blob: 5d725a5c82a38c9f428409a8925718a04b0d71c0 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
const (
_Debugwbufs = true // if true check wbufs consistency
_WorkbufSize = 1 * 256 // in bytes - if small wbufs are passed to GC in a timely fashion.
)
// Garbage collector work pool abstraction.
//
// This implements a producer/consumer model for pointers to grey
// objects. A grey object is one that is marked and on a work
// queue. A black object is marked and not on a work queue.
//
// Write barriers, root discovery, stack scanning, and object scanning
// produce pointers to grey objects. Scanning consumes pointers to
// grey objects, thus blackening them, and then scans them,
// potentially producing new pointers to grey objects.
// A wbufptr holds a workbuf*, but protects it from write barriers.
// workbufs never live on the heap, so write barriers are unnecessary.
// Write barriers on workbuf pointers may also be dangerous in the GC.
type wbufptr uintptr
func wbufptrOf(w *workbuf) wbufptr {
return wbufptr(unsafe.Pointer(w))
}
func (wp wbufptr) ptr() *workbuf {
return (*workbuf)(unsafe.Pointer(wp))
}
// A gcWorkProducer provides the interface to produce work for the
// garbage collector.
//
// The usual pattern for using gcWorkProducer is:
//
// var gcw gcWorkProducer
// .. call gcw.put() ..
// gcw.dispose()
type gcWorkProducer struct {
// Invariant: wbuf is never full or empty
wbuf wbufptr
}
// A gcWork provides the interface to both produce and consume work
// for the garbage collector.
//
// The pattern for using gcWork is the same as gcWorkProducer.
type gcWork struct {
gcWorkProducer
}
// Note that there is no need for a gcWorkConsumer because everything
// that consumes pointers also produces them.
// initFromCache fetches work from this M's currentwbuf cache.
//go:nowritebarrier
func (w *gcWorkProducer) initFromCache() {
// TODO: Instead of making gcWorkProducer pull from the
// currentwbuf cache, use a gcWorkProducer as the cache and
// make shade pass around that gcWorkProducer.
if w.wbuf == 0 {
w.wbuf = wbufptr(xchguintptr(&getg().m.currentwbuf, 0))
}
}
// put enqueues a pointer for the garbage collector to trace.
//go:nowritebarrier
func (ww *gcWorkProducer) put(obj uintptr) {
w := (*gcWorkProducer)(noescape(unsafe.Pointer(ww))) // TODO: remove when escape analysis is fixed
wbuf := w.wbuf.ptr()
if wbuf == nil {
wbuf = getpartialorempty(42)
w.wbuf = wbufptrOf(wbuf)
}
wbuf.obj[wbuf.nobj] = obj
wbuf.nobj++
if wbuf.nobj == len(wbuf.obj) {
putfull(wbuf, 50)
w.wbuf = 0
}
}
// dispose returns any cached pointers to the global queue.
//go:nowritebarrier
func (w *gcWorkProducer) dispose() {
if wbuf := w.wbuf; wbuf != 0 {
putpartial(wbuf.ptr(), 58)
w.wbuf = 0
}
}
// disposeToCache returns any cached pointers to this M's currentwbuf.
// It calls throw if currentwbuf is non-nil.
//go:nowritebarrier
func (w *gcWorkProducer) disposeToCache() {
if wbuf := w.wbuf; wbuf != 0 {
wbuf = wbufptr(xchguintptr(&getg().m.currentwbuf, uintptr(wbuf)))
if wbuf != 0 {
throw("m.currentwbuf non-nil in disposeToCache")
}
w.wbuf = 0
}
}
// tryGet dequeues a pointer for the garbage collector to trace.
//
// If there are no pointers remaining in this gcWork or in the global
// queue, tryGet returns 0. Note that there may still be pointers in
// other gcWork instances or other caches.
//go:nowritebarrier
func (ww *gcWork) tryGet() uintptr {
w := (*gcWork)(noescape(unsafe.Pointer(ww))) // TODO: remove when escape analysis is fixed
wbuf := w.wbuf.ptr()
if wbuf == nil {
wbuf = trygetfull(74)
if wbuf == nil {
return 0
}
w.wbuf = wbufptrOf(wbuf)
}
wbuf.nobj--
obj := wbuf.obj[wbuf.nobj]
if wbuf.nobj == 0 {
putempty(wbuf, 86)
w.wbuf = 0
}
return obj
}
// get dequeues a pointer for the garbage collector to trace, blocking
// if necessary to ensure all pointers from all queues and caches have
// been retrieved. get returns 0 if there are no pointers remaining.
//go:nowritebarrier
func (ww *gcWork) get() uintptr {
w := (*gcWork)(noescape(unsafe.Pointer(ww))) // TODO: remove when escape analysis is fixed
wbuf := w.wbuf.ptr()
if wbuf == nil {
wbuf = getfull(103)
if wbuf == nil {
return 0
}
wbuf.checknonempty()
w.wbuf = wbufptrOf(wbuf)
}
// TODO: This might be a good place to add prefetch code
wbuf.nobj--
obj := wbuf.obj[wbuf.nobj]
if wbuf.nobj == 0 {
putempty(wbuf, 115)
w.wbuf = 0
}
return obj
}
// dispose returns any cached pointers to the global queue.
//go:nowritebarrier
func (w *gcWork) dispose() {
if wbuf := w.wbuf; wbuf != 0 {
// Even though wbuf may only be partially full, we
// want to keep it on the consumer's queues rather
// than putting it back on the producer's queues.
// Hence, we use putfull here.
putfull(wbuf.ptr(), 133)
w.wbuf = 0
}
}
// balance moves some work that's cached in this gcWork back on the
// global queue.
//go:nowritebarrier
func (w *gcWork) balance() {
if wbuf := w.wbuf; wbuf != 0 && wbuf.ptr().nobj > 4 {
w.wbuf = wbufptrOf(handoff(wbuf.ptr()))
}
}
// Internally, the GC work pool is kept in arrays in work buffers.
// The gcWork interface caches a work buffer until full (or empty) to
// avoid contending on the global work buffer lists.
type workbufhdr struct {
node lfnode // must be first
nobj int
inuse bool // This workbuf is in use by some gorotuine and is not on the work.empty/partial/full queues.
log [4]int // line numbers forming a history of ownership changes to workbuf
}
type workbuf struct {
workbufhdr
// account for the above fields
obj [(_WorkbufSize - unsafe.Sizeof(workbufhdr{})) / ptrSize]uintptr
}
// workbuf factory routines. These funcs are used to manage the
// workbufs. They cache workbuf in the m struct field currentwbuf.
// If the GC asks for some work these are the only routines that
// make partially full wbufs available to the GC.
// Each of the gets and puts also take an distinct integer that is used
// to record a brief history of changes to ownership of the workbuf.
// The convention is to use a unique line number but any encoding
// is permissible. For example if you want to pass in 2 bits of information
// you could simple add lineno1*100000+lineno2.
// logget records the past few values of entry to aid in debugging.
// logget checks the buffer b is not currently in use.
func (b *workbuf) logget(entry int) {
if !_Debugwbufs {
return
}
if b.inuse {
println("runtime: logget fails log entry=", entry,
"b.log[0]=", b.log[0], "b.log[1]=", b.log[1],
"b.log[2]=", b.log[2], "b.log[3]=", b.log[3])
throw("logget: get not legal")
}
b.inuse = true
copy(b.log[1:], b.log[:])
b.log[0] = entry
}
// logput records the past few values of entry to aid in debugging.
// logput checks the buffer b is currently in use.
func (b *workbuf) logput(entry int) {
if !_Debugwbufs {
return
}
if !b.inuse {
println("runtime:logput fails log entry=", entry,
"b.log[0]=", b.log[0], "b.log[1]=", b.log[1],
"b.log[2]=", b.log[2], "b.log[3]=", b.log[3])
throw("logput: put not legal")
}
b.inuse = false
copy(b.log[1:], b.log[:])
b.log[0] = entry
}
func (b *workbuf) checknonempty() {
if b.nobj == 0 {
println("runtime: nonempty check fails",
"b.log[0]=", b.log[0], "b.log[1]=", b.log[1],
"b.log[2]=", b.log[2], "b.log[3]=", b.log[3])
throw("workbuf is empty")
}
}
func (b *workbuf) checkempty() {
if b.nobj != 0 {
println("runtime: empty check fails",
"b.log[0]=", b.log[0], "b.log[1]=", b.log[1],
"b.log[2]=", b.log[2], "b.log[3]=", b.log[3])
throw("workbuf is not empty")
}
}
// checknocurrentwbuf checks that the m's currentwbuf field is empty
func checknocurrentwbuf() {
if getg().m.currentwbuf != 0 {
throw("unexpected currentwbuf")
}
}
// getempty pops an empty work buffer off the work.empty list,
// allocating new buffers if none are available.
// entry is used to record a brief history of ownership.
//go:nowritebarrier
func getempty(entry int) *workbuf {
var b *workbuf
if work.empty != 0 {
b = (*workbuf)(lfstackpop(&work.empty))
if b != nil {
b.checkempty()
}
}
if b == nil {
b = (*workbuf)(persistentalloc(unsafe.Sizeof(*b), _CacheLineSize, &memstats.gc_sys))
}
b.logget(entry)
return b
}
// putempty puts a workbuf onto the work.empty list.
// Upon entry this go routine owns b. The lfstackpush relinquishes ownership.
//go:nowritebarrier
func putempty(b *workbuf, entry int) {
b.checkempty()
b.logput(entry)
lfstackpush(&work.empty, &b.node)
}
// putfull puts the workbuf on the work.full list for the GC.
// putfull accepts partially full buffers so the GC can avoid competing
// with the mutators for ownership of partially full buffers.
//go:nowritebarrier
func putfull(b *workbuf, entry int) {
b.checknonempty()
b.logput(entry)
lfstackpush(&work.full, &b.node)
}
// getpartialorempty tries to return a partially empty
// and if none are available returns an empty one.
// entry is used to provide a brief histoy of ownership
// using entry + xxx00000 to
// indicating that two line numbers in the call chain.
//go:nowritebarrier
func getpartialorempty(entry int) *workbuf {
var b *workbuf
// If this m has a buf in currentwbuf then as an optimization
// simply return that buffer. If it turns out currentwbuf
// is full, put it on the work.full queue and get another
// workbuf off the partial or empty queue.
if getg().m.currentwbuf != 0 {
b = (*workbuf)(unsafe.Pointer(xchguintptr(&getg().m.currentwbuf, 0)))
if b != nil {
if b.nobj <= len(b.obj) {
return b
}
putfull(b, entry+80100000)
}
}
b = (*workbuf)(lfstackpop(&work.partial))
if b != nil {
b.logget(entry)
return b
}
// Let getempty do the logget check but
// use the entry to encode that it passed
// through this routine.
b = getempty(entry + 80700000)
return b
}
// putpartial puts empty buffers on the work.empty queue,
// full buffers on the work.full queue and
// others on the work.partial queue.
// entry is used to provide a brief histoy of ownership
// using entry + xxx00000 to
// indicating that two call chain line numbers.
//go:nowritebarrier
func putpartial(b *workbuf, entry int) {
if b.nobj == 0 {
putempty(b, entry+81500000)
} else if b.nobj < len(b.obj) {
b.logput(entry)
lfstackpush(&work.partial, &b.node)
} else if b.nobj == len(b.obj) {
b.logput(entry)
lfstackpush(&work.full, &b.node)
} else {
throw("putpartial: bad Workbuf b.nobj")
}
}
// trygetfull tries to get a full or partially empty workbuffer.
// If one is not immediately available return nil
//go:nowritebarrier
func trygetfull(entry int) *workbuf {
b := (*workbuf)(lfstackpop(&work.full))
if b == nil {
b = (*workbuf)(lfstackpop(&work.partial))
}
if b != nil {
b.logget(entry)
b.checknonempty()
return b
}
// full and partial are both empty so see if there
// is an work available on currentwbuf.
// This is an optimization to shift
// processing from the STW marktermination phase into
// the concurrent mark phase.
if getg().m.currentwbuf != 0 {
b = (*workbuf)(unsafe.Pointer(xchguintptr(&getg().m.currentwbuf, 0)))
if b != nil {
if b.nobj != 0 {
return b
}
putempty(b, 839)
b = nil
}
}
return b
}
// Get a full work buffer off the work.full or a partially
// filled one off the work.partial list. If nothing is available
// wait until all the other gc helpers have finished and then
// return nil.
// getfull acts as a barrier for work.nproc helpers. As long as one
// gchelper is actively marking objects it
// may create a workbuffer that the other helpers can work on.
// The for loop either exits when a work buffer is found
// or when _all_ of the work.nproc GC helpers are in the loop
// looking for work and thus not capable of creating new work.
// This is in fact the termination condition for the STW mark
// phase.
//go:nowritebarrier
func getfull(entry int) *workbuf {
b := (*workbuf)(lfstackpop(&work.full))
if b != nil {
b.logget(entry)
b.checknonempty()
return b
}
b = (*workbuf)(lfstackpop(&work.partial))
if b != nil {
b.logget(entry)
return b
}
// Make sure that currentwbuf is also not a source for pointers to be
// processed. This is an optimization that shifts processing
// from the mark termination STW phase to the concurrent mark phase.
if getg().m.currentwbuf != 0 {
b = (*workbuf)(unsafe.Pointer(xchguintptr(&getg().m.currentwbuf, 0)))
if b != nil {
if b.nobj != 0 {
return b
}
putempty(b, 877)
b = nil
}
}
xadd(&work.nwait, +1)
for i := 0; ; i++ {
if work.full != 0 {
xadd(&work.nwait, -1)
b = (*workbuf)(lfstackpop(&work.full))
if b == nil {
b = (*workbuf)(lfstackpop(&work.partial))
}
if b != nil {
b.logget(entry)
b.checknonempty()
return b
}
xadd(&work.nwait, +1)
}
if work.nwait == work.nproc {
return nil
}
_g_ := getg()
if i < 10 {
_g_.m.gcstats.nprocyield++
procyield(20)
} else if i < 20 {
_g_.m.gcstats.nosyield++
osyield()
} else {
_g_.m.gcstats.nsleep++
usleep(100)
}
}
}
//go:nowritebarrier
func handoff(b *workbuf) *workbuf {
// Make new buffer with half of b's pointers.
b1 := getempty(915)
n := b.nobj / 2
b.nobj -= n
b1.nobj = n
memmove(unsafe.Pointer(&b1.obj[0]), unsafe.Pointer(&b.obj[b.nobj]), uintptr(n)*unsafe.Sizeof(b1.obj[0]))
_g_ := getg()
_g_.m.gcstats.nhandoff++
_g_.m.gcstats.nhandoffcnt += uint64(n)
// Put b on full list - let first half of b get stolen.
putfull(b, 942)
return b1
}
// 1 when you are harvesting so that the write buffer code shade can
// detect calls during a presumable STW write barrier.
var harvestingwbufs uint32
// harvestwbufs moves non-empty workbufs to work.full from m.currentwuf
// Must be in a STW phase.
// xchguintptr is used since there are write barrier calls from the GC helper
// routines even during a STW phase.
// TODO: chase down write barrier calls in STW phase and understand and eliminate
// them.
//go:nowritebarrier
func harvestwbufs() {
// announce to write buffer that you are harvesting the currentwbufs
atomicstore(&harvestingwbufs, 1)
for mp := allm; mp != nil; mp = mp.alllink {
wbuf := (*workbuf)(unsafe.Pointer(xchguintptr(&mp.currentwbuf, 0)))
// TODO: beat write barriers out of the mark termination and eliminate xchg
// tempwbuf := (*workbuf)(unsafe.Pointer(tempm.currentwbuf))
// tempm.currentwbuf = 0
if wbuf != nil {
if wbuf.nobj == 0 {
putempty(wbuf, 945)
} else {
putfull(wbuf, 947) //use full instead of partial so GC doesn't compete to get wbuf
}
}
}
atomicstore(&harvestingwbufs, 0)
}