blob: ebb61ea9459bb2f83af5137f763719c3b0cc5ba1 [file] [log] [blame]
// Derived from Inferno utils/6c/txt.c
// http://code.google.com/p/inferno-os/source/browse/utils/6c/txt.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "gg.h"
// TODO(rsc): Can make this bigger if we move
// the text segment up higher in 6l for all GOOS.
vlong unmappedzero = 4096;
void
clearp(Prog *p)
{
p->as = AEND;
p->from.type = D_NONE;
p->from.index = D_NONE;
p->to.type = D_NONE;
p->to.index = D_NONE;
p->loc = pcloc;
pcloc++;
}
/*
* generate and return proc with p->as = as,
* linked into program. pc is next instruction.
*/
Prog*
prog(int as)
{
Prog *p;
p = pc;
pc = mal(sizeof(*pc));
clearp(pc);
if(lineno == 0) {
if(debug['K'])
warn("prog: line 0");
}
p->as = as;
p->lineno = lineno;
p->link = pc;
return p;
}
/*
* generate a branch.
* t is ignored.
*/
Prog*
gbranch(int as, Type *t)
{
Prog *p;
p = prog(as);
p->to.type = D_BRANCH;
p->to.branch = P;
return p;
}
/*
* patch previous branch to jump to to.
*/
void
patch(Prog *p, Prog *to)
{
if(p->to.type != D_BRANCH)
fatal("patch: not a branch");
p->to.branch = to;
p->to.offset = to->loc;
}
/*
* start a new Prog list.
*/
Plist*
newplist(void)
{
Plist *pl;
pl = mal(sizeof(*pl));
if(plist == nil)
plist = pl;
else
plast->link = pl;
plast = pl;
pc = mal(sizeof(*pc));
clearp(pc);
pl->firstpc = pc;
return pl;
}
void
gused(Node *n)
{
gins(ANOP, n, N); // used
}
Prog*
gjmp(Prog *to)
{
Prog *p;
p = gbranch(AJMP, T);
if(to != P)
patch(p, to);
return p;
}
void
ggloblnod(Node *nam, int32 width)
{
Prog *p;
p = gins(AGLOBL, nam, N);
p->lineno = nam->lineno;
p->to.sym = S;
p->to.type = D_CONST;
p->to.offset = width;
if(nam->readonly)
p->from.scale = RODATA;
}
void
ggloblsym(Sym *s, int32 width, int dupok)
{
Prog *p;
p = gins(AGLOBL, N, N);
p->from.type = D_EXTERN;
p->from.index = D_NONE;
p->from.sym = s;
p->to.type = D_CONST;
p->to.index = D_NONE;
p->to.offset = width;
if(dupok)
p->from.scale = DUPOK;
p->from.scale |= RODATA;
}
int
isfat(Type *t)
{
if(t != T)
switch(t->etype) {
case TSTRUCT:
case TARRAY:
case TSTRING:
case TINTER: // maybe remove later
return 1;
}
return 0;
}
/*
* naddr of func generates code for address of func.
* if using opcode that can take address implicitly,
* call afunclit to fix up the argument.
*/
void
afunclit(Addr *a)
{
if(a->type == D_ADDR && a->index == D_EXTERN) {
a->type = D_EXTERN;
a->index = D_NONE;
}
}
static int resvd[] =
{
D_DI, // for movstring
D_SI, // for movstring
D_AX, // for divide
D_CX, // for shift
D_DX, // for divide
D_SP, // for stack
D_R14, // reserved for m
D_R15, // reserved for u
};
void
ginit(void)
{
int i;
for(i=0; i<nelem(reg); i++)
reg[i] = 1;
for(i=D_AX; i<=D_R15; i++)
reg[i] = 0;
for(i=D_X0; i<=D_X7; i++)
reg[i] = 0;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i]]++;
}
void
gclean(void)
{
int i;
for(i=0; i<nelem(resvd); i++)
reg[resvd[i]]--;
for(i=D_AX; i<=D_R15; i++)
if(reg[i])
yyerror("reg %R left allocated\n", i);
for(i=D_X0; i<=D_X7; i++)
if(reg[i])
yyerror("reg %R left allocated\n", i);
}
int32
anyregalloc(void)
{
int i, j;
for(i=D_AL; i<=D_DI; i++) {
if(reg[i] == 0)
goto ok;
for(j=0; j<nelem(resvd); j++)
if(resvd[j] == i)
goto ok;
return 1;
ok:;
}
return 0;
}
/*
* allocate register of type t, leave in n.
* if o != N, o is desired fixed register.
* caller must regfree(n).
*/
void
regalloc(Node *n, Type *t, Node *o)
{
int i, et;
if(t == T)
fatal("regalloc: t nil");
et = simtype[t->etype];
switch(et) {
case TINT8:
case TUINT8:
case TINT16:
case TUINT16:
case TINT32:
case TUINT32:
case TINT64:
case TUINT64:
case TPTR32:
case TPTR64:
case TBOOL:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= D_AX && i <= D_R15)
goto out;
}
for(i=D_AX; i<=D_R15; i++)
if(reg[i] == 0)
goto out;
yyerror("out of fixed registers");
goto err;
case TFLOAT32:
case TFLOAT64:
if(o != N && o->op == OREGISTER) {
i = o->val.u.reg;
if(i >= D_X0 && i <= D_X7)
goto out;
}
for(i=D_X0; i<=D_X7; i++)
if(reg[i] == 0)
goto out;
yyerror("out of floating registers");
goto err;
case TCOMPLEX64:
case TCOMPLEX128:
tempname(n, t);
return;
}
yyerror("regalloc: unknown type %T", t);
err:
nodreg(n, t, 0);
return;
out:
reg[i]++;
nodreg(n, t, i);
}
void
regfree(Node *n)
{
int i;
if(n->op == ONAME && iscomplex[n->type->etype])
return;
if(n->op != OREGISTER && n->op != OINDREG)
fatal("regfree: not a register");
i = n->val.u.reg;
if(i < 0 || i >= sizeof(reg))
fatal("regfree: reg out of range");
if(reg[i] <= 0)
fatal("regfree: reg not allocated");
reg[i]--;
}
/*
* initialize n to be register r of type t.
*/
void
nodreg(Node *n, Type *t, int r)
{
if(t == T)
fatal("nodreg: t nil");
memset(n, 0, sizeof(*n));
n->op = OREGISTER;
n->addable = 1;
ullmancalc(n);
n->val.u.reg = r;
n->type = t;
}
/*
* initialize n to be indirect of register r; n is type t.
*/
void
nodindreg(Node *n, Type *t, int r)
{
nodreg(n, t, r);
n->op = OINDREG;
}
Node*
nodarg(Type *t, int fp)
{
Node *n;
Type *first;
Iter savet;
// entire argument struct, not just one arg
if(t->etype == TSTRUCT && t->funarg) {
n = nod(ONAME, N, N);
n->sym = lookup(".args");
n->type = t;
first = structfirst(&savet, &t);
if(first == nil)
fatal("nodarg: bad struct");
if(first->width == BADWIDTH)
fatal("nodarg: offset not computed for %T", t);
n->xoffset = first->width;
n->addable = 1;
goto fp;
}
if(t->etype != TFIELD)
fatal("nodarg: not field %T", t);
n = nod(ONAME, N, N);
n->type = t->type;
n->sym = t->sym;
if(t->width == BADWIDTH)
fatal("nodarg: offset not computed for %T", t);
n->xoffset = t->width;
n->addable = 1;
fp:
switch(fp) {
case 0: // output arg
n->op = OINDREG;
n->val.u.reg = D_SP;
break;
case 1: // input arg
n->class = PPARAM;
break;
case 2: // offset output arg
fatal("shouldnt be used");
n->op = OINDREG;
n->val.u.reg = D_SP;
n->xoffset += types[tptr]->width;
break;
}
return n;
}
/*
* generate
* as $c, reg
*/
void
gconreg(int as, vlong c, int reg)
{
Node nr;
nodreg(&nr, types[TINT64], reg);
ginscon(as, c, &nr);
}
/*
* generate
* as $c, n
*/
void
ginscon(int as, vlong c, Node *n2)
{
Node n1, ntmp;
nodconst(&n1, types[TINT64], c);
if(as != AMOVQ && (c < -1LL<<31 || c >= 1LL<<31)) {
// cannot have 64-bit immediokate in ADD, etc.
// instead, MOV into register first.
regalloc(&ntmp, types[TINT64], N);
gins(AMOVQ, &n1, &ntmp);
gins(as, &ntmp, n2);
regfree(&ntmp);
return;
}
gins(as, &n1, n2);
}
#define CASE(a,b) (((a)<<16)|((b)<<0))
/*
* Is this node a memory operand?
*/
int
ismem(Node *n)
{
switch(n->op) {
case OLEN:
case OCAP:
case OINDREG:
case ONAME:
case OPARAM:
return 1;
}
return 0;
}
/*
* set up nodes representing 2^63
*/
Node bigi;
Node bigf;
void
bignodes(void)
{
static int did;
if(did)
return;
did = 1;
nodconst(&bigi, types[TUINT64], 1);
mpshiftfix(bigi.val.u.xval, 63);
bigf = bigi;
bigf.type = types[TFLOAT64];
bigf.val.ctype = CTFLT;
bigf.val.u.fval = mal(sizeof *bigf.val.u.fval);
mpmovefixflt(bigf.val.u.fval, bigi.val.u.xval);
}
/*
* generate move:
* t = f
* hard part is conversions.
*/
// TODO: lost special constants for floating point. XORPD for 0.0?
void
gmove(Node *f, Node *t)
{
int a, ft, tt;
Type *cvt;
Node r1, r2, r3, r4, zero, one, con;
Prog *p1, *p2;
if(debug['M'])
print("gmove %N -> %N\n", f, t);
ft = simsimtype(f->type);
tt = simsimtype(t->type);
cvt = t->type;
if(iscomplex[ft] || iscomplex[tt]) {
complexmove(f, t);
return;
}
// cannot have two memory operands
if(ismem(f) && ismem(t))
goto hard;
// convert constant to desired type
if(f->op == OLITERAL) {
convconst(&con, t->type, &f->val);
f = &con;
ft = tt; // so big switch will choose a simple mov
// some constants can't move directly to memory.
if(ismem(t)) {
// float constants come from memory.
if(isfloat[tt])
goto hard;
// 64-bit immediates are really 32-bit sign-extended
// unless moving into a register.
if(isint[tt]) {
if(mpcmpfixfix(con.val.u.xval, minintval[TINT32]) < 0)
goto hard;
if(mpcmpfixfix(con.val.u.xval, maxintval[TINT32]) > 0)
goto hard;
}
}
}
// value -> value copy, only one memory operand.
// figure out the instruction to use.
// break out of switch for one-instruction gins.
// goto rdst for "destination must be register".
// goto hard for "convert to cvt type first".
// otherwise handle and return.
switch(CASE(ft, tt)) {
default:
fatal("gmove %lT -> %lT", f->type, t->type);
/*
* integer copy and truncate
*/
case CASE(TINT8, TINT8): // same size
case CASE(TINT8, TUINT8):
case CASE(TUINT8, TINT8):
case CASE(TUINT8, TUINT8):
case CASE(TINT16, TINT8): // truncate
case CASE(TUINT16, TINT8):
case CASE(TINT32, TINT8):
case CASE(TUINT32, TINT8):
case CASE(TINT64, TINT8):
case CASE(TUINT64, TINT8):
case CASE(TINT16, TUINT8):
case CASE(TUINT16, TUINT8):
case CASE(TINT32, TUINT8):
case CASE(TUINT32, TUINT8):
case CASE(TINT64, TUINT8):
case CASE(TUINT64, TUINT8):
a = AMOVB;
break;
case CASE(TINT16, TINT16): // same size
case CASE(TINT16, TUINT16):
case CASE(TUINT16, TINT16):
case CASE(TUINT16, TUINT16):
case CASE(TINT32, TINT16): // truncate
case CASE(TUINT32, TINT16):
case CASE(TINT64, TINT16):
case CASE(TUINT64, TINT16):
case CASE(TINT32, TUINT16):
case CASE(TUINT32, TUINT16):
case CASE(TINT64, TUINT16):
case CASE(TUINT64, TUINT16):
a = AMOVW;
break;
case CASE(TINT32, TINT32): // same size
case CASE(TINT32, TUINT32):
case CASE(TUINT32, TINT32):
case CASE(TUINT32, TUINT32):
case CASE(TINT64, TINT32): // truncate
case CASE(TUINT64, TINT32):
case CASE(TINT64, TUINT32):
case CASE(TUINT64, TUINT32):
a = AMOVL;
break;
case CASE(TINT64, TINT64): // same size
case CASE(TINT64, TUINT64):
case CASE(TUINT64, TINT64):
case CASE(TUINT64, TUINT64):
a = AMOVQ;
break;
/*
* integer up-conversions
*/
case CASE(TINT8, TINT16): // sign extend int8
case CASE(TINT8, TUINT16):
a = AMOVBWSX;
goto rdst;
case CASE(TINT8, TINT32):
case CASE(TINT8, TUINT32):
a = AMOVBLSX;
goto rdst;
case CASE(TINT8, TINT64):
case CASE(TINT8, TUINT64):
a = AMOVBQSX;
goto rdst;
case CASE(TUINT8, TINT16): // zero extend uint8
case CASE(TUINT8, TUINT16):
a = AMOVBWZX;
goto rdst;
case CASE(TUINT8, TINT32):
case CASE(TUINT8, TUINT32):
a = AMOVBLZX;
goto rdst;
case CASE(TUINT8, TINT64):
case CASE(TUINT8, TUINT64):
a = AMOVBQZX;
goto rdst;
case CASE(TINT16, TINT32): // sign extend int16
case CASE(TINT16, TUINT32):
a = AMOVWLSX;
goto rdst;
case CASE(TINT16, TINT64):
case CASE(TINT16, TUINT64):
a = AMOVWQSX;
goto rdst;
case CASE(TUINT16, TINT32): // zero extend uint16
case CASE(TUINT16, TUINT32):
a = AMOVWLZX;
goto rdst;
case CASE(TUINT16, TINT64):
case CASE(TUINT16, TUINT64):
a = AMOVWQZX;
goto rdst;
case CASE(TINT32, TINT64): // sign extend int32
case CASE(TINT32, TUINT64):
a = AMOVLQSX;
goto rdst;
case CASE(TUINT32, TINT64): // zero extend uint32
case CASE(TUINT32, TUINT64):
// AMOVL into a register zeros the top of the register,
// so this is not always necessary, but if we rely on AMOVL
// the optimizer is almost certain to screw with us.
a = AMOVLQZX;
goto rdst;
/*
* float to integer
*/
case CASE(TFLOAT32, TINT32):
a = ACVTTSS2SL;
goto rdst;
case CASE(TFLOAT64, TINT32):
a = ACVTTSD2SL;
goto rdst;
case CASE(TFLOAT32, TINT64):
a = ACVTTSS2SQ;
goto rdst;
case CASE(TFLOAT64, TINT64):
a = ACVTTSD2SQ;
goto rdst;
case CASE(TFLOAT32, TINT16):
case CASE(TFLOAT32, TINT8):
case CASE(TFLOAT32, TUINT16):
case CASE(TFLOAT32, TUINT8):
case CASE(TFLOAT64, TINT16):
case CASE(TFLOAT64, TINT8):
case CASE(TFLOAT64, TUINT16):
case CASE(TFLOAT64, TUINT8):
// convert via int32.
cvt = types[TINT32];
goto hard;
case CASE(TFLOAT32, TUINT32):
case CASE(TFLOAT64, TUINT32):
// convert via int64.
cvt = types[TINT64];
goto hard;
case CASE(TFLOAT32, TUINT64):
case CASE(TFLOAT64, TUINT64):
// algorithm is:
// if small enough, use native float64 -> int64 conversion.
// otherwise, subtract 2^63, convert, and add it back.
a = ACVTSS2SQ;
if(ft == TFLOAT64)
a = ACVTSD2SQ;
bignodes();
regalloc(&r1, types[ft], N);
regalloc(&r2, types[tt], t);
regalloc(&r3, types[ft], N);
regalloc(&r4, types[tt], N);
gins(optoas(OAS, f->type), f, &r1);
gins(optoas(OCMP, f->type), &bigf, &r1);
p1 = gbranch(optoas(OLE, f->type), T);
gins(a, &r1, &r2);
p2 = gbranch(AJMP, T);
patch(p1, pc);
gins(optoas(OAS, f->type), &bigf, &r3);
gins(optoas(OSUB, f->type), &r3, &r1);
gins(a, &r1, &r2);
gins(AMOVQ, &bigi, &r4);
gins(AXORQ, &r4, &r2);
patch(p2, pc);
gmove(&r2, t);
regfree(&r4);
regfree(&r3);
regfree(&r2);
regfree(&r1);
return;
/*
* integer to float
*/
case CASE(TINT32, TFLOAT32):
a = ACVTSL2SS;
goto rdst;
case CASE(TINT32, TFLOAT64):
a = ACVTSL2SD;
goto rdst;
case CASE(TINT64, TFLOAT32):
a = ACVTSQ2SS;
goto rdst;
case CASE(TINT64, TFLOAT64):
a = ACVTSQ2SD;
goto rdst;
case CASE(TINT16, TFLOAT32):
case CASE(TINT16, TFLOAT64):
case CASE(TINT8, TFLOAT32):
case CASE(TINT8, TFLOAT64):
case CASE(TUINT16, TFLOAT32):
case CASE(TUINT16, TFLOAT64):
case CASE(TUINT8, TFLOAT32):
case CASE(TUINT8, TFLOAT64):
// convert via int32
cvt = types[TINT32];
goto hard;
case CASE(TUINT32, TFLOAT32):
case CASE(TUINT32, TFLOAT64):
// convert via int64.
cvt = types[TINT64];
goto hard;
case CASE(TUINT64, TFLOAT32):
case CASE(TUINT64, TFLOAT64):
// algorithm is:
// if small enough, use native int64 -> uint64 conversion.
// otherwise, halve (rounding to odd?), convert, and double.
a = ACVTSQ2SS;
if(tt == TFLOAT64)
a = ACVTSQ2SD;
nodconst(&zero, types[TUINT64], 0);
nodconst(&one, types[TUINT64], 1);
regalloc(&r1, f->type, f);
regalloc(&r2, t->type, t);
regalloc(&r3, f->type, N);
regalloc(&r4, f->type, N);
gmove(f, &r1);
gins(ACMPQ, &r1, &zero);
p1 = gbranch(AJLT, T);
gins(a, &r1, &r2);
p2 = gbranch(AJMP, T);
patch(p1, pc);
gmove(&r1, &r3);
gins(ASHRQ, &one, &r3);
gmove(&r1, &r4);
gins(AANDL, &one, &r4);
gins(AORQ, &r4, &r3);
gins(a, &r3, &r2);
gins(optoas(OADD, t->type), &r2, &r2);
patch(p2, pc);
gmove(&r2, t);
regfree(&r4);
regfree(&r3);
regfree(&r2);
regfree(&r1);
return;
/*
* float to float
*/
case CASE(TFLOAT32, TFLOAT32):
a = AMOVSS;
break;
case CASE(TFLOAT64, TFLOAT64):
a = AMOVSD;
break;
case CASE(TFLOAT32, TFLOAT64):
a = ACVTSS2SD;
goto rdst;
case CASE(TFLOAT64, TFLOAT32):
a = ACVTSD2SS;
goto rdst;
}
gins(a, f, t);
return;
rdst:
// requires register destination
regalloc(&r1, t->type, t);
gins(a, f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
hard:
// requires register intermediate
regalloc(&r1, cvt, t);
gmove(f, &r1);
gmove(&r1, t);
regfree(&r1);
return;
}
int
samaddr(Node *f, Node *t)
{
if(f->op != t->op)
return 0;
switch(f->op) {
case OREGISTER:
if(f->val.u.reg != t->val.u.reg)
break;
return 1;
}
return 0;
}
/*
* generate one instruction:
* as f, t
*/
Prog*
gins(int as, Node *f, Node *t)
{
// Node nod;
// int32 v;
Prog *p;
Addr af, at;
// if(f != N && f->op == OINDEX) {
// regalloc(&nod, &regnode, Z);
// v = constnode.vconst;
// cgen(f->right, &nod);
// constnode.vconst = v;
// idx.reg = nod.reg;
// regfree(&nod);
// }
// if(t != N && t->op == OINDEX) {
// regalloc(&nod, &regnode, Z);
// v = constnode.vconst;
// cgen(t->right, &nod);
// constnode.vconst = v;
// idx.reg = nod.reg;
// regfree(&nod);
// }
switch(as) {
case AMOVB:
case AMOVW:
case AMOVL:
case AMOVQ:
case AMOVSS:
case AMOVSD:
if(f != N && t != N && samaddr(f, t))
return nil;
}
memset(&af, 0, sizeof af);
memset(&at, 0, sizeof at);
if(f != N)
naddr(f, &af, 1);
if(t != N)
naddr(t, &at, 1);
p = prog(as);
if(f != N)
p->from = af;
if(t != N)
p->to = at;
if(debug['g'])
print("%P\n", p);
return p;
}
static void
checkoffset(Addr *a, int canemitcode)
{
Prog *p;
if(a->offset < unmappedzero)
return;
if(!canemitcode)
fatal("checkoffset %#llx, cannot emit code", a->offset);
// cannot rely on unmapped nil page at 0 to catch
// reference with large offset. instead, emit explicit
// test of 0(reg).
p = gins(ATESTB, nodintconst(0), N);
p->to = *a;
p->to.offset = 0;
}
/*
* generate code to compute n;
* make a refer to result.
*/
void
naddr(Node *n, Addr *a, int canemitcode)
{
a->scale = 0;
a->index = D_NONE;
a->type = D_NONE;
a->gotype = S;
if(n == N)
return;
switch(n->op) {
default:
fatal("naddr: bad %O %D", n->op, a);
break;
case OREGISTER:
a->type = n->val.u.reg;
a->sym = S;
break;
// case OINDEX:
// case OIND:
// naddr(n->left, a);
// if(a->type >= D_AX && a->type <= D_DI)
// a->type += D_INDIR;
// else
// if(a->type == D_CONST)
// a->type = D_NONE+D_INDIR;
// else
// if(a->type == D_ADDR) {
// a->type = a->index;
// a->index = D_NONE;
// } else
// goto bad;
// if(n->op == OINDEX) {
// a->index = idx.reg;
// a->scale = n->scale;
// }
// break;
case OINDREG:
a->type = n->val.u.reg+D_INDIR;
a->sym = n->sym;
a->offset = n->xoffset;
checkoffset(a, canemitcode);
break;
case OPARAM:
// n->left is PHEAP ONAME for stack parameter.
// compute address of actual parameter on stack.
a->etype = simtype[n->left->type->etype];
a->width = n->left->type->width;
a->offset = n->xoffset;
a->sym = n->left->sym;
a->type = D_PARAM;
break;
case ONAME:
a->etype = 0;
a->width = 0;
if(n->type != T) {
a->etype = simtype[n->type->etype];
a->width = n->type->width;
a->gotype = ngotype(n);
}
a->pun = n->pun;
a->offset = n->xoffset;
a->sym = n->sym;
if(a->sym == S)
a->sym = lookup(".noname");
if(n->method) {
if(n->type != T)
if(n->type->sym != S)
if(n->type->sym->pkg != nil)
a->sym = pkglookup(a->sym->name, n->type->sym->pkg);
}
switch(n->class) {
default:
fatal("naddr: ONAME class %S %d\n", n->sym, n->class);
case PEXTERN:
a->type = D_EXTERN;
break;
case PAUTO:
a->type = D_AUTO;
break;
case PPARAM:
case PPARAMOUT:
a->type = D_PARAM;
break;
case PFUNC:
a->index = D_EXTERN;
a->type = D_ADDR;
break;
}
break;
case OLITERAL:
switch(n->val.ctype) {
default:
fatal("naddr: const %lT", n->type);
break;
case CTFLT:
a->type = D_FCONST;
a->dval = mpgetflt(n->val.u.fval);
break;
case CTINT:
a->sym = S;
a->type = D_CONST;
a->offset = mpgetfix(n->val.u.xval);
break;
case CTSTR:
datagostring(n->val.u.sval, a);
break;
case CTBOOL:
a->sym = S;
a->type = D_CONST;
a->offset = n->val.u.bval;
break;
case CTNIL:
a->sym = S;
a->type = D_CONST;
a->offset = 0;
break;
}
break;
case OADDR:
naddr(n->left, a, canemitcode);
if(a->type >= D_INDIR) {
a->type -= D_INDIR;
break;
}
if(a->type == D_EXTERN || a->type == D_STATIC ||
a->type == D_AUTO || a->type == D_PARAM)
if(a->index == D_NONE) {
a->index = a->type;
a->type = D_ADDR;
break;
}
fatal("naddr: OADDR\n");
case OLEN:
// len of string or slice
naddr(n->left, a, canemitcode);
if(a->type == D_CONST && a->offset == 0)
break; // len(nil)
a->etype = TUINT;
a->offset += Array_nel;
if(a->offset >= unmappedzero && a->offset-Array_nel < unmappedzero)
checkoffset(a, canemitcode);
break;
case OCAP:
// cap of string or slice
naddr(n->left, a, canemitcode);
if(a->type == D_CONST && a->offset == 0)
break; // cap(nil)
a->etype = TUINT;
a->offset += Array_cap;
if(a->offset >= unmappedzero && a->offset-Array_cap < unmappedzero)
checkoffset(a, canemitcode);
break;
// case OADD:
// if(n->right->op == OLITERAL) {
// v = n->right->vconst;
// naddr(n->left, a, canemitcode);
// } else
// if(n->left->op == OLITERAL) {
// v = n->left->vconst;
// naddr(n->right, a, canemitcode);
// } else
// goto bad;
// a->offset += v;
// break;
}
}
/*
* return Axxx for Oxxx on type t.
*/
int
optoas(int op, Type *t)
{
int a;
if(t == T)
fatal("optoas: t is nil");
a = AGOK;
switch(CASE(op, simtype[t->etype])) {
default:
fatal("optoas: no entry %O-%T", op, t);
break;
case CASE(OADDR, TPTR32):
a = ALEAL;
break;
case CASE(OADDR, TPTR64):
a = ALEAQ;
break;
case CASE(OEQ, TBOOL):
case CASE(OEQ, TINT8):
case CASE(OEQ, TUINT8):
case CASE(OEQ, TINT16):
case CASE(OEQ, TUINT16):
case CASE(OEQ, TINT32):
case CASE(OEQ, TUINT32):
case CASE(OEQ, TINT64):
case CASE(OEQ, TUINT64):
case CASE(OEQ, TPTR32):
case CASE(OEQ, TPTR64):
case CASE(OEQ, TFLOAT32):
case CASE(OEQ, TFLOAT64):
a = AJEQ;
break;
case CASE(ONE, TBOOL):
case CASE(ONE, TINT8):
case CASE(ONE, TUINT8):
case CASE(ONE, TINT16):
case CASE(ONE, TUINT16):
case CASE(ONE, TINT32):
case CASE(ONE, TUINT32):
case CASE(ONE, TINT64):
case CASE(ONE, TUINT64):
case CASE(ONE, TPTR32):
case CASE(ONE, TPTR64):
case CASE(ONE, TFLOAT32):
case CASE(ONE, TFLOAT64):
a = AJNE;
break;
case CASE(OLT, TINT8):
case CASE(OLT, TINT16):
case CASE(OLT, TINT32):
case CASE(OLT, TINT64):
a = AJLT;
break;
case CASE(OLT, TUINT8):
case CASE(OLT, TUINT16):
case CASE(OLT, TUINT32):
case CASE(OLT, TUINT64):
a = AJCS;
break;
case CASE(OLE, TINT8):
case CASE(OLE, TINT16):
case CASE(OLE, TINT32):
case CASE(OLE, TINT64):
a = AJLE;
break;
case CASE(OLE, TUINT8):
case CASE(OLE, TUINT16):
case CASE(OLE, TUINT32):
case CASE(OLE, TUINT64):
a = AJLS;
break;
case CASE(OGT, TINT8):
case CASE(OGT, TINT16):
case CASE(OGT, TINT32):
case CASE(OGT, TINT64):
a = AJGT;
break;
case CASE(OGT, TUINT8):
case CASE(OGT, TUINT16):
case CASE(OGT, TUINT32):
case CASE(OGT, TUINT64):
case CASE(OLT, TFLOAT32):
case CASE(OLT, TFLOAT64):
a = AJHI;
break;
case CASE(OGE, TINT8):
case CASE(OGE, TINT16):
case CASE(OGE, TINT32):
case CASE(OGE, TINT64):
a = AJGE;
break;
case CASE(OGE, TUINT8):
case CASE(OGE, TUINT16):
case CASE(OGE, TUINT32):
case CASE(OGE, TUINT64):
case CASE(OLE, TFLOAT32):
case CASE(OLE, TFLOAT64):
a = AJCC;
break;
case CASE(OCMP, TBOOL):
case CASE(OCMP, TINT8):
case CASE(OCMP, TUINT8):
a = ACMPB;
break;
case CASE(OCMP, TINT16):
case CASE(OCMP, TUINT16):
a = ACMPW;
break;
case CASE(OCMP, TINT32):
case CASE(OCMP, TUINT32):
case CASE(OCMP, TPTR32):
a = ACMPL;
break;
case CASE(OCMP, TINT64):
case CASE(OCMP, TUINT64):
case CASE(OCMP, TPTR64):
a = ACMPQ;
break;
case CASE(OCMP, TFLOAT32):
a = AUCOMISS;
break;
case CASE(OCMP, TFLOAT64):
a = AUCOMISD;
break;
case CASE(OAS, TBOOL):
case CASE(OAS, TINT8):
case CASE(OAS, TUINT8):
a = AMOVB;
break;
case CASE(OAS, TINT16):
case CASE(OAS, TUINT16):
a = AMOVW;
break;
case CASE(OAS, TINT32):
case CASE(OAS, TUINT32):
case CASE(OAS, TPTR32):
a = AMOVL;
break;
case CASE(OAS, TINT64):
case CASE(OAS, TUINT64):
case CASE(OAS, TPTR64):
a = AMOVQ;
break;
case CASE(OAS, TFLOAT32):
a = AMOVSS;
break;
case CASE(OAS, TFLOAT64):
a = AMOVSD;
break;
case CASE(OADD, TINT8):
case CASE(OADD, TUINT8):
a = AADDB;
break;
case CASE(OADD, TINT16):
case CASE(OADD, TUINT16):
a = AADDW;
break;
case CASE(OADD, TINT32):
case CASE(OADD, TUINT32):
case CASE(OADD, TPTR32):
a = AADDL;
break;
case CASE(OADD, TINT64):
case CASE(OADD, TUINT64):
case CASE(OADD, TPTR64):
a = AADDQ;
break;
case CASE(OADD, TFLOAT32):
a = AADDSS;
break;
case CASE(OADD, TFLOAT64):
a = AADDSD;
break;
case CASE(OSUB, TINT8):
case CASE(OSUB, TUINT8):
a = ASUBB;
break;
case CASE(OSUB, TINT16):
case CASE(OSUB, TUINT16):
a = ASUBW;
break;
case CASE(OSUB, TINT32):
case CASE(OSUB, TUINT32):
case CASE(OSUB, TPTR32):
a = ASUBL;
break;
case CASE(OSUB, TINT64):
case CASE(OSUB, TUINT64):
case CASE(OSUB, TPTR64):
a = ASUBQ;
break;
case CASE(OSUB, TFLOAT32):
a = ASUBSS;
break;
case CASE(OSUB, TFLOAT64):
a = ASUBSD;
break;
case CASE(OINC, TINT8):
case CASE(OINC, TUINT8):
a = AINCB;
break;
case CASE(OINC, TINT16):
case CASE(OINC, TUINT16):
a = AINCW;
break;
case CASE(OINC, TINT32):
case CASE(OINC, TUINT32):
case CASE(OINC, TPTR32):
a = AINCL;
break;
case CASE(OINC, TINT64):
case CASE(OINC, TUINT64):
case CASE(OINC, TPTR64):
a = AINCQ;
break;
case CASE(ODEC, TINT8):
case CASE(ODEC, TUINT8):
a = ADECB;
break;
case CASE(ODEC, TINT16):
case CASE(ODEC, TUINT16):
a = ADECW;
break;
case CASE(ODEC, TINT32):
case CASE(ODEC, TUINT32):
case CASE(ODEC, TPTR32):
a = ADECL;
break;
case CASE(ODEC, TINT64):
case CASE(ODEC, TUINT64):
case CASE(ODEC, TPTR64):
a = ADECQ;
break;
case CASE(OMINUS, TINT8):
case CASE(OMINUS, TUINT8):
a = ANEGB;
break;
case CASE(OMINUS, TINT16):
case CASE(OMINUS, TUINT16):
a = ANEGW;
break;
case CASE(OMINUS, TINT32):
case CASE(OMINUS, TUINT32):
case CASE(OMINUS, TPTR32):
a = ANEGL;
break;
case CASE(OMINUS, TINT64):
case CASE(OMINUS, TUINT64):
case CASE(OMINUS, TPTR64):
a = ANEGQ;
break;
case CASE(OAND, TINT8):
case CASE(OAND, TUINT8):
a = AANDB;
break;
case CASE(OAND, TINT16):
case CASE(OAND, TUINT16):
a = AANDW;
break;
case CASE(OAND, TINT32):
case CASE(OAND, TUINT32):
case CASE(OAND, TPTR32):
a = AANDL;
break;
case CASE(OAND, TINT64):
case CASE(OAND, TUINT64):
case CASE(OAND, TPTR64):
a = AANDQ;
break;
case CASE(OOR, TINT8):
case CASE(OOR, TUINT8):
a = AORB;
break;
case CASE(OOR, TINT16):
case CASE(OOR, TUINT16):
a = AORW;
break;
case CASE(OOR, TINT32):
case CASE(OOR, TUINT32):
case CASE(OOR, TPTR32):
a = AORL;
break;
case CASE(OOR, TINT64):
case CASE(OOR, TUINT64):
case CASE(OOR, TPTR64):
a = AORQ;
break;
case CASE(OXOR, TINT8):
case CASE(OXOR, TUINT8):
a = AXORB;
break;
case CASE(OXOR, TINT16):
case CASE(OXOR, TUINT16):
a = AXORW;
break;
case CASE(OXOR, TINT32):
case CASE(OXOR, TUINT32):
case CASE(OXOR, TPTR32):
a = AXORL;
break;
case CASE(OXOR, TINT64):
case CASE(OXOR, TUINT64):
case CASE(OXOR, TPTR64):
a = AXORQ;
break;
case CASE(OLSH, TINT8):
case CASE(OLSH, TUINT8):
a = ASHLB;
break;
case CASE(OLSH, TINT16):
case CASE(OLSH, TUINT16):
a = ASHLW;
break;
case CASE(OLSH, TINT32):
case CASE(OLSH, TUINT32):
case CASE(OLSH, TPTR32):
a = ASHLL;
break;
case CASE(OLSH, TINT64):
case CASE(OLSH, TUINT64):
case CASE(OLSH, TPTR64):
a = ASHLQ;
break;
case CASE(ORSH, TUINT8):
a = ASHRB;
break;
case CASE(ORSH, TUINT16):
a = ASHRW;
break;
case CASE(ORSH, TUINT32):
case CASE(ORSH, TPTR32):
a = ASHRL;
break;
case CASE(ORSH, TUINT64):
case CASE(ORSH, TPTR64):
a = ASHRQ;
break;
case CASE(ORSH, TINT8):
a = ASARB;
break;
case CASE(ORSH, TINT16):
a = ASARW;
break;
case CASE(ORSH, TINT32):
a = ASARL;
break;
case CASE(ORSH, TINT64):
a = ASARQ;
break;
case CASE(ORRC, TINT8):
case CASE(ORRC, TUINT8):
a = ARCRB;
break;
case CASE(ORRC, TINT16):
case CASE(ORRC, TUINT16):
a = ARCRW;
break;
case CASE(ORRC, TINT32):
case CASE(ORRC, TUINT32):
a = ARCRL;
break;
case CASE(ORRC, TINT64):
case CASE(ORRC, TUINT64):
a = ARCRQ;
break;
case CASE(OHMUL, TINT8):
case CASE(OMUL, TINT8):
case CASE(OMUL, TUINT8):
a = AIMULB;
break;
case CASE(OHMUL, TINT16):
case CASE(OMUL, TINT16):
case CASE(OMUL, TUINT16):
a = AIMULW;
break;
case CASE(OHMUL, TINT32):
case CASE(OMUL, TINT32):
case CASE(OMUL, TUINT32):
case CASE(OMUL, TPTR32):
a = AIMULL;
break;
case CASE(OHMUL, TINT64):
case CASE(OMUL, TINT64):
case CASE(OMUL, TUINT64):
case CASE(OMUL, TPTR64):
a = AIMULQ;
break;
case CASE(OHMUL, TUINT8):
a = AMULB;
break;
case CASE(OHMUL, TUINT16):
a = AMULW;
break;
case CASE(OHMUL, TUINT32):
case CASE(OHMUL, TPTR32):
a = AMULL;
break;
case CASE(OHMUL, TUINT64):
case CASE(OHMUL, TPTR64):
a = AMULQ;
break;
case CASE(OMUL, TFLOAT32):
a = AMULSS;
break;
case CASE(OMUL, TFLOAT64):
a = AMULSD;
break;
case CASE(ODIV, TINT8):
case CASE(OMOD, TINT8):
a = AIDIVB;
break;
case CASE(ODIV, TUINT8):
case CASE(OMOD, TUINT8):
a = ADIVB;
break;
case CASE(ODIV, TINT16):
case CASE(OMOD, TINT16):
a = AIDIVW;
break;
case CASE(ODIV, TUINT16):
case CASE(OMOD, TUINT16):
a = ADIVW;
break;
case CASE(ODIV, TINT32):
case CASE(OMOD, TINT32):
a = AIDIVL;
break;
case CASE(ODIV, TUINT32):
case CASE(ODIV, TPTR32):
case CASE(OMOD, TUINT32):
case CASE(OMOD, TPTR32):
a = ADIVL;
break;
case CASE(ODIV, TINT64):
case CASE(OMOD, TINT64):
a = AIDIVQ;
break;
case CASE(ODIV, TUINT64):
case CASE(ODIV, TPTR64):
case CASE(OMOD, TUINT64):
case CASE(OMOD, TPTR64):
a = ADIVQ;
break;
case CASE(OEXTEND, TINT16):
a = ACWD;
break;
case CASE(OEXTEND, TINT32):
a = ACDQ;
break;
case CASE(OEXTEND, TINT64):
a = ACQO;
break;
case CASE(ODIV, TFLOAT32):
a = ADIVSS;
break;
case CASE(ODIV, TFLOAT64):
a = ADIVSD;
break;
}
return a;
}
enum
{
ODynam = 1<<0,
OAddable = 1<<1,
};
static Node clean[20];
static int cleani = 0;
int
xgen(Node *n, Node *a, int o)
{
regalloc(a, types[tptr], N);
if(o & ODynam)
if(n->addable)
if(n->op != OINDREG)
if(n->op != OREGISTER)
return 1;
agen(n, a);
return 0;
}
void
sudoclean(void)
{
if(clean[cleani-1].op != OEMPTY)
regfree(&clean[cleani-1]);
if(clean[cleani-2].op != OEMPTY)
regfree(&clean[cleani-2]);
cleani -= 2;
}
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
int
sudoaddable(int as, Node *n, Addr *a)
{
int o, i, w;
int oary[10];
int64 v;
Node n1, n2, n3, n4, *nn, *l, *r;
Node *reg, *reg1;
Prog *p1;
Type *t;
if(n->type == T)
return 0;
switch(n->op) {
case OLITERAL:
if(n->val.ctype != CTINT)
break;
v = mpgetfix(n->val.u.xval);
if(v >= 32000 || v <= -32000)
break;
goto lit;
case ODOT:
case ODOTPTR:
cleani += 2;
reg = &clean[cleani-1];
reg1 = &clean[cleani-2];
reg->op = OEMPTY;
reg1->op = OEMPTY;
goto odot;
case OINDEX:
if(n->left->type->etype == TSTRING)
return 0;
goto oindex;
}
return 0;
lit:
switch(as) {
default:
return 0;
case AADDB: case AADDW: case AADDL: case AADDQ:
case ASUBB: case ASUBW: case ASUBL: case ASUBQ:
case AANDB: case AANDW: case AANDL: case AANDQ:
case AORB: case AORW: case AORL: case AORQ:
case AXORB: case AXORW: case AXORL: case AXORQ:
case AINCB: case AINCW: case AINCL: case AINCQ:
case ADECB: case ADECW: case ADECL: case ADECQ:
case AMOVB: case AMOVW: case AMOVL: case AMOVQ:
break;
}
cleani += 2;
reg = &clean[cleani-1];
reg1 = &clean[cleani-2];
reg->op = OEMPTY;
reg1->op = OEMPTY;
naddr(n, a, 1);
goto yes;
odot:
o = dotoffset(n, oary, &nn);
if(nn == N)
goto no;
if(nn->addable && o == 1 && oary[0] >= 0) {
// directly addressable set of DOTs
n1 = *nn;
n1.type = n->type;
n1.xoffset += oary[0];
naddr(&n1, a, 1);
goto yes;
}
regalloc(reg, types[tptr], N);
n1 = *reg;
n1.op = OINDREG;
if(oary[0] >= 0) {
agen(nn, reg);
n1.xoffset = oary[0];
} else {
cgen(nn, reg);
n1.xoffset = -(oary[0]+1);
}
for(i=1; i<o; i++) {
if(oary[i] >= 0)
fatal("cant happen");
gins(AMOVQ, &n1, reg);
n1.xoffset = -(oary[i]+1);
}
a->type = D_NONE;
a->index = D_NONE;
naddr(&n1, a, 1);
goto yes;
oindex:
l = n->left;
r = n->right;
if(l->ullman >= UINF && r->ullman >= UINF)
return 0;
// set o to type of array
o = 0;
if(isptr[l->type->etype])
fatal("ptr ary");
if(l->type->etype != TARRAY)
fatal("not ary");
if(l->type->bound < 0)
o |= ODynam;
w = n->type->width;
if(isconst(r, CTINT))
goto oindex_const;
switch(w) {
default:
return 0;
case 1:
case 2:
case 4:
case 8:
break;
}
cleani += 2;
reg = &clean[cleani-1];
reg1 = &clean[cleani-2];
reg->op = OEMPTY;
reg1->op = OEMPTY;
// load the array (reg)
if(l->ullman > r->ullman) {
if(xgen(l, reg, o))
o |= OAddable;
}
// load the index (reg1)
t = types[TUINT64];
if(issigned[r->type->etype])
t = types[TINT64];
regalloc(reg1, t, N);
regalloc(&n3, r->type, reg1);
cgen(r, &n3);
gmove(&n3, reg1);
regfree(&n3);
// load the array (reg)
if(l->ullman <= r->ullman) {
if(xgen(l, reg, o))
o |= OAddable;
}
if(!(o & ODynam) && l->type->width >= unmappedzero && l->op == OIND) {
// cannot rely on page protections to
// catch array ptr == 0, so dereference.
n2 = *reg;
n2.xoffset = 0;
n2.op = OINDREG;
n2.type = types[TUINT8];
gins(ATESTB, nodintconst(0), &n2);
}
// check bounds
if(!debug['B'] && !n->etype) {
// check bounds
n4.op = OXXX;
t = types[TUINT32];
if(o & ODynam) {
if(o & OAddable) {
n2 = *l;
n2.xoffset += Array_nel;
n2.type = types[TUINT32];
if(is64(r->type)) {
t = types[TUINT64];
regalloc(&n4, t, N);
gmove(&n2, &n4);
n2 = n4;
}
} else {
n2 = *reg;
n2.xoffset = Array_nel;
n2.op = OINDREG;
n2.type = types[TUINT32];
if(is64(r->type)) {
t = types[TUINT64];
regalloc(&n4, t, N);
gmove(&n2, &n4);
n2 = n4;
}
}
} else {
if(is64(r->type))
t = types[TUINT64];
nodconst(&n2, types[TUINT64], l->type->bound);
}
gins(optoas(OCMP, t), reg1, &n2);
p1 = gbranch(optoas(OLT, t), T);
if(n4.op != OXXX)
regfree(&n4);
ginscall(panicindex, 0);
patch(p1, pc);
}
if(o & ODynam) {
if(o & OAddable) {
n2 = *l;
n2.xoffset += Array_array;
n2.type = types[TUINT64];
gmove(&n2, reg);
} else {
n2 = *reg;
n2.xoffset = Array_array;
n2.op = OINDREG;
n2.type = types[tptr];
gmove(&n2, reg);
}
}
if(o & OAddable) {
naddr(reg1, a, 1);
a->offset = 0;
a->scale = w;
a->index = a->type;
a->type = reg->val.u.reg + D_INDIR;
} else {
naddr(reg1, a, 1);
a->offset = 0;
a->scale = w;
a->index = a->type;
a->type = reg->val.u.reg + D_INDIR;
}
goto yes;
oindex_const:
// index is constant
// can check statically and
// can multiply by width statically
v = mpgetfix(r->val.u.xval);
if(sudoaddable(as, l, a))
goto oindex_const_sudo;
cleani += 2;
reg = &clean[cleani-1];
reg1 = &clean[cleani-2];
reg->op = OEMPTY;
reg1->op = OEMPTY;
regalloc(reg, types[tptr], N);
agen(l, reg);
if(o & ODynam) {
if(!debug['B'] && !n->etype) {
n1 = *reg;
n1.op = OINDREG;
n1.type = types[tptr];
n1.xoffset = Array_nel;
nodconst(&n2, types[TUINT64], v);
gins(optoas(OCMP, types[TUINT32]), &n1, &n2);
p1 = gbranch(optoas(OGT, types[TUINT32]), T);
ginscall(panicindex, 0);
patch(p1, pc);
}
n1 = *reg;
n1.op = OINDREG;
n1.type = types[tptr];
n1.xoffset = Array_array;
gmove(&n1, reg);
}
n2 = *reg;
n2.op = OINDREG;
n2.xoffset = v*w;
a->type = D_NONE;
a->index = D_NONE;
naddr(&n2, a, 1);
goto yes;
oindex_const_sudo:
if((o & ODynam) == 0) {
// array indexed by a constant
a->offset += v*w;
goto yes;
}
// slice indexed by a constant
if(!debug['B'] && !n->etype) {
a->offset += Array_nel;
nodconst(&n2, types[TUINT64], v);
p1 = gins(optoas(OCMP, types[TUINT32]), N, &n2);
p1->from = *a;
p1 = gbranch(optoas(OGT, types[TUINT32]), T);
ginscall(panicindex, 0);
patch(p1, pc);
a->offset -= Array_nel;
}
a->offset += Array_array;
reg = &clean[cleani-1];
if(reg->op == OEMPTY)
regalloc(reg, types[tptr], N);
p1 = gins(AMOVQ, N, reg);
p1->from = *a;
n2 = *reg;
n2.op = OINDREG;
n2.xoffset = v*w;
a->type = D_NONE;
a->index = D_NONE;
naddr(&n2, a, 1);
goto yes;
yes:
return 1;
no:
sudoclean();
return 0;
}