| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs_GOOS_GOARCH.h" |
| #include "os_GOOS.h" |
| #include "signal_unix.h" |
| #include "stack.h" |
| #include "textflag.h" |
| |
| extern SigTab runtime·sigtab[]; |
| |
| static Sigset sigset_none; |
| static Sigset sigset_all = ~(Sigset)0; |
| |
| static void |
| unimplemented(int8 *name) |
| { |
| runtime·prints(name); |
| runtime·prints(" not implemented\n"); |
| *(int32*)1231 = 1231; |
| } |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime·semawakeup(M *mp) |
| { |
| runtime·mach_semrelease(mp->waitsema); |
| } |
| |
| static void |
| semacreate(void) |
| { |
| g->m->scalararg[0] = runtime·mach_semcreate(); |
| } |
| |
| #pragma textflag NOSPLIT |
| uintptr |
| runtime·semacreate(void) |
| { |
| uintptr x; |
| void (*fn)(void); |
| |
| fn = semacreate; |
| runtime·onM(&fn); |
| x = g->m->scalararg[0]; |
| g->m->scalararg[0] = 0; |
| return x; |
| } |
| |
| // BSD interface for threading. |
| void |
| runtime·osinit(void) |
| { |
| // bsdthread_register delayed until end of goenvs so that we |
| // can look at the environment first. |
| |
| // Use sysctl to fetch hw.ncpu. |
| uint32 mib[2]; |
| uint32 out; |
| int32 ret; |
| uintptr nout; |
| |
| mib[0] = 6; |
| mib[1] = 3; |
| nout = sizeof out; |
| out = 0; |
| ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); |
| if(ret >= 0) |
| runtime·ncpu = out; |
| } |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime·get_random_data(byte **rnd, int32 *rnd_len) |
| { |
| #pragma dataflag NOPTR |
| static byte urandom_data[HashRandomBytes]; |
| int32 fd; |
| fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0); |
| if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) { |
| *rnd = urandom_data; |
| *rnd_len = HashRandomBytes; |
| } else { |
| *rnd = nil; |
| *rnd_len = 0; |
| } |
| runtime·close(fd); |
| } |
| |
| void |
| runtime·goenvs(void) |
| { |
| runtime·goenvs_unix(); |
| |
| // Register our thread-creation callback (see sys_darwin_{amd64,386}.s) |
| // but only if we're not using cgo. If we are using cgo we need |
| // to let the C pthread library install its own thread-creation callback. |
| if(!runtime·iscgo) { |
| if(runtime·bsdthread_register() != 0) { |
| if(runtime·getenv("DYLD_INSERT_LIBRARIES")) |
| runtime·throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)"); |
| runtime·throw("runtime: bsdthread_register error"); |
| } |
| } |
| |
| } |
| |
| void |
| runtime·newosproc(M *mp, void *stk) |
| { |
| int32 errno; |
| Sigset oset; |
| |
| mp->tls[0] = mp->id; // so 386 asm can find it |
| if(0){ |
| runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n", |
| stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp); |
| } |
| |
| runtime·sigprocmask(SIG_SETMASK, &sigset_all, &oset); |
| errno = runtime·bsdthread_create(stk, mp, mp->g0, runtime·mstart); |
| runtime·sigprocmask(SIG_SETMASK, &oset, nil); |
| |
| if(errno < 0) { |
| runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno); |
| runtime·throw("runtime.newosproc"); |
| } |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| void |
| runtime·mpreinit(M *mp) |
| { |
| mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K |
| mp->gsignal->m = mp; |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, can not allocate memory. |
| void |
| runtime·minit(void) |
| { |
| // Initialize signal handling. |
| runtime·signalstack((byte*)g->m->gsignal->stack.lo, 32*1024); |
| |
| runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil); |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| void |
| runtime·unminit(void) |
| { |
| runtime·signalstack(nil, 0); |
| } |
| |
| // Mach IPC, to get at semaphores |
| // Definitions are in /usr/include/mach on a Mac. |
| |
| static void |
| macherror(int32 r, int8 *fn) |
| { |
| runtime·prints("mach error "); |
| runtime·prints(fn); |
| runtime·prints(": "); |
| runtime·printint(r); |
| runtime·prints("\n"); |
| runtime·throw("mach error"); |
| } |
| |
| enum |
| { |
| DebugMach = 0 |
| }; |
| |
| static MachNDR zerondr; |
| |
| #define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8)) |
| |
| static int32 |
| mach_msg(MachHeader *h, |
| int32 op, |
| uint32 send_size, |
| uint32 rcv_size, |
| uint32 rcv_name, |
| uint32 timeout, |
| uint32 notify) |
| { |
| // TODO: Loop on interrupt. |
| return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify); |
| } |
| |
| // Mach RPC (MIG) |
| |
| enum |
| { |
| MinMachMsg = 48, |
| Reply = 100, |
| }; |
| |
| #pragma pack on |
| typedef struct CodeMsg CodeMsg; |
| struct CodeMsg |
| { |
| MachHeader h; |
| MachNDR NDR; |
| int32 code; |
| }; |
| #pragma pack off |
| |
| static int32 |
| machcall(MachHeader *h, int32 maxsize, int32 rxsize) |
| { |
| uint32 *p; |
| int32 i, ret, id; |
| uint32 port; |
| CodeMsg *c; |
| |
| if((port = g->m->machport) == 0){ |
| port = runtime·mach_reply_port(); |
| g->m->machport = port; |
| } |
| |
| h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE); |
| h->msgh_local_port = port; |
| h->msgh_reserved = 0; |
| id = h->msgh_id; |
| |
| if(DebugMach){ |
| p = (uint32*)h; |
| runtime·prints("send:\t"); |
| for(i=0; i<h->msgh_size/sizeof(p[0]); i++){ |
| runtime·prints(" "); |
| runtime·printpointer((void*)p[i]); |
| if(i%8 == 7) |
| runtime·prints("\n\t"); |
| } |
| if(i%8) |
| runtime·prints("\n"); |
| } |
| |
| ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG, |
| h->msgh_size, maxsize, port, 0, 0); |
| if(ret != 0){ |
| if(DebugMach){ |
| runtime·prints("mach_msg error "); |
| runtime·printint(ret); |
| runtime·prints("\n"); |
| } |
| return ret; |
| } |
| |
| if(DebugMach){ |
| p = (uint32*)h; |
| runtime·prints("recv:\t"); |
| for(i=0; i<h->msgh_size/sizeof(p[0]); i++){ |
| runtime·prints(" "); |
| runtime·printpointer((void*)p[i]); |
| if(i%8 == 7) |
| runtime·prints("\n\t"); |
| } |
| if(i%8) |
| runtime·prints("\n"); |
| } |
| |
| if(h->msgh_id != id+Reply){ |
| if(DebugMach){ |
| runtime·prints("mach_msg reply id mismatch "); |
| runtime·printint(h->msgh_id); |
| runtime·prints(" != "); |
| runtime·printint(id+Reply); |
| runtime·prints("\n"); |
| } |
| return -303; // MIG_REPLY_MISMATCH |
| } |
| |
| // Look for a response giving the return value. |
| // Any call can send this back with an error, |
| // and some calls only have return values so they |
| // send it back on success too. I don't quite see how |
| // you know it's one of these and not the full response |
| // format, so just look if the message is right. |
| c = (CodeMsg*)h; |
| if(h->msgh_size == sizeof(CodeMsg) |
| && !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){ |
| if(DebugMach){ |
| runtime·prints("mig result "); |
| runtime·printint(c->code); |
| runtime·prints("\n"); |
| } |
| return c->code; |
| } |
| |
| if(h->msgh_size != rxsize){ |
| if(DebugMach){ |
| runtime·prints("mach_msg reply size mismatch "); |
| runtime·printint(h->msgh_size); |
| runtime·prints(" != "); |
| runtime·printint(rxsize); |
| runtime·prints("\n"); |
| } |
| return -307; // MIG_ARRAY_TOO_LARGE |
| } |
| |
| return 0; |
| } |
| |
| |
| // Semaphores! |
| |
| enum |
| { |
| Tmach_semcreate = 3418, |
| Rmach_semcreate = Tmach_semcreate + Reply, |
| |
| Tmach_semdestroy = 3419, |
| Rmach_semdestroy = Tmach_semdestroy + Reply, |
| |
| // Mach calls that get interrupted by Unix signals |
| // return this error code. We retry them. |
| KERN_ABORTED = 14, |
| KERN_OPERATION_TIMED_OUT = 49, |
| }; |
| |
| typedef struct Tmach_semcreateMsg Tmach_semcreateMsg; |
| typedef struct Rmach_semcreateMsg Rmach_semcreateMsg; |
| typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg; |
| // Rmach_semdestroyMsg = CodeMsg |
| |
| #pragma pack on |
| struct Tmach_semcreateMsg |
| { |
| MachHeader h; |
| MachNDR ndr; |
| int32 policy; |
| int32 value; |
| }; |
| |
| struct Rmach_semcreateMsg |
| { |
| MachHeader h; |
| MachBody body; |
| MachPort semaphore; |
| }; |
| |
| struct Tmach_semdestroyMsg |
| { |
| MachHeader h; |
| MachBody body; |
| MachPort semaphore; |
| }; |
| #pragma pack off |
| |
| uint32 |
| runtime·mach_semcreate(void) |
| { |
| union { |
| Tmach_semcreateMsg tx; |
| Rmach_semcreateMsg rx; |
| uint8 pad[MinMachMsg]; |
| } m; |
| int32 r; |
| |
| m.tx.h.msgh_bits = 0; |
| m.tx.h.msgh_size = sizeof(m.tx); |
| m.tx.h.msgh_remote_port = runtime·mach_task_self(); |
| m.tx.h.msgh_id = Tmach_semcreate; |
| m.tx.ndr = zerondr; |
| |
| m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO |
| m.tx.value = 0; |
| |
| while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){ |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_create"); |
| } |
| if(m.rx.body.msgh_descriptor_count != 1) |
| unimplemented("mach_semcreate desc count"); |
| return m.rx.semaphore.name; |
| } |
| |
| void |
| runtime·mach_semdestroy(uint32 sem) |
| { |
| union { |
| Tmach_semdestroyMsg tx; |
| uint8 pad[MinMachMsg]; |
| } m; |
| int32 r; |
| |
| m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX; |
| m.tx.h.msgh_size = sizeof(m.tx); |
| m.tx.h.msgh_remote_port = runtime·mach_task_self(); |
| m.tx.h.msgh_id = Tmach_semdestroy; |
| m.tx.body.msgh_descriptor_count = 1; |
| m.tx.semaphore.name = sem; |
| m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND; |
| m.tx.semaphore.type = 0; |
| |
| while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){ |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_destroy"); |
| } |
| } |
| |
| // The other calls have simple system call traps in sys_darwin_{amd64,386}.s |
| int32 runtime·mach_semaphore_wait(uint32 sema); |
| int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec); |
| int32 runtime·mach_semaphore_signal(uint32 sema); |
| int32 runtime·mach_semaphore_signal_all(uint32 sema); |
| |
| static void |
| semasleep(void) |
| { |
| int32 r, secs, nsecs; |
| int64 ns; |
| |
| ns = (int64)(uint32)g->m->scalararg[0] | (int64)(uint32)g->m->scalararg[1]<<32; |
| g->m->scalararg[0] = 0; |
| g->m->scalararg[1] = 0; |
| |
| if(ns >= 0) { |
| secs = runtime·timediv(ns, 1000000000, &nsecs); |
| r = runtime·mach_semaphore_timedwait(g->m->waitsema, secs, nsecs); |
| if(r == KERN_ABORTED || r == KERN_OPERATION_TIMED_OUT) { |
| g->m->scalararg[0] = -1; |
| return; |
| } |
| if(r != 0) |
| macherror(r, "semaphore_wait"); |
| g->m->scalararg[0] = 0; |
| return; |
| } |
| while((r = runtime·mach_semaphore_wait(g->m->waitsema)) != 0) { |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| macherror(r, "semaphore_wait"); |
| } |
| g->m->scalararg[0] = 0; |
| return; |
| } |
| |
| #pragma textflag NOSPLIT |
| int32 |
| runtime·semasleep(int64 ns) |
| { |
| int32 r; |
| void (*fn)(void); |
| |
| g->m->scalararg[0] = (uint32)ns; |
| g->m->scalararg[1] = (uint32)(ns>>32); |
| fn = semasleep; |
| runtime·onM(&fn); |
| r = g->m->scalararg[0]; |
| g->m->scalararg[0] = 0; |
| return r; |
| } |
| |
| static int32 mach_semrelease_errno; |
| |
| static void |
| mach_semrelease_fail(void) |
| { |
| macherror(mach_semrelease_errno, "semaphore_signal"); |
| } |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime·mach_semrelease(uint32 sem) |
| { |
| int32 r; |
| void (*fn)(void); |
| |
| while((r = runtime·mach_semaphore_signal(sem)) != 0) { |
| if(r == KERN_ABORTED) // interrupted |
| continue; |
| |
| // mach_semrelease must be completely nosplit, |
| // because it is called from Go code. |
| // If we're going to die, start that process on the m stack |
| // to avoid a Go stack split. |
| // Only do that if we're actually running on the g stack. |
| // We might be on the gsignal stack, and if so, onM will abort. |
| // We use the global variable instead of scalararg because |
| // we might be on the gsignal stack, having interrupted a |
| // normal call to onM. It doesn't quite matter, since the |
| // program is about to die, but better to be clean. |
| mach_semrelease_errno = r; |
| fn = mach_semrelease_fail; |
| if(g == g->m->curg) |
| runtime·onM(&fn); |
| else |
| fn(); |
| } |
| } |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime·osyield(void) |
| { |
| runtime·usleep(1); |
| } |
| |
| uintptr |
| runtime·memlimit(void) |
| { |
| // NOTE(rsc): Could use getrlimit here, |
| // like on FreeBSD or Linux, but Darwin doesn't enforce |
| // ulimit -v, so it's unclear why we'd try to stay within |
| // the limit. |
| return 0; |
| } |
| |
| void |
| runtime·setsig(int32 i, GoSighandler *fn, bool restart) |
| { |
| SigactionT sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| sa.sa_flags = SA_SIGINFO|SA_ONSTACK; |
| if(restart) |
| sa.sa_flags |= SA_RESTART; |
| sa.sa_mask = ~(uintptr)0; |
| sa.sa_tramp = (void*)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler |
| *(uintptr*)sa.__sigaction_u = (uintptr)fn; |
| runtime·sigaction(i, &sa, nil); |
| } |
| |
| GoSighandler* |
| runtime·getsig(int32 i) |
| { |
| SigactionT sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| runtime·sigaction(i, nil, &sa); |
| return *(void**)sa.__sigaction_u; |
| } |
| |
| void |
| runtime·signalstack(byte *p, int32 n) |
| { |
| StackT st; |
| |
| st.ss_sp = (void*)p; |
| st.ss_size = n; |
| st.ss_flags = 0; |
| if(p == nil) |
| st.ss_flags = SS_DISABLE; |
| runtime·sigaltstack(&st, nil); |
| } |
| |
| void |
| runtime·unblocksignals(void) |
| { |
| runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil); |
| } |
| |
| #pragma textflag NOSPLIT |
| int8* |
| runtime·signame(int32 sig) |
| { |
| return runtime·sigtab[sig].name; |
| } |