| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package main |
| |
| import ( |
| "cmd/internal/gc" |
| "cmd/internal/obj" |
| "cmd/internal/obj/x86" |
| ) |
| |
| func defframe(ptxt *obj.Prog) { |
| var n *gc.Node |
| |
| // fill in argument size, stack size |
| ptxt.To.Type = obj.TYPE_TEXTSIZE |
| |
| ptxt.To.Val = int32(gc.Rnd(gc.Curfn.Type.Argwid, int64(gc.Widthptr))) |
| frame := uint32(gc.Rnd(gc.Stksize+gc.Maxarg, int64(gc.Widthreg))) |
| ptxt.To.Offset = int64(frame) |
| |
| // insert code to zero ambiguously live variables |
| // so that the garbage collector only sees initialized values |
| // when it looks for pointers. |
| p := ptxt |
| |
| hi := int64(0) |
| lo := hi |
| ax := uint32(0) |
| |
| // iterate through declarations - they are sorted in decreasing xoffset order. |
| for l := gc.Curfn.Dcl; l != nil; l = l.Next { |
| n = l.N |
| if !n.Needzero { |
| continue |
| } |
| if n.Class != gc.PAUTO { |
| gc.Fatal("needzero class %d", n.Class) |
| } |
| if n.Type.Width%int64(gc.Widthptr) != 0 || n.Xoffset%int64(gc.Widthptr) != 0 || n.Type.Width == 0 { |
| gc.Fatal("var %v has size %d offset %d", gc.Nconv(n, obj.FmtLong), int(n.Type.Width), int(n.Xoffset)) |
| } |
| |
| if lo != hi && n.Xoffset+n.Type.Width >= lo-int64(2*gc.Widthreg) { |
| // merge with range we already have |
| lo = n.Xoffset |
| |
| continue |
| } |
| |
| // zero old range |
| p = zerorange(p, int64(frame), lo, hi, &ax) |
| |
| // set new range |
| hi = n.Xoffset + n.Type.Width |
| |
| lo = n.Xoffset |
| } |
| |
| // zero final range |
| zerorange(p, int64(frame), lo, hi, &ax) |
| } |
| |
| func zerorange(p *obj.Prog, frame int64, lo int64, hi int64, ax *uint32) *obj.Prog { |
| cnt := hi - lo |
| if cnt == 0 { |
| return p |
| } |
| if *ax == 0 { |
| p = appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) |
| *ax = 1 |
| } |
| |
| if cnt%int64(gc.Widthreg) != 0 { |
| // should only happen with nacl |
| if cnt%int64(gc.Widthptr) != 0 { |
| gc.Fatal("zerorange count not a multiple of widthptr %d", cnt) |
| } |
| p = appendpp(p, x86.AMOVL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, frame+lo) |
| lo += int64(gc.Widthptr) |
| cnt -= int64(gc.Widthptr) |
| } |
| |
| if cnt <= int64(4*gc.Widthreg) { |
| for i := int64(0); i < cnt; i += int64(gc.Widthreg) { |
| p = appendpp(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, frame+lo+i) |
| } |
| } else if !gc.Nacl && (cnt <= int64(128*gc.Widthreg)) { |
| p = appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, frame+lo, obj.TYPE_REG, x86.REG_DI, 0) |
| p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, 2*(128-cnt/int64(gc.Widthreg))) |
| p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) |
| } else { |
| p = appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(gc.Widthreg), obj.TYPE_REG, x86.REG_CX, 0) |
| p = appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, frame+lo, obj.TYPE_REG, x86.REG_DI, 0) |
| p = appendpp(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) |
| p = appendpp(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) |
| } |
| |
| return p |
| } |
| |
| func appendpp(p *obj.Prog, as int, ftype int, freg int, foffset int64, ttype int, treg int, toffset int64) *obj.Prog { |
| q := gc.Ctxt.NewProg() |
| gc.Clearp(q) |
| q.As = int16(as) |
| q.Lineno = p.Lineno |
| q.From.Type = int16(ftype) |
| q.From.Reg = int16(freg) |
| q.From.Offset = foffset |
| q.To.Type = int16(ttype) |
| q.To.Reg = int16(treg) |
| q.To.Offset = toffset |
| q.Link = p.Link |
| p.Link = q |
| return q |
| } |
| |
| /* |
| * generate: |
| * call f |
| * proc=-1 normal call but no return |
| * proc=0 normal call |
| * proc=1 goroutine run in new proc |
| * proc=2 defer call save away stack |
| * proc=3 normal call to C pointer (not Go func value) |
| */ |
| func ginscall(f *gc.Node, proc int) { |
| if f.Type != nil { |
| extra := int32(0) |
| if proc == 1 || proc == 2 { |
| extra = 2 * int32(gc.Widthptr) |
| } |
| gc.Setmaxarg(f.Type, extra) |
| } |
| |
| switch proc { |
| default: |
| gc.Fatal("ginscall: bad proc %d", proc) |
| |
| case 0, // normal call |
| -1: // normal call but no return |
| if f.Op == gc.ONAME && f.Class == gc.PFUNC { |
| if f == gc.Deferreturn { |
| // Deferred calls will appear to be returning to |
| // the CALL deferreturn(SB) that we are about to emit. |
| // However, the stack trace code will show the line |
| // of the instruction byte before the return PC. |
| // To avoid that being an unrelated instruction, |
| // insert an x86 NOP that we will have the right line number. |
| // x86 NOP 0x90 is really XCHG AX, AX; use that description |
| // because the NOP pseudo-instruction would be removed by |
| // the linker. |
| var reg gc.Node |
| gc.Nodreg(®, gc.Types[gc.TINT], x86.REG_AX) |
| |
| gins(x86.AXCHGL, ®, ®) |
| } |
| |
| p := gins(obj.ACALL, nil, f) |
| gc.Afunclit(&p.To, f) |
| if proc == -1 || gc.Noreturn(p) { |
| gins(obj.AUNDEF, nil, nil) |
| } |
| break |
| } |
| |
| var reg gc.Node |
| gc.Nodreg(®, gc.Types[gc.Tptr], x86.REG_DX) |
| var r1 gc.Node |
| gc.Nodreg(&r1, gc.Types[gc.Tptr], x86.REG_BX) |
| gmove(f, ®) |
| reg.Op = gc.OINDREG |
| gmove(®, &r1) |
| reg.Op = gc.OREGISTER |
| gins(obj.ACALL, ®, &r1) |
| |
| case 3: // normal call of c function pointer |
| gins(obj.ACALL, nil, f) |
| |
| case 1, // call in new proc (go) |
| 2: // deferred call (defer) |
| var stk gc.Node |
| |
| stk.Op = gc.OINDREG |
| stk.Val.U.Reg = x86.REG_SP |
| stk.Xoffset = 0 |
| |
| var reg gc.Node |
| if gc.Widthptr == 8 { |
| // size of arguments at 0(SP) |
| ginscon(x86.AMOVQ, int64(gc.Argsize(f.Type)), &stk) |
| |
| // FuncVal* at 8(SP) |
| stk.Xoffset = int64(gc.Widthptr) |
| |
| gc.Nodreg(®, gc.Types[gc.TINT64], x86.REG_AX) |
| gmove(f, ®) |
| gins(x86.AMOVQ, ®, &stk) |
| } else { |
| // size of arguments at 0(SP) |
| ginscon(x86.AMOVL, int64(gc.Argsize(f.Type)), &stk) |
| |
| // FuncVal* at 4(SP) |
| stk.Xoffset = int64(gc.Widthptr) |
| |
| gc.Nodreg(®, gc.Types[gc.TINT32], x86.REG_AX) |
| gmove(f, ®) |
| gins(x86.AMOVL, ®, &stk) |
| } |
| |
| if proc == 1 { |
| ginscall(gc.Newproc, 0) |
| } else { |
| if gc.Hasdefer == 0 { |
| gc.Fatal("hasdefer=0 but has defer") |
| } |
| ginscall(gc.Deferproc, 0) |
| } |
| |
| if proc == 2 { |
| gc.Nodreg(®, gc.Types[gc.TINT32], x86.REG_AX) |
| gins(x86.ATESTL, ®, ®) |
| p := gc.Gbranch(x86.AJEQ, nil, +1) |
| cgen_ret(nil) |
| gc.Patch(p, gc.Pc) |
| } |
| } |
| } |
| |
| /* |
| * n is call to interface method. |
| * generate res = n. |
| */ |
| func cgen_callinter(n *gc.Node, res *gc.Node, proc int) { |
| i := n.Left |
| if i.Op != gc.ODOTINTER { |
| gc.Fatal("cgen_callinter: not ODOTINTER %v", gc.Oconv(int(i.Op), 0)) |
| } |
| |
| f := i.Right // field |
| if f.Op != gc.ONAME { |
| gc.Fatal("cgen_callinter: not ONAME %v", gc.Oconv(int(f.Op), 0)) |
| } |
| |
| i = i.Left // interface |
| |
| if i.Addable == 0 { |
| var tmpi gc.Node |
| gc.Tempname(&tmpi, i.Type) |
| cgen(i, &tmpi) |
| i = &tmpi |
| } |
| |
| gc.Genlist(n.List) // assign the args |
| |
| // i is now addable, prepare an indirected |
| // register to hold its address. |
| var nodi gc.Node |
| igen(i, &nodi, res) // REG = &inter |
| |
| var nodsp gc.Node |
| gc.Nodindreg(&nodsp, gc.Types[gc.Tptr], x86.REG_SP) |
| |
| nodsp.Xoffset = 0 |
| if proc != 0 { |
| nodsp.Xoffset += 2 * int64(gc.Widthptr) // leave room for size & fn |
| } |
| nodi.Type = gc.Types[gc.Tptr] |
| nodi.Xoffset += int64(gc.Widthptr) |
| cgen(&nodi, &nodsp) // {0, 8(nacl), or 16}(SP) = 8(REG) -- i.data |
| |
| var nodo gc.Node |
| regalloc(&nodo, gc.Types[gc.Tptr], res) |
| |
| nodi.Type = gc.Types[gc.Tptr] |
| nodi.Xoffset -= int64(gc.Widthptr) |
| cgen(&nodi, &nodo) // REG = 0(REG) -- i.tab |
| regfree(&nodi) |
| |
| var nodr gc.Node |
| regalloc(&nodr, gc.Types[gc.Tptr], &nodo) |
| if n.Left.Xoffset == gc.BADWIDTH { |
| gc.Fatal("cgen_callinter: badwidth") |
| } |
| gc.Cgen_checknil(&nodo) // in case offset is huge |
| nodo.Op = gc.OINDREG |
| nodo.Xoffset = n.Left.Xoffset + 3*int64(gc.Widthptr) + 8 |
| if proc == 0 { |
| // plain call: use direct c function pointer - more efficient |
| cgen(&nodo, &nodr) // REG = 32+offset(REG) -- i.tab->fun[f] |
| proc = 3 |
| } else { |
| // go/defer. generate go func value. |
| gins(x86.ALEAQ, &nodo, &nodr) // REG = &(32+offset(REG)) -- i.tab->fun[f] |
| } |
| |
| nodr.Type = n.Left.Type |
| ginscall(&nodr, proc) |
| |
| regfree(&nodr) |
| regfree(&nodo) |
| } |
| |
| /* |
| * generate function call; |
| * proc=0 normal call |
| * proc=1 goroutine run in new proc |
| * proc=2 defer call save away stack |
| */ |
| func cgen_call(n *gc.Node, proc int) { |
| if n == nil { |
| return |
| } |
| |
| var afun gc.Node |
| if n.Left.Ullman >= gc.UINF { |
| // if name involves a fn call |
| // precompute the address of the fn |
| gc.Tempname(&afun, gc.Types[gc.Tptr]) |
| |
| cgen(n.Left, &afun) |
| } |
| |
| gc.Genlist(n.List) // assign the args |
| t := n.Left.Type |
| |
| // call tempname pointer |
| if n.Left.Ullman >= gc.UINF { |
| var nod gc.Node |
| regalloc(&nod, gc.Types[gc.Tptr], nil) |
| gc.Cgen_as(&nod, &afun) |
| nod.Type = t |
| ginscall(&nod, proc) |
| regfree(&nod) |
| return |
| } |
| |
| // call pointer |
| if n.Left.Op != gc.ONAME || n.Left.Class != gc.PFUNC { |
| var nod gc.Node |
| regalloc(&nod, gc.Types[gc.Tptr], nil) |
| gc.Cgen_as(&nod, n.Left) |
| nod.Type = t |
| ginscall(&nod, proc) |
| regfree(&nod) |
| return |
| } |
| |
| // call direct |
| n.Left.Method = 1 |
| |
| ginscall(n.Left, proc) |
| } |
| |
| /* |
| * call to n has already been generated. |
| * generate: |
| * res = return value from call. |
| */ |
| func cgen_callret(n *gc.Node, res *gc.Node) { |
| t := n.Left.Type |
| if t.Etype == gc.TPTR32 || t.Etype == gc.TPTR64 { |
| t = t.Type |
| } |
| |
| var flist gc.Iter |
| fp := gc.Structfirst(&flist, gc.Getoutarg(t)) |
| if fp == nil { |
| gc.Fatal("cgen_callret: nil") |
| } |
| |
| var nod gc.Node |
| nod.Op = gc.OINDREG |
| nod.Val.U.Reg = x86.REG_SP |
| nod.Addable = 1 |
| |
| nod.Xoffset = fp.Width |
| nod.Type = fp.Type |
| gc.Cgen_as(res, &nod) |
| } |
| |
| /* |
| * call to n has already been generated. |
| * generate: |
| * res = &return value from call. |
| */ |
| func cgen_aret(n *gc.Node, res *gc.Node) { |
| t := n.Left.Type |
| if gc.Isptr[t.Etype] { |
| t = t.Type |
| } |
| |
| var flist gc.Iter |
| fp := gc.Structfirst(&flist, gc.Getoutarg(t)) |
| if fp == nil { |
| gc.Fatal("cgen_aret: nil") |
| } |
| |
| var nod1 gc.Node |
| nod1.Op = gc.OINDREG |
| nod1.Val.U.Reg = x86.REG_SP |
| nod1.Addable = 1 |
| |
| nod1.Xoffset = fp.Width |
| nod1.Type = fp.Type |
| |
| if res.Op != gc.OREGISTER { |
| var nod2 gc.Node |
| regalloc(&nod2, gc.Types[gc.Tptr], res) |
| gins(leaptr, &nod1, &nod2) |
| gins(movptr, &nod2, res) |
| regfree(&nod2) |
| } else { |
| gins(leaptr, &nod1, res) |
| } |
| } |
| |
| /* |
| * generate return. |
| * n->left is assignments to return values. |
| */ |
| func cgen_ret(n *gc.Node) { |
| if n != nil { |
| gc.Genlist(n.List) // copy out args |
| } |
| if gc.Hasdefer != 0 { |
| ginscall(gc.Deferreturn, 0) |
| } |
| gc.Genlist(gc.Curfn.Exit) |
| p := gins(obj.ARET, nil, nil) |
| if n != nil && n.Op == gc.ORETJMP { |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = gc.Linksym(n.Left.Sym) |
| } |
| } |
| |
| /* |
| * generate division. |
| * generates one of: |
| * res = nl / nr |
| * res = nl % nr |
| * according to op. |
| */ |
| func dodiv(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { |
| // Have to be careful about handling |
| // most negative int divided by -1 correctly. |
| // The hardware will trap. |
| // Also the byte divide instruction needs AH, |
| // which we otherwise don't have to deal with. |
| // Easiest way to avoid for int8, int16: use int32. |
| // For int32 and int64, use explicit test. |
| // Could use int64 hw for int32. |
| t := nl.Type |
| |
| t0 := t |
| check := 0 |
| if gc.Issigned[t.Etype] { |
| check = 1 |
| if gc.Isconst(nl, gc.CTINT) && gc.Mpgetfix(nl.Val.U.Xval) != -(1<<uint64(t.Width*8-1)) { |
| check = 0 |
| } else if gc.Isconst(nr, gc.CTINT) && gc.Mpgetfix(nr.Val.U.Xval) != -1 { |
| check = 0 |
| } |
| } |
| |
| if t.Width < 4 { |
| if gc.Issigned[t.Etype] { |
| t = gc.Types[gc.TINT32] |
| } else { |
| t = gc.Types[gc.TUINT32] |
| } |
| check = 0 |
| } |
| |
| a := optoas(op, t) |
| |
| var n3 gc.Node |
| regalloc(&n3, t0, nil) |
| var ax gc.Node |
| var oldax gc.Node |
| if nl.Ullman >= nr.Ullman { |
| savex(x86.REG_AX, &ax, &oldax, res, t0) |
| cgen(nl, &ax) |
| regalloc(&ax, t0, &ax) // mark ax live during cgen |
| cgen(nr, &n3) |
| regfree(&ax) |
| } else { |
| cgen(nr, &n3) |
| savex(x86.REG_AX, &ax, &oldax, res, t0) |
| cgen(nl, &ax) |
| } |
| |
| if t != t0 { |
| // Convert |
| ax1 := ax |
| |
| n31 := n3 |
| ax.Type = t |
| n3.Type = t |
| gmove(&ax1, &ax) |
| gmove(&n31, &n3) |
| } |
| |
| var n4 gc.Node |
| if gc.Nacl { |
| // Native Client does not relay the divide-by-zero trap |
| // to the executing program, so we must insert a check |
| // for ourselves. |
| gc.Nodconst(&n4, t, 0) |
| |
| gins(optoas(gc.OCMP, t), &n3, &n4) |
| p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) |
| if panicdiv == nil { |
| panicdiv = gc.Sysfunc("panicdivide") |
| } |
| ginscall(panicdiv, -1) |
| gc.Patch(p1, gc.Pc) |
| } |
| |
| var p2 *obj.Prog |
| if check != 0 { |
| gc.Nodconst(&n4, t, -1) |
| gins(optoas(gc.OCMP, t), &n3, &n4) |
| p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) |
| if op == gc.ODIV { |
| // a / (-1) is -a. |
| gins(optoas(gc.OMINUS, t), nil, &ax) |
| |
| gmove(&ax, res) |
| } else { |
| // a % (-1) is 0. |
| gc.Nodconst(&n4, t, 0) |
| |
| gmove(&n4, res) |
| } |
| |
| p2 = gc.Gbranch(obj.AJMP, nil, 0) |
| gc.Patch(p1, gc.Pc) |
| } |
| |
| var olddx gc.Node |
| var dx gc.Node |
| savex(x86.REG_DX, &dx, &olddx, res, t) |
| if !gc.Issigned[t.Etype] { |
| gc.Nodconst(&n4, t, 0) |
| gmove(&n4, &dx) |
| } else { |
| gins(optoas(gc.OEXTEND, t), nil, nil) |
| } |
| gins(a, &n3, nil) |
| regfree(&n3) |
| if op == gc.ODIV { |
| gmove(&ax, res) |
| } else { |
| gmove(&dx, res) |
| } |
| restx(&dx, &olddx) |
| if check != 0 { |
| gc.Patch(p2, gc.Pc) |
| } |
| restx(&ax, &oldax) |
| } |
| |
| /* |
| * register dr is one of the special ones (AX, CX, DI, SI, etc.). |
| * we need to use it. if it is already allocated as a temporary |
| * (r > 1; can only happen if a routine like sgen passed a |
| * special as cgen's res and then cgen used regalloc to reuse |
| * it as its own temporary), then move it for now to another |
| * register. caller must call restx to move it back. |
| * the move is not necessary if dr == res, because res is |
| * known to be dead. |
| */ |
| func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { |
| r := int(reg[dr]) |
| |
| // save current ax and dx if they are live |
| // and not the destination |
| *oldx = gc.Node{} |
| |
| gc.Nodreg(x, t, dr) |
| if r > 1 && !gc.Samereg(x, res) { |
| regalloc(oldx, gc.Types[gc.TINT64], nil) |
| x.Type = gc.Types[gc.TINT64] |
| gmove(x, oldx) |
| x.Type = t |
| oldx.Ostk = int32(r) // squirrel away old r value |
| reg[dr] = 1 |
| } |
| } |
| |
| func restx(x *gc.Node, oldx *gc.Node) { |
| if oldx.Op != 0 { |
| x.Type = gc.Types[gc.TINT64] |
| reg[x.Val.U.Reg] = uint8(oldx.Ostk) |
| gmove(oldx, x) |
| regfree(oldx) |
| } |
| } |
| |
| /* |
| * generate division according to op, one of: |
| * res = nl / nr |
| * res = nl % nr |
| */ |
| func cgen_div(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { |
| var w int |
| |
| if nr.Op != gc.OLITERAL { |
| goto longdiv |
| } |
| w = int(nl.Type.Width * 8) |
| |
| // Front end handled 32-bit division. We only need to handle 64-bit. |
| // try to do division by multiply by (2^w)/d |
| // see hacker's delight chapter 10 |
| switch gc.Simtype[nl.Type.Etype] { |
| default: |
| goto longdiv |
| |
| case gc.TUINT64: |
| var m gc.Magic |
| m.W = w |
| m.Ud = uint64(gc.Mpgetfix(nr.Val.U.Xval)) |
| gc.Umagic(&m) |
| if m.Bad != 0 { |
| break |
| } |
| if op == gc.OMOD { |
| goto longmod |
| } |
| |
| var n1 gc.Node |
| cgenr(nl, &n1, nil) |
| var n2 gc.Node |
| gc.Nodconst(&n2, nl.Type, int64(m.Um)) |
| var n3 gc.Node |
| regalloc(&n3, nl.Type, res) |
| cgen_hmul(&n1, &n2, &n3) |
| |
| if m.Ua != 0 { |
| // need to add numerator accounting for overflow |
| gins(optoas(gc.OADD, nl.Type), &n1, &n3) |
| |
| gc.Nodconst(&n2, nl.Type, 1) |
| gins(optoas(gc.ORROTC, nl.Type), &n2, &n3) |
| gc.Nodconst(&n2, nl.Type, int64(m.S)-1) |
| gins(optoas(gc.ORSH, nl.Type), &n2, &n3) |
| } else { |
| gc.Nodconst(&n2, nl.Type, int64(m.S)) |
| gins(optoas(gc.ORSH, nl.Type), &n2, &n3) // shift dx |
| } |
| |
| gmove(&n3, res) |
| regfree(&n1) |
| regfree(&n3) |
| return |
| |
| case gc.TINT64: |
| var m gc.Magic |
| m.W = w |
| m.Sd = gc.Mpgetfix(nr.Val.U.Xval) |
| gc.Smagic(&m) |
| if m.Bad != 0 { |
| break |
| } |
| if op == gc.OMOD { |
| goto longmod |
| } |
| |
| var n1 gc.Node |
| cgenr(nl, &n1, res) |
| var n2 gc.Node |
| gc.Nodconst(&n2, nl.Type, m.Sm) |
| var n3 gc.Node |
| regalloc(&n3, nl.Type, nil) |
| cgen_hmul(&n1, &n2, &n3) |
| |
| if m.Sm < 0 { |
| // need to add numerator |
| gins(optoas(gc.OADD, nl.Type), &n1, &n3) |
| } |
| |
| gc.Nodconst(&n2, nl.Type, int64(m.S)) |
| gins(optoas(gc.ORSH, nl.Type), &n2, &n3) // shift n3 |
| |
| gc.Nodconst(&n2, nl.Type, int64(w)-1) |
| |
| gins(optoas(gc.ORSH, nl.Type), &n2, &n1) // -1 iff num is neg |
| gins(optoas(gc.OSUB, nl.Type), &n1, &n3) // added |
| |
| if m.Sd < 0 { |
| // this could probably be removed |
| // by factoring it into the multiplier |
| gins(optoas(gc.OMINUS, nl.Type), nil, &n3) |
| } |
| |
| gmove(&n3, res) |
| regfree(&n1) |
| regfree(&n3) |
| return |
| } |
| |
| goto longdiv |
| |
| // division and mod using (slow) hardware instruction |
| longdiv: |
| dodiv(op, nl, nr, res) |
| |
| return |
| |
| // mod using formula A%B = A-(A/B*B) but |
| // we know that there is a fast algorithm for A/B |
| longmod: |
| var n1 gc.Node |
| regalloc(&n1, nl.Type, res) |
| |
| cgen(nl, &n1) |
| var n2 gc.Node |
| regalloc(&n2, nl.Type, nil) |
| cgen_div(gc.ODIV, &n1, nr, &n2) |
| a := optoas(gc.OMUL, nl.Type) |
| if w == 8 { |
| // use 2-operand 16-bit multiply |
| // because there is no 2-operand 8-bit multiply |
| a = x86.AIMULW |
| } |
| |
| if !gc.Smallintconst(nr) { |
| var n3 gc.Node |
| regalloc(&n3, nl.Type, nil) |
| cgen(nr, &n3) |
| gins(a, &n3, &n2) |
| regfree(&n3) |
| } else { |
| gins(a, nr, &n2) |
| } |
| gins(optoas(gc.OSUB, nl.Type), &n2, &n1) |
| gmove(&n1, res) |
| regfree(&n1) |
| regfree(&n2) |
| } |
| |
| /* |
| * generate high multiply: |
| * res = (nl*nr) >> width |
| */ |
| func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { |
| t := nl.Type |
| a := optoas(gc.OHMUL, t) |
| if nl.Ullman < nr.Ullman { |
| tmp := nl |
| nl = nr |
| nr = tmp |
| } |
| |
| var n1 gc.Node |
| cgenr(nl, &n1, res) |
| var n2 gc.Node |
| cgenr(nr, &n2, nil) |
| var ax gc.Node |
| gc.Nodreg(&ax, t, x86.REG_AX) |
| gmove(&n1, &ax) |
| gins(a, &n2, nil) |
| regfree(&n2) |
| regfree(&n1) |
| |
| var dx gc.Node |
| if t.Width == 1 { |
| // byte multiply behaves differently. |
| gc.Nodreg(&ax, t, x86.REG_AH) |
| |
| gc.Nodreg(&dx, t, x86.REG_DX) |
| gmove(&ax, &dx) |
| } |
| |
| gc.Nodreg(&dx, t, x86.REG_DX) |
| gmove(&dx, res) |
| } |
| |
| /* |
| * generate shift according to op, one of: |
| * res = nl << nr |
| * res = nl >> nr |
| */ |
| func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { |
| a := optoas(op, nl.Type) |
| |
| if nr.Op == gc.OLITERAL { |
| var n1 gc.Node |
| regalloc(&n1, nl.Type, res) |
| cgen(nl, &n1) |
| sc := uint64(gc.Mpgetfix(nr.Val.U.Xval)) |
| if sc >= uint64(nl.Type.Width*8) { |
| // large shift gets 2 shifts by width-1 |
| var n3 gc.Node |
| gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) |
| |
| gins(a, &n3, &n1) |
| gins(a, &n3, &n1) |
| } else { |
| gins(a, nr, &n1) |
| } |
| gmove(&n1, res) |
| regfree(&n1) |
| return |
| } |
| |
| if nl.Ullman >= gc.UINF { |
| var n4 gc.Node |
| gc.Tempname(&n4, nl.Type) |
| cgen(nl, &n4) |
| nl = &n4 |
| } |
| |
| if nr.Ullman >= gc.UINF { |
| var n5 gc.Node |
| gc.Tempname(&n5, nr.Type) |
| cgen(nr, &n5) |
| nr = &n5 |
| } |
| |
| rcx := int(reg[x86.REG_CX]) |
| var n1 gc.Node |
| gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) |
| |
| // Allow either uint32 or uint64 as shift type, |
| // to avoid unnecessary conversion from uint32 to uint64 |
| // just to do the comparison. |
| tcount := gc.Types[gc.Simtype[nr.Type.Etype]] |
| |
| if tcount.Etype < gc.TUINT32 { |
| tcount = gc.Types[gc.TUINT32] |
| } |
| |
| regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX |
| var n3 gc.Node |
| regalloc(&n3, tcount, &n1) // to clear high bits of CX |
| |
| var cx gc.Node |
| gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX) |
| |
| var oldcx gc.Node |
| if rcx > 0 && !gc.Samereg(&cx, res) { |
| regalloc(&oldcx, gc.Types[gc.TUINT64], nil) |
| gmove(&cx, &oldcx) |
| } |
| |
| cx.Type = tcount |
| |
| var n2 gc.Node |
| if gc.Samereg(&cx, res) { |
| regalloc(&n2, nl.Type, nil) |
| } else { |
| regalloc(&n2, nl.Type, res) |
| } |
| if nl.Ullman >= nr.Ullman { |
| cgen(nl, &n2) |
| cgen(nr, &n1) |
| gmove(&n1, &n3) |
| } else { |
| cgen(nr, &n1) |
| gmove(&n1, &n3) |
| cgen(nl, &n2) |
| } |
| |
| regfree(&n3) |
| |
| // test and fix up large shifts |
| if !bounded { |
| gc.Nodconst(&n3, tcount, nl.Type.Width*8) |
| gins(optoas(gc.OCMP, tcount), &n1, &n3) |
| p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1) |
| if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { |
| gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) |
| gins(a, &n3, &n2) |
| } else { |
| gc.Nodconst(&n3, nl.Type, 0) |
| gmove(&n3, &n2) |
| } |
| |
| gc.Patch(p1, gc.Pc) |
| } |
| |
| gins(a, &n1, &n2) |
| |
| if oldcx.Op != 0 { |
| cx.Type = gc.Types[gc.TUINT64] |
| gmove(&oldcx, &cx) |
| regfree(&oldcx) |
| } |
| |
| gmove(&n2, res) |
| |
| regfree(&n1) |
| regfree(&n2) |
| } |
| |
| /* |
| * generate byte multiply: |
| * res = nl * nr |
| * there is no 2-operand byte multiply instruction so |
| * we do a full-width multiplication and truncate afterwards. |
| */ |
| func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) { |
| // largest ullman on left. |
| if nl.Ullman < nr.Ullman { |
| tmp := nl |
| nl = nr |
| nr = tmp |
| } |
| |
| // generate operands in "8-bit" registers. |
| var n1b gc.Node |
| regalloc(&n1b, nl.Type, res) |
| |
| cgen(nl, &n1b) |
| var n2b gc.Node |
| regalloc(&n2b, nr.Type, nil) |
| cgen(nr, &n2b) |
| |
| // perform full-width multiplication. |
| t := gc.Types[gc.TUINT64] |
| |
| if gc.Issigned[nl.Type.Etype] { |
| t = gc.Types[gc.TINT64] |
| } |
| var n1 gc.Node |
| gc.Nodreg(&n1, t, int(n1b.Val.U.Reg)) |
| var n2 gc.Node |
| gc.Nodreg(&n2, t, int(n2b.Val.U.Reg)) |
| a := optoas(op, t) |
| gins(a, &n2, &n1) |
| |
| // truncate. |
| gmove(&n1, res) |
| |
| regfree(&n1b) |
| regfree(&n2b) |
| } |
| |
| func clearfat(nl *gc.Node) { |
| /* clear a fat object */ |
| if gc.Debug['g'] != 0 { |
| gc.Dump("\nclearfat", nl) |
| } |
| |
| w := nl.Type.Width |
| |
| // Avoid taking the address for simple enough types. |
| if componentgen(nil, nl) { |
| return |
| } |
| |
| c := w % 8 // bytes |
| q := w / 8 // quads |
| |
| if q < 4 { |
| // Write sequence of MOV 0, off(base) instead of using STOSQ. |
| // The hope is that although the code will be slightly longer, |
| // the MOVs will have no dependencies and pipeline better |
| // than the unrolled STOSQ loop. |
| // NOTE: Must use agen, not igen, so that optimizer sees address |
| // being taken. We are not writing on field boundaries. |
| var n1 gc.Node |
| agenr(nl, &n1, nil) |
| |
| n1.Op = gc.OINDREG |
| var z gc.Node |
| gc.Nodconst(&z, gc.Types[gc.TUINT64], 0) |
| for { |
| tmp14 := q |
| q-- |
| if tmp14 <= 0 { |
| break |
| } |
| n1.Type = z.Type |
| gins(x86.AMOVQ, &z, &n1) |
| n1.Xoffset += 8 |
| } |
| |
| if c >= 4 { |
| gc.Nodconst(&z, gc.Types[gc.TUINT32], 0) |
| n1.Type = z.Type |
| gins(x86.AMOVL, &z, &n1) |
| n1.Xoffset += 4 |
| c -= 4 |
| } |
| |
| gc.Nodconst(&z, gc.Types[gc.TUINT8], 0) |
| for { |
| tmp15 := c |
| c-- |
| if tmp15 <= 0 { |
| break |
| } |
| n1.Type = z.Type |
| gins(x86.AMOVB, &z, &n1) |
| n1.Xoffset++ |
| } |
| |
| regfree(&n1) |
| return |
| } |
| |
| var oldn1 gc.Node |
| var n1 gc.Node |
| savex(x86.REG_DI, &n1, &oldn1, nil, gc.Types[gc.Tptr]) |
| agen(nl, &n1) |
| |
| var ax gc.Node |
| var oldax gc.Node |
| savex(x86.REG_AX, &ax, &oldax, nil, gc.Types[gc.Tptr]) |
| gconreg(x86.AMOVL, 0, x86.REG_AX) |
| |
| if q > 128 || gc.Nacl { |
| gconreg(movptr, q, x86.REG_CX) |
| gins(x86.AREP, nil, nil) // repeat |
| gins(x86.ASTOSQ, nil, nil) // STOQ AL,*(DI)+ |
| } else { |
| p := gins(obj.ADUFFZERO, nil, nil) |
| p.To.Type = obj.TYPE_ADDR |
| p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) |
| |
| // 2 and 128 = magic constants: see ../../runtime/asm_amd64.s |
| p.To.Offset = 2 * (128 - q) |
| } |
| |
| z := ax |
| di := n1 |
| if w >= 8 && c >= 4 { |
| di.Op = gc.OINDREG |
| z.Type = gc.Types[gc.TINT64] |
| di.Type = z.Type |
| p := gins(x86.AMOVQ, &z, &di) |
| p.To.Scale = 1 |
| p.To.Offset = c - 8 |
| } else if c >= 4 { |
| di.Op = gc.OINDREG |
| z.Type = gc.Types[gc.TINT32] |
| di.Type = z.Type |
| gins(x86.AMOVL, &z, &di) |
| if c > 4 { |
| p := gins(x86.AMOVL, &z, &di) |
| p.To.Scale = 1 |
| p.To.Offset = c - 4 |
| } |
| } else { |
| for c > 0 { |
| gins(x86.ASTOSB, nil, nil) // STOB AL,*(DI)+ |
| c-- |
| } |
| } |
| |
| restx(&n1, &oldn1) |
| restx(&ax, &oldax) |
| } |
| |
| // Called after regopt and peep have run. |
| // Expand CHECKNIL pseudo-op into actual nil pointer check. |
| func expandchecks(firstp *obj.Prog) { |
| var p1 *obj.Prog |
| var p2 *obj.Prog |
| |
| for p := firstp; p != nil; p = p.Link { |
| if p.As != obj.ACHECKNIL { |
| continue |
| } |
| if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers |
| gc.Warnl(int(p.Lineno), "generated nil check") |
| } |
| |
| // check is |
| // CMP arg, $0 |
| // JNE 2(PC) (likely) |
| // MOV AX, 0 |
| p1 = gc.Ctxt.NewProg() |
| |
| p2 = gc.Ctxt.NewProg() |
| gc.Clearp(p1) |
| gc.Clearp(p2) |
| p1.Link = p2 |
| p2.Link = p.Link |
| p.Link = p1 |
| p1.Lineno = p.Lineno |
| p2.Lineno = p.Lineno |
| p1.Pc = 9999 |
| p2.Pc = 9999 |
| p.As = int16(cmpptr) |
| p.To.Type = obj.TYPE_CONST |
| p.To.Offset = 0 |
| p1.As = x86.AJNE |
| p1.From.Type = obj.TYPE_CONST |
| p1.From.Offset = 1 // likely |
| p1.To.Type = obj.TYPE_BRANCH |
| p1.To.Val = p2.Link |
| |
| // crash by write to memory address 0. |
| // if possible, since we know arg is 0, use 0(arg), |
| // which will be shorter to encode than plain 0. |
| p2.As = x86.AMOVL |
| |
| p2.From.Type = obj.TYPE_REG |
| p2.From.Reg = x86.REG_AX |
| if regtyp(&p.From) { |
| p2.To.Type = obj.TYPE_MEM |
| p2.To.Reg = p.From.Reg |
| } else { |
| p2.To.Type = obj.TYPE_MEM |
| p2.To.Reg = x86.REG_NONE |
| } |
| |
| p2.To.Offset = 0 |
| } |
| } |