR // Left.Right (Left is of pointer to struct type)
ODOTMETH // Left.Right (Left is non-interface, Right is method name)
ODOTINTER // Left.Right (Left is interface, Right is method name)
OXDOT // Left.Right (before rewrite to one of the preceding)
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved)
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE)
OEQ // Left == Right
ONE // Left != Right
OLT // Left < Right
OLE // Left <= Right
OGE // Left >= Right
OGT // Left > Right
OIND // *Left
OINDEX // Left[Right] (index of array or slice)
OINDEXMAP // Left[Right] (index of map)
OKEY // Left:Right (key:value in struct/array/map literal, or slice index pair)
OPARAM // variant of ONAME for on-stack copy of a parameter or return value that escapes.
OLEN // len(Left)
OMAKE // make(List) (before type checking converts to one of the following)
OMAKECHAN // make(Type, Left) (type is chan)
OMAKEMAP // make(Type, Left) (type is map)
OMAKESLICE // make(Type, Left, Right) (type is slice)
OMUL // Left * Right
ODIV // Left / Right
OMOD // Left % Right
OLSH // Left << Right
ORSH // Left >> Right
OAND // Left & Right
OANDNOT // Left &^ Right
ONEW // new(Left)
ONOT // !Left
OCOM // ^Left
OPLUS // +Left
OMINUS // -Left
OOROR // Left || Right
OPANIC // panic(Left)
OPRINT // print(List)
OPRINTN // println(List)
OPAREN // (Left)
OSEND // Left <- Right
OSLICE // Left[Right.Left : Right.Right] (Left is untypechecked or slice; Right.Op==OKEY)
OSLICEARR // Left[Right.Left : Right.Right] (Left is array)
OSLICESTR // Left[Right.Left : Right.Right] (Left is string)
OSLICE3 // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is untypedchecked or slice; R.Op and R.R.Op==OKEY)
OSLICE3ARR // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is array; R.Op and R.R.Op==OKEY)
ORECOVER // recover()
ORECV // <-Left
ORUNESTR // Type(Left) (Type is string, Left is rune)
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
OIOTA // iota
OREAL // real(Left)
OIMAG // imag(Left)
OCOMPLEX // complex(Left, Right)
// statements
OBLOCK // { List } (block of code)
OBREAK // break
OCASE // case List: Nbody (select case after processing; List==nil means default)
OXCASE // case List: Nbody (select case before processing; List==nil means default)
OCONTINUE // continue
ODEFER // defer Left (Left must be call)
OEMPTY // no-op (empty statement)
OFALL // fallthrough (after processing)
OXFALL // fallthrough (before processing)
OFOR // for Ninit; Left; Right { Nbody }
OGOTO // goto Left
OIF // if Ninit; Left { Nbody } else { Rlist }
OLABEL // Left:
OPROC // go Left (Left must be call)
ORANGE // for List = range Right { Nbody }
ORETURN // return List
OSELECT // select { List } (List is list of OXCASE or OCASE)
OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
OTYPESW // List = Left.(type) (appears as .Left of OSWITCH)
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
OTFUNC // func()
OTARRAY // []int, [8]int, [N]int or [...]int
// misc
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
ODDDARG // func f(args ...int), introduced by escape analysis.
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OSPTR // base pointer of a slice or string.
OCLOSUREVAR // variable reference at beginning of closure function
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARKILL // variable is dead
OVARLIVE // variable is alive
// thearch-specific registers
OREGISTER // a register, such as AX.
OINDREG // offset plus indirect of a register, such as 8(SP).
// arch-specific opcodes
OCMP // compare: ACMP.
ODEC // decrement: ADEC.
OINC // increment: AINC.
OEXTEND // extend: ACWD/ACDQ/ACQO.
OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both).
OLROT // left rotate: AROL.
ORROTC // right rotate-carry: ARCR.
ORETJMP // return to other function
OPS // compare parity set (for x86 NaN check)
OPC // compare parity clear (for x86 NaN check)
OSQRT // sqrt(float64), on systems that have hw support
OGETG // runtime.getg() (read g pointer)
OEND
)
// A NodeList is a linked list of nodes.
// TODO(rsc): Some uses of NodeList should be made into slices.
// The remaining ones probably just need a simple linked list,
// not one with concatenation support.
type NodeList struct {
N *Node
Next *NodeList
End *NodeList
}
// concat returns the concatenation of the lists a and b.
// The storage taken by both is reused for the result.
func concat(a *NodeList, b *NodeList) *NodeList {
if a == nil {
return b
}
if b == nil {
return a
}
a.End.Next = b
a.End = b.End
b.End = nil
return a
}
// list1 returns a one-element list containing n.
func list1(n *Node) *NodeList {
if n == nil {
return nil
}
l := new(NodeList)
l.N = n
l.End = l
return l
}
// list returns the result of appending n to l.
func list(l *NodeList, n *Node) *NodeList {
return concat(l, list1(n))
}
// count returns the length of the list l.
func count(l *NodeList) int {
n := int64(0)
for ; l != nil; l = l.Next {
n++
}
if int64(int(n)) != n { // Overflow.
Yyerror("too many elements in list")
}
return int(n)
}
// Nodes is a pointer to a slice of *Node.
// For fields that are not used in most nodes, this is used instead of
// a slice to save space.
type Nodes struct{ slice *[]*Node }
// Slice returns the entries in Nodes as a slice.
// Changes to the slice entries (as in s[i] = n) will be reflected in
// the Nodes.
func (n *Nodes) Slice() []*Node {
if n.slice == nil {
return nil
}
return *n.slice
}
// Len returns the number of entries in Nodes.
func (n *Nodes) Len() int {
if n.slice == nil {
return 0
}
return len(*n.slice)
}
// Index returns the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n *Nodes) Index(i int) *Node {
return (*n.slice)[i]
}
// First returns the first element of Nodes (same as n.Index(0)).
// It panics if n has no elements.
func (n *Nodes) First() *Node {
return (*n.slice)[0]
}
// Second returns the second element of Nodes (same as n.Index(1)).
// It panics if n has fewer than two elements.
func (n *Nodes) Second() *Node {
return (*n.slice)[1]
}
// NodeList returns the entries in Nodes as a NodeList.
// Changes to the NodeList entries (as in l.N = n) will *not* be
// reflected in the Nodes.
// This wastes memory and should be used as little as possible.
func (n *Nodes) NodeList() *NodeList {
if n.slice == nil {
return nil
}
var ret *NodeList
for _, n := range *n.slice {
ret = list(ret, n)
}
return ret
}
// Set sets n to a slice.
// This takes ownership of the slice.
func (n *Nodes) Set(s []*Node) {
if len(s) == 0 {
n.slice = nil
} else {
n.slice = &s
}
}
// MoveNodes sets n to the contents of n2, then clears n2.
func (n *Nodes) MoveNodes(n2 *Nodes) {
n.slice = n2.slice
n2.slice = nil
}
// SetIndex sets the i'th element of Nodes to node.
// It panics if n does not have at least i+1 elements.
func (n *Nodes) SetIndex(i int, node *Node) {
(*n.slice)[i] = node
}
// Addr returns the address of the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n *Nodes) Addr(i int) **Node {
return &(*n.slice)[i]
}
// Append appends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Append(a ...*Node) {
if n.slice == nil {
if len(a) > 0 {
n.slice = &a
}
} else {
*n.slice = append(*n.slice, a...)
}
}
// AppendNodes appends the contents of *n2 to n, then clears n2.
func (n *Nodes) AppendNodes(n2 *Nodes) {
switch {
case n2.slice == nil:
case n.slice == nil:
n.slice = n2.slice
default:
*n.slice = append(*n.slice, *n2.slice...)
}
n2.slice = nil
}
// SetToNodeList sets Nodes to the contents of a NodeList.
func (n *Nodes) SetToNodeList(l *NodeList) {
s := make([]*Node, 0, count(l))
for ; l != nil; l = l.Next {
s = append(s, l.N)
}
n.Set(s)
}
// AppendNodeList appends the contents of a NodeList.
func (n *Nodes) AppendNodeList(l *NodeList) {
if n.slice == nil {
n.SetToNodeList(l)
} else {
for ; l != nil; l = l.Next {
*n.slice = append(*n.slice, l.N)
}
}
}
// nodesOrNodeList must be either type Nodes or type *NodeList, or, in
// some cases, []*Node. It exists during the transition from NodeList
// to Nodes only and then should be deleted. See nodeSeqIterate to
// return an iterator from a nodesOrNodeList.
type nodesOrNodeList interface{}
// nodesOrNodeListPtr must be type *Nodes or type **NodeList, or, in
// some cases, *[]*Node. It exists during the transition from NodeList
// to Nodes only, and then should be deleted. See setNodeSeq to assign
// to a generic value.
type nodesOrNodeListPtr interface{}
// nodeSeqLen returns the length of a *NodeList, a Nodes, a []*Node, or nil.
func nodeSeqLen(ns nodesOrNodeList) int {
switch ns := ns.(type) {
case *NodeList:
return count(ns)
case Nodes:
return len(ns.Slice())
case []*Node:
return len(ns)
case nil:
return 0
default:
panic("can't happen")
}
}
// nodeSeqFirst returns the first element of a *NodeList, a Nodes,
// or a []*Node. It panics if the sequence is empty.
func nodeSeqFirst(ns nodesOrNodeList) *Node {
switch ns := ns.(type) {
case *NodeList:
return ns.N
case Nodes:
return ns.Slice()[0]
case []*Node:
return ns[0]
default:
panic("can't happen")
}
}
// nodeSeqSecond returns the second element of a *NodeList, a Nodes,
// or a []*Node. It panics if the sequence has fewer than two elements.
func nodeSeqSecond(ns nodesOrNodeList) *Node {
switch ns := ns.(type) {
case *NodeList:
return ns.Next.N
case Nodes:
return ns.Slice()[1]
case []*Node:
return ns[1]
default:
panic("can't happen")
}
}
// nodeSeqSlice returns a []*Node containing the contents of a
// *NodeList, a Nodes, or a []*Node.
// This is an interim function during the transition from NodeList to Nodes.
// TODO(iant): Remove when transition is complete.
func nodeSeqSlice(ns nodesOrNodeList) []*Node {
switch ns := ns.(type) {
case *NodeList:
var s []*Node
for l := ns; l != nil; l = l.Next {
s = append(s, l.N)
}
return s
case Nodes:
return ns.Slice()
case []*Node:
return ns
default:
panic("can't happen")
}
}
// setNodeSeq implements *a = b.
// a must have type **NodeList, *Nodes, or *[]*Node.
// b must have type *NodeList, Nodes, []*Node, or nil.
// This is an interim function during the transition from NodeList to Nodes.
// TODO(iant): Remove when transition is complete.
func setNodeSeq(a nodesOrNodeListPtr, b nodesOrNodeList) {
if b == nil {
switch a := a.(type) {
case **NodeList:
*a = nil
case *Nodes:
a.Set(nil)
case *[]*Node:
*a = nil
default:
panic("can't happen")
}
return
}
// Simplify b to either *NodeList or []*Node.
if n, ok := b.(Nodes); ok {
b = n.Slice()
}
if l, ok := a.(**NodeList); ok {
switch b := b.(type) {
case *NodeList:
*l = b
case []*Node:
var ll *NodeList
for _, n := range b {
ll = list(ll, n)
}
*l = ll
default:
panic("can't happen")
}
} else {
var s []*Node
switch b := b.(type) {
case *NodeList:
for l := b; l != nil; l = l.Next {
s = append(s, l.N)
}
case []*Node:
s = b
default:
panic("can't happen")
}
switch a := a.(type) {
case *Nodes:
a.Set(s)
case *[]*Node:
*a = s
default:
panic("can't happen")
}
}
}
// setNodeSeqNode sets the node sequence a to the node n.
// a must have type **NodeList, *Nodes, or *[]*Node.
// This is an interim function during the transition from NodeList to Nodes.
// TODO(iant): Remove when transition is complete.
func setNodeSeqNode(a nodesOrNodeListPtr, n *Node) {
switch a := a.(type) {
case **NodeList:
*a = list1(n)
case *Nodes:
a.Set([]*Node{n})
case *[]*Node:
*a = []*Node{n}
default:
panic("can't happen")
}
}
// appendNodeSeq appends the node sequence b to the node sequence a.
// a must have type **NodeList, *Nodes, or *[]*Node.
// b must have type *NodeList, Nodes, or []*Node.
// This is an interim function during the transition from NodeList to Nodes.
// TODO(iant): Remove when transition is complete.
func appendNodeSeq(a nodesOrNodeListPtr, b nodesOrNodeList) {
// Simplify b to either *NodeList or []*Node.
if n, ok := b.(Nodes); ok {
b = n.Slice()
}
if l, ok := a.(**NodeList); ok {
switch b := b.(type) {
case *NodeList:
*l = concat(*l, b)
case []*Node:
for _, n := range b {
*l = list(*l, n)
}
default:
panic("can't happen")
}
} else {
var s []*Node
switch a := a.(type) {
case *Nodes:
s = a.Slice()
case *[]*Node:
s = *a
default:
panic("can't happen")
}
switch b := b.(type) {
case *NodeList:
for l := b; l != nil; l = l.Next {
s = append(s, l.N)
}
case []*Node:
s = append(s, b...)
default:
panic("can't happen")
}
switch a := a.(type) {
case *Nodes:
a.Set(s)
case *[]*Node:
*a = s
default:
panic("can't happen")
}
}
}
// appendNodeSeqNode appends n to the node sequence a.
// a must have type **NodeList, *Nodes, or *[]*Node.
// This is an interim function during the transition from NodeList to Nodes.
// TODO(iant): Remove when transition is complete.
func appendNodeSeqNode(a nodesOrNodeListPtr, n *Node) {
switch a := a.(type) {
case **NodeList:
*a = list(*a, n)
case *Nodes:
a.Append(n)
case *[]*Node:
*a = append(*a, n)
default:
panic("can't happen")
}
}