| // Copyright 2020 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package embed provides access to files embedded in the running Go program. |
| // |
| // Go source files that import "embed" can use the //go:embed directive |
| // to initialize a variable of type string, []byte, or FS with the contents of |
| // files read from the package directory or subdirectories at compile time. |
| // |
| // For example, here are three ways to embed a file named hello.txt |
| // and then print its contents at run time. |
| // |
| // Embedding one file into a string: |
| // |
| // import _ "embed" |
| // |
| // //go:embed hello.txt |
| // var s string |
| // print(s) |
| // |
| // Embedding one file into a slice of bytes: |
| // |
| // import _ "embed" |
| // |
| // //go:embed hello.txt |
| // var b []byte |
| // print(string(b)) |
| // |
| // Embedded one or more files into a file system: |
| // |
| // import "embed" |
| // |
| // //go:embed hello.txt |
| // var f embed.FS |
| // data, _ := f.ReadFile("hello.txt") |
| // print(string(data)) |
| // |
| // Directives |
| // |
| // A //go:embed directive above a variable declaration specifies which files to embed, |
| // using one or more path.Match patterns. |
| // |
| // The directive must immediately precede a line containing the declaration of a single variable. |
| // Only blank lines and ‘//’ line comments are permitted between the directive and the declaration. |
| // |
| // The type of the variable must be a string type, or a slice of a byte type, |
| // or FS (or an alias of FS). |
| // |
| // For example: |
| // |
| // package server |
| // |
| // import "embed" |
| // |
| // // content holds our static web server content. |
| // //go:embed image/* template/* |
| // //go:embed html/index.html |
| // var content embed.FS |
| // |
| // The Go build system will recognize the directives and arrange for the declared variable |
| // (in the example above, content) to be populated with the matching files from the file system. |
| // |
| // The //go:embed directive accepts multiple space-separated patterns for |
| // brevity, but it can also be repeated, to avoid very long lines when there are |
| // many patterns. The patterns are interpreted relative to the package directory |
| // containing the source file. The path separator is a forward slash, even on |
| // Windows systems. Patterns may not contain ‘.’ or ‘..’ or empty path elements, |
| // nor may they begin or end with a slash. To match everything in the current |
| // directory, use ‘*’ instead of ‘.’. To allow for naming files with spaces in |
| // their names, patterns can be written as Go double-quoted or back-quoted |
| // string literals. |
| // |
| // If a pattern names a directory, all files in the subtree rooted at that directory are |
| // embedded (recursively), except that files with names beginning with ‘.’ or ‘_’ |
| // are excluded. So the variable in the above example is almost equivalent to: |
| // |
| // // content is our static web server content. |
| // //go:embed image template html/index.html |
| // var content embed.FS |
| // |
| // The difference is that ‘image/*’ embeds ‘image/.tempfile’ while ‘image’ does not. |
| // |
| // The //go:embed directive can be used with both exported and unexported variables, |
| // depending on whether the package wants to make the data available to other packages. |
| // It can only be used with variables at package scope, not with local variables. |
| // |
| // Patterns must not match files outside the package's module, such as ‘.git/*’ or symbolic links. |
| // Matches for empty directories are ignored. After that, each pattern in a //go:embed line |
| // must match at least one file or non-empty directory. |
| // |
| // If any patterns are invalid or have invalid matches, the build will fail. |
| // |
| // Strings and Bytes |
| // |
| // The //go:embed line for a variable of type string or []byte can have only a single pattern, |
| // and that pattern can match only a single file. The string or []byte is initialized with |
| // the contents of that file. |
| // |
| // The //go:embed directive requires importing "embed", even when using a string or []byte. |
| // In source files that don't refer to embed.FS, use a blank import (import _ "embed"). |
| // |
| // File Systems |
| // |
| // For embedding a single file, a variable of type string or []byte is often best. |
| // The FS type enables embedding a tree of files, such as a directory of static |
| // web server content, as in the example above. |
| // |
| // FS implements the io/fs package's FS interface, so it can be used with any package that |
| // understands file systems, including net/http, text/template, and html/template. |
| // |
| // For example, given the content variable in the example above, we can write: |
| // |
| // http.Handle("/static/", http.StripPrefix("/static/", http.FileServer(http.FS(content)))) |
| // |
| // template.ParseFS(content, "*.tmpl") |
| // |
| // Tools |
| // |
| // To support tools that analyze Go packages, the patterns found in //go:embed lines |
| // are available in “go list” output. See the EmbedPatterns, TestEmbedPatterns, |
| // and XTestEmbedPatterns fields in the “go help list” output. |
| // |
| package embed |
| |
| import ( |
| "errors" |
| "io" |
| "io/fs" |
| "time" |
| ) |
| |
| // An FS is a read-only collection of files, usually initialized with a //go:embed directive. |
| // When declared without a //go:embed directive, an FS is an empty file system. |
| // |
| // An FS is a read-only value, so it is safe to use from multiple goroutines |
| // simultaneously and also safe to assign values of type FS to each other. |
| // |
| // FS implements fs.FS, so it can be used with any package that understands |
| // file system interfaces, including net/http, text/template, and html/template. |
| // |
| // See the package documentation for more details about initializing an FS. |
| type FS struct { |
| // The compiler knows the layout of this struct. |
| // See cmd/compile/internal/staticdata's WriteEmbed. |
| // |
| // The files list is sorted by name but not by simple string comparison. |
| // Instead, each file's name takes the form "dir/elem" or "dir/elem/". |
| // The optional trailing slash indicates that the file is itself a directory. |
| // The files list is sorted first by dir (if dir is missing, it is taken to be ".") |
| // and then by base, so this list of files: |
| // |
| // p |
| // q/ |
| // q/r |
| // q/s/ |
| // q/s/t |
| // q/s/u |
| // q/v |
| // w |
| // |
| // is actually sorted as: |
| // |
| // p # dir=. elem=p |
| // q/ # dir=. elem=q |
| // w/ # dir=. elem=w |
| // q/r # dir=q elem=r |
| // q/s/ # dir=q elem=s |
| // q/v # dir=q elem=v |
| // q/s/t # dir=q/s elem=t |
| // q/s/u # dir=q/s elem=u |
| // |
| // This order brings directory contents together in contiguous sections |
| // of the list, allowing a directory read to use binary search to find |
| // the relevant sequence of entries. |
| files *[]file |
| } |
| |
| // split splits the name into dir and elem as described in the |
| // comment in the FS struct above. isDir reports whether the |
| // final trailing slash was present, indicating that name is a directory. |
| func split(name string) (dir, elem string, isDir bool) { |
| if name[len(name)-1] == '/' { |
| isDir = true |
| name = name[:len(name)-1] |
| } |
| i := len(name) - 1 |
| for i >= 0 && name[i] != '/' { |
| i-- |
| } |
| if i < 0 { |
| return ".", name, isDir |
| } |
| return name[:i], name[i+1:], isDir |
| } |
| |
| // trimSlash trims a trailing slash from name, if present, |
| // returning the possibly shortened name. |
| func trimSlash(name string) string { |
| if len(name) > 0 && name[len(name)-1] == '/' { |
| return name[:len(name)-1] |
| } |
| return name |
| } |
| |
| var ( |
| _ fs.ReadDirFS = FS{} |
| _ fs.ReadFileFS = FS{} |
| ) |
| |
| // A file is a single file in the FS. |
| // It implements fs.FileInfo and fs.DirEntry. |
| type file struct { |
| // The compiler knows the layout of this struct. |
| // See cmd/compile/internal/staticdata's WriteEmbed. |
| name string |
| data string |
| hash [16]byte // truncated SHA256 hash |
| } |
| |
| var ( |
| _ fs.FileInfo = (*file)(nil) |
| _ fs.DirEntry = (*file)(nil) |
| ) |
| |
| func (f *file) Name() string { _, elem, _ := split(f.name); return elem } |
| func (f *file) Size() int64 { return int64(len(f.data)) } |
| func (f *file) ModTime() time.Time { return time.Time{} } |
| func (f *file) IsDir() bool { _, _, isDir := split(f.name); return isDir } |
| func (f *file) Sys() interface{} { return nil } |
| func (f *file) Type() fs.FileMode { return f.Mode().Type() } |
| func (f *file) Info() (fs.FileInfo, error) { return f, nil } |
| |
| func (f *file) Mode() fs.FileMode { |
| if f.IsDir() { |
| return fs.ModeDir | 0555 |
| } |
| return 0444 |
| } |
| |
| // dotFile is a file for the root directory, |
| // which is omitted from the files list in a FS. |
| var dotFile = &file{name: "./"} |
| |
| // lookup returns the named file, or nil if it is not present. |
| func (f FS) lookup(name string) *file { |
| if !fs.ValidPath(name) { |
| // The compiler should never emit a file with an invalid name, |
| // so this check is not strictly necessary (if name is invalid, |
| // we shouldn't find a match below), but it's a good backstop anyway. |
| return nil |
| } |
| if name == "." { |
| return dotFile |
| } |
| if f.files == nil { |
| return nil |
| } |
| |
| // Binary search to find where name would be in the list, |
| // and then check if name is at that position. |
| dir, elem, _ := split(name) |
| files := *f.files |
| i := sortSearch(len(files), func(i int) bool { |
| idir, ielem, _ := split(files[i].name) |
| return idir > dir || idir == dir && ielem >= elem |
| }) |
| if i < len(files) && trimSlash(files[i].name) == name { |
| return &files[i] |
| } |
| return nil |
| } |
| |
| // readDir returns the list of files corresponding to the directory dir. |
| func (f FS) readDir(dir string) []file { |
| if f.files == nil { |
| return nil |
| } |
| // Binary search to find where dir starts and ends in the list |
| // and then return that slice of the list. |
| files := *f.files |
| i := sortSearch(len(files), func(i int) bool { |
| idir, _, _ := split(files[i].name) |
| return idir >= dir |
| }) |
| j := sortSearch(len(files), func(j int) bool { |
| jdir, _, _ := split(files[j].name) |
| return jdir > dir |
| }) |
| return files[i:j] |
| } |
| |
| // Open opens the named file for reading and returns it as an fs.File. |
| // |
| // The returned file implements io.Seeker when the file is not a directory. |
| func (f FS) Open(name string) (fs.File, error) { |
| file := f.lookup(name) |
| if file == nil { |
| return nil, &fs.PathError{Op: "open", Path: name, Err: fs.ErrNotExist} |
| } |
| if file.IsDir() { |
| return &openDir{file, f.readDir(name), 0}, nil |
| } |
| return &openFile{file, 0}, nil |
| } |
| |
| // ReadDir reads and returns the entire named directory. |
| func (f FS) ReadDir(name string) ([]fs.DirEntry, error) { |
| file, err := f.Open(name) |
| if err != nil { |
| return nil, err |
| } |
| dir, ok := file.(*openDir) |
| if !ok { |
| return nil, &fs.PathError{Op: "read", Path: name, Err: errors.New("not a directory")} |
| } |
| list := make([]fs.DirEntry, len(dir.files)) |
| for i := range list { |
| list[i] = &dir.files[i] |
| } |
| return list, nil |
| } |
| |
| // ReadFile reads and returns the content of the named file. |
| func (f FS) ReadFile(name string) ([]byte, error) { |
| file, err := f.Open(name) |
| if err != nil { |
| return nil, err |
| } |
| ofile, ok := file.(*openFile) |
| if !ok { |
| return nil, &fs.PathError{Op: "read", Path: name, Err: errors.New("is a directory")} |
| } |
| return []byte(ofile.f.data), nil |
| } |
| |
| // An openFile is a regular file open for reading. |
| type openFile struct { |
| f *file // the file itself |
| offset int64 // current read offset |
| } |
| |
| var ( |
| _ io.Seeker = (*openFile)(nil) |
| ) |
| |
| func (f *openFile) Close() error { return nil } |
| func (f *openFile) Stat() (fs.FileInfo, error) { return f.f, nil } |
| |
| func (f *openFile) Read(b []byte) (int, error) { |
| if f.offset >= int64(len(f.f.data)) { |
| return 0, io.EOF |
| } |
| if f.offset < 0 { |
| return 0, &fs.PathError{Op: "read", Path: f.f.name, Err: fs.ErrInvalid} |
| } |
| n := copy(b, f.f.data[f.offset:]) |
| f.offset += int64(n) |
| return n, nil |
| } |
| |
| func (f *openFile) Seek(offset int64, whence int) (int64, error) { |
| switch whence { |
| case 0: |
| // offset += 0 |
| case 1: |
| offset += f.offset |
| case 2: |
| offset += int64(len(f.f.data)) |
| } |
| if offset < 0 || offset > int64(len(f.f.data)) { |
| return 0, &fs.PathError{Op: "seek", Path: f.f.name, Err: fs.ErrInvalid} |
| } |
| f.offset = offset |
| return offset, nil |
| } |
| |
| // An openDir is a directory open for reading. |
| type openDir struct { |
| f *file // the directory file itself |
| files []file // the directory contents |
| offset int // the read offset, an index into the files slice |
| } |
| |
| func (d *openDir) Close() error { return nil } |
| func (d *openDir) Stat() (fs.FileInfo, error) { return d.f, nil } |
| |
| func (d *openDir) Read([]byte) (int, error) { |
| return 0, &fs.PathError{Op: "read", Path: d.f.name, Err: errors.New("is a directory")} |
| } |
| |
| func (d *openDir) ReadDir(count int) ([]fs.DirEntry, error) { |
| n := len(d.files) - d.offset |
| if n == 0 { |
| if count <= 0 { |
| return nil, nil |
| } |
| return nil, io.EOF |
| } |
| if count > 0 && n > count { |
| n = count |
| } |
| list := make([]fs.DirEntry, n) |
| for i := range list { |
| list[i] = &d.files[d.offset+i] |
| } |
| d.offset += n |
| return list, nil |
| } |
| |
| // sortSearch is like sort.Search, avoiding an import. |
| func sortSearch(n int, f func(int) bool) int { |
| // Define f(-1) == false and f(n) == true. |
| // Invariant: f(i-1) == false, f(j) == true. |
| i, j := 0, n |
| for i < j { |
| h := int(uint(i+j) >> 1) // avoid overflow when computing h |
| // i ≤ h < j |
| if !f(h) { |
| i = h + 1 // preserves f(i-1) == false |
| } else { |
| j = h // preserves f(j) == true |
| } |
| } |
| // i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i. |
| return i |
| } |