| <!-- The Go Programming Language Design FAQ --> |
| |
| <h2 id="origins">Origins</h2> |
| |
| <h3 id="history"> |
| What is the history of the project?</h3> |
| <p> |
| Robert Griesemer, Rob Pike and Ken Thompson started sketching the |
| goals for a new language on the white board on September 21, 2007. |
| Within a few days the goals had settled into a plan to do something |
| and a fair idea of what it would be. Design continued part-time in |
| parallel with unrelated activities. By January 2008, Ken started work |
| on a compiler with which to explore ideas; it generated C code as its |
| output. By mid-year the language had become a full-time project and |
| had settled enough to attempt a production compiler. Meanwhile, Ian |
| Taylor had read the draft specification and written an independent GCC |
| front end. |
| </p> |
| |
| <p> |
| In the last few months of 2008, Russ Cox joined the team and Go had |
| reached the point where it was usable as the main programming language |
| for the team's own work. |
| </p> |
| |
| <h3 id="creating_a_new_language"> |
| Why are you creating a new language?</h3> |
| <p> |
| Go was born out of frustration with existing languages and |
| environments for systems programming. Programming had become too |
| difficult and the choice of languages was partly to blame. One had to |
| choose either efficient compilation, efficient execution, or ease of |
| programming; all three were not available in the same commonly |
| available language. Programmers who could were choosing ease over |
| safety and efficiency by moving to dynamic languages such as |
| Python and JavaScript rather than C++ or, to a lesser extent, Java. |
| </p> |
| <p> |
| Go is an attempt to combine the ease of programming of a dynamic |
| language with the efficiency and type safety of a compiled language. |
| It also aims to be modern, with support for networked and multicore |
| computing. Finally, it is intended to be <i>fast</i>: it should take |
| at most a few seconds to build a large executable on a single computer. |
| To meet these goals required addressing a number of |
| linguistic issues: an expressive but lightweight type system; |
| concurrency and garbage collection; rigid dependency specification; |
| and so on. These cannot be addressed well by libraries or tools; a new |
| language was called for. |
| </p> |
| |
| |
| <h3 id="ancestors"> |
| What are Go's ancestors?</h3> |
| <p> |
| Go is mostly in the C family (basic syntax), |
| with significant input from the Pascal/Modula/Oberon |
| family (declarations, packages), |
| plus it borrows some ideas from languages |
| inspired by Tony Hoare's CSP, |
| such as Newsqueak and Limbo (concurrency). |
| However, it is a new language across the board. |
| In every respect the language was designed by thinking |
| about what programmers do and how to make programming, at least the |
| kind of programming we do, more effective, which means more fun. |
| </p> |
| |
| <h3 id="protagonists"> |
| Who are the protagonists?</h3> |
| <p> |
| Robert Griesemer, Rob Pike and Ken Thompson laid out the goals and |
| original specification of the language. Ian Taylor read the draft |
| specification and decided to write <code>gccgo</code>. Russ |
| Cox joined later and helped move the language and libraries from |
| prototype to reality. |
| </p> |
| |
| <h3 id="principles"> |
| What are the guiding principles in the design?</h3> |
| <p> |
| Programming today involves too much bookkeeping, repetition, and |
| clerical work. As Dick Gabriel says, “Old programs read |
| like quiet conversations between a well-spoken research worker and a |
| well-studied mechanical colleague, not as a debate with a compiler. |
| Who'd have guessed sophistication bought such noise?” |
| The sophistication is worthwhile—no one wants to go back to |
| the old languages—but can it be more quietly achieved? |
| </p> |
| <p> |
| Go attempts to reduce the amount of typing in both senses of the word. |
| Throughout its design, we have tried to reduce the clutter and |
| complexity. There are no forward declarations and no header files; |
| everything is declared exactly once. Initialization is expressive, |
| automatic, and easy to use. Syntax is clean and light on keywords. |
| Stuttering (<code>foo.Foo* myFoo = new(foo.Foo)</code>) is reduced by |
| simple type derivation using the <code>:=</code> |
| declare-and-initialize construct. And perhaps most radically, there |
| is no type hierarchy: types just <i>are</i>, they don't have to |
| announce their relationships. These simplifications allow Go to be |
| expressive yet comprehensible without sacrificing, well, sophistication. |
| </p> |
| |
| <h2 id="change_from_c">Changes from C</h2> |
| |
| <h3 id="different_syntax"> |
| Why is the syntax so different from C?</h3> |
| <p> |
| Other than declaration syntax, the differences are not major and stem |
| from two desires. First, the syntax should feel light, without too |
| many mandatory keywords, repetition, or arcana. Second, the language |
| has been designed to be easy to parse. The grammar is conflict-free |
| and can be parsed without a symbol table. This makes it much easier |
| to build tools such as debuggers, dependency analyzers, automated |
| documentation extractors, IDE plug-ins, and so on. C and its |
| descendants are notoriously difficult in this regard but it's not hard |
| to fix things up. |
| </p> |
| |
| <h3 id="declarations_backwards"> |
| Why are declarations backwards?</h3> |
| <p> |
| They're only backwards if you're used to C. In C, the notion is that a |
| variable is declared like an expression denoting its type, which is a |
| nice idea, but the type and expression grammars don't mix very well and |
| the results can be confusing; consider function pointers. Go mostly |
| separates expression and type syntax and that simplifies things (using |
| prefix <code>*</code> for pointers is an exception that proves the rule). In C, |
| the declaration |
| </p> |
| <pre> |
| int* a, b; |
| </pre> |
| <p> |
| declares <code>a</code> to be a pointer but not <code>b</code>; in Go |
| </p> |
| <pre> |
| var a, b *int; |
| </pre> |
| <p> |
| declares both to be pointers. This is clearer and more regular. |
| Also, the <code>:=</code> short declaration form argues that a full variable |
| declaration should present the same order as <code>:=</code> so |
| </p> |
| <pre> |
| var a uint64 = 1; |
| </pre> |
| has the same effect as |
| <pre> |
| a := uint64(1); |
| </pre> |
| <p> |
| Parsing is also simplified by having a distinct grammar for types that |
| is not just the expression grammar; keywords such as <code>func</code> |
| and <code>chan</code> keep things clear. |
| </p> |
| |
| <h3 id="no_pointer_arithmetic"> |
| Why is there no pointer arithmetic?</h3> |
| <p> |
| Safety. Without pointer arithmetic it's possible to create a |
| language that can never derive an illegal address that succeeds |
| incorrectly. Compiler and hardware technology have advanced to the |
| point where a loop using array indices can be as efficient as a loop |
| using pointer arithmetic. Also, the lack of pointer arithmetic can |
| simplify the implementation of the garbage collector. |
| </p> |
| |
| <h3 id="inc_dec"> |
| Why are <code>++</code> and <code>--</code> statements and not expressions? And why postfix, not prefix?</h3> |
| <p> |
| Without pointer arithmetic, the convenience value of pre- and postfix |
| increment operators drops. By removing them from the expression |
| hierarchy altogether, expression syntax is simplified and the messy |
| issues around order of evaluation of <code>++</code> and <code>--</code> |
| (consider <code>f(i++)</code> and <code>p[i] = q[++i]</code>) |
| are eliminated as well. The simplification is |
| significant. As for postfix vs. prefix, either would work fine but |
| the postfix version is more traditional; insistence on prefix arose |
| with the STL, part of a language whose name contains, ironically, a |
| postfix increment. |
| </p> |
| |
| <h2 id="absent_features">Absent features</h2> |
| |
| <h3 id="generics"> |
| Why does Go not have generic types?</h3> |
| <p> |
| Generics may well come at some point. We don't feel an urgency for |
| them, although we understand some programmers do. |
| </p> |
| <p> |
| Generics are convenient but they come at a cost in |
| complexity in the type system and run-time. We haven't yet found a |
| design that gives value proportionate to the complexity, although we |
| continue to think about it. Meanwhile, Go's built-in maps and slices, |
| plus the ability to use the empty interface to construct containers |
| (with explicit unboxing) mean in many cases it is possible to write |
| code that does what generics would enable, if less smoothly. |
| </p> |
| <p> |
| This remains an open issue. |
| </p> |
| |
| <h3 id="exceptions"> |
| Why does Go not have exceptions?</h3> |
| <p> |
| Exceptions are a similar story. A number of designs for exceptions |
| have been proposed but each adds significant complexity to the |
| language and run-time. By their very nature, exceptions span functions and |
| perhaps even goroutines; they have wide-ranging implications. There |
| is also concern about the effect they would have on the |
| libraries. They are, by definition, exceptional yet experience with |
| other languages that support them show they have profound effect on |
| library and interface specification. It would be nice to find a design |
| that allows them to be truly exceptional without encouraging common |
| errors to turn into special control flow requiring every programmer to |
| compensate. |
| </p> |
| <p> |
| Like generics, exceptions remain an open issue. |
| </p> |
| |
| <h3 id="assertions"> |
| Why does Go not have assertions?</h3> |
| <p> |
| This is answered in the general <a href="go_faq.html#Where_is_assert">FAQ</a>. |
| </p> |
| |
| <h2 id="types">Types</h2> |
| |
| <h3 id="inheritance"> |
| Why is there no type inheritance?</h3> |
| <p> |
| Object-oriented programming, at least in the languages we've used, |
| involves too much discussion of the relationships between types, |
| relationships that often could be derived automatically. Go takes a |
| different approach that we're still learning about but that feels |
| useful and powerful. |
| </p> |
| <p> |
| Rather than requiring the programmer to declare ahead of time that two |
| types are related, in Go a type automatically satisfies any interface |
| that specifies a subset of its methods. Besides reducing the |
| bookkeeping, this approach has real advantages. Types can satisfy |
| many interfaces at once, without the complexities of traditional |
| multiple inheritance. |
| Interfaces can be very lightweight—one or even zero methods |
| in an interface can express useful concepts. |
| Interfaces can be added after the fact if a new idea comes along |
| or for testing—without annotating the original type. |
| Because there are no explicit relationships between types |
| and interfaces, there is no type hierarchy to manage. |
| </p> |
| <p> |
| It's possible to use these ideas to construct something analogous to |
| type-safe Unix pipes. For instance, see how <code>fmt.Fprintf</code> |
| enables formatted printing to any output, not just a file, or how the |
| <code>bufio</code> package can be completely separate from file I/O, |
| or how the <code>crypto</code> packages stitch together block and |
| stream ciphers. All these ideas stem from a single interface |
| (<code>io.Writer</code>) representing a single method |
| (<code>Write</code>). We've only scratched the surface. |
| </p> |
| <p> |
| It takes some getting used to but this implicit style of type |
| dependency is one of the most exciting things about Go. |
| </p> |
| |
| <h3 id="methods_on_basics"> |
| Why is <code>len</code> a function and not a method?</h3> |
| <p> |
| To be blunt, Go isn't that kind of language. We debated this issue but decided |
| implementing <code>len</code> and friends as functions was fine in practice and |
| didn't complicate questions about the interface (in the Go type sense) |
| of basic types. The issue didn't seem important enough to resolve that way. |
| </p> |
| |
| <h3 id="overloading"> |
| Why does Go not support overloading of methods and operators?</h3> |
| <p> |
| Method dispatch is simplified if it doesn't need to do type matching as well. |
| Experience with other languages told us that having a variety of |
| methods with the same name but different signatures was occasionally useful |
| but that it could also be confusing and fragile in practice. Matching only by name |
| and requiring consistency in the types was a major simplifying decision |
| in Go's type system. |
| </p> |
| <p> |
| Regarding operator overloading, it seems more a convenience than an absolute |
| requirement. Again, things are simpler without it. |
| </p> |
| |
| <h3 id="builtin_maps"> |
| Why are maps built in?</h3> |
| <p> |
| The same reason strings are: they are such a powerful and important data |
| structure that providing one excellent implementation with syntactic support |
| makes programming more pleasant. We believe that Go's implementation of maps |
| is strong enough that it will serve for the vast majority of uses. |
| If a specific application can benefit from a custom implementation, it's possible |
| to write one but it will not be as convenient to use; this seems a reasonable tradeoff. |
| </p> |
| |
| |
| <h3 id="map_keys"> |
| Why don't maps allow structs and arrays as keys?</h3> |
| <p> |
| Map lookup requires an equality operator, which structs and arrays do not implement. |
| They don't implement equality because equality is not well defined on such types; |
| there are multiple considerations involving shallow vs. deep comparison, pointer vs. |
| value comparison, how to deal with recursive structures, and so on. |
| We may revisit this issue—and implementing equality for structs and arrays |
| will not invalidate any existing programs—but without a clear idea of what |
| equality of structs and arrays should mean, it was simpler to leave it out for now. |
| </p> |
| |
| <h2 id="concurrency">Concurrency</h2> |
| |
| <h3 id="csp"> |
| Why build concurrency on the ideas of CSP?</h3> |
| |
| <h3 id="goroutines"> |
| What's the idea behind goroutines?</h3> |
| |
| <h3 id="atomic_maps"> |
| Why are map operations not defined to be atomic?</h3> |
| |
| <p> |
| After long discussion it was decided that the typical use of maps did not require |
| safe access from multiple threads, and in those cases where it did, the map was |
| probably part of some larger data structure or computation that was already |
| synchronized. Therefore requiring that all map operations grab a mutex would slow |
| down most programs and add safety to few. This was not an easy decision, |
| however, since it means uncontrolled map access can crash the program. |
| </p> |
| |
| <p> |
| The language does not preclude atomic map updates. When required, such |
| as when hosting an untrusted program, the implementation could interlock |
| map access. |
| </p> |
| |
| <h3 id="TODO"> |
| TODO</h3> |
| <p>TODO:</p> |
| |
| <pre> |
| explain: |
| package design |
| slices |
| oo separate from storage (abstraction vs. implementation) |
| why garbage collection? |
| |
| |
| |
| |
| inheritance? |
| embedding? |
| dependency declarations in the language |
| |
| oo questions |
| no data in interfaces |
| dynamic dispatch |
| clean separation of interface and implementation |
| |
| why no automatic numeric conversions? |
| |
| make vs new |
| </pre> |