| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Page heap. |
| // |
| // See malloc.h for overview. |
| // |
| // When a MSpan is in the heap free list, state == MSpanFree |
| // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. |
| // |
| // When a MSpan is allocated, state == MSpanInUse or MSpanStack |
| // and heapmap(i) == span for all s->start <= i < s->start+s->npages. |
| |
| #include "runtime.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| |
| static MSpan *MHeap_AllocSpanLocked(MHeap*, uintptr); |
| static void MHeap_FreeSpanLocked(MHeap*, MSpan*, bool, bool); |
| static bool MHeap_Grow(MHeap*, uintptr); |
| static MSpan *MHeap_AllocLarge(MHeap*, uintptr); |
| static MSpan *BestFit(MSpan*, uintptr, MSpan*); |
| |
| static void |
| RecordSpan(void *vh, byte *p) |
| { |
| MHeap *h; |
| MSpan *s; |
| MSpan **all; |
| uint32 cap; |
| |
| h = vh; |
| s = (MSpan*)p; |
| if(h->nspan >= h->nspancap) { |
| cap = 64*1024/sizeof(all[0]); |
| if(cap < h->nspancap*3/2) |
| cap = h->nspancap*3/2; |
| all = (MSpan**)runtime·sysAlloc(cap*sizeof(all[0]), &mstats.other_sys); |
| if(all == nil) |
| runtime·throw("runtime: cannot allocate memory"); |
| if(h->allspans) { |
| runtime·memmove(all, h->allspans, h->nspancap*sizeof(all[0])); |
| // Don't free the old array if it's referenced by sweep. |
| // See the comment in mgc0.c. |
| if(h->allspans != runtime·mheap.gcspans) |
| runtime·SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys); |
| } |
| h->allspans = all; |
| h->nspancap = cap; |
| } |
| h->allspans[h->nspan++] = s; |
| } |
| |
| // Initialize the heap; fetch memory using alloc. |
| void |
| runtime·MHeap_Init(MHeap *h) |
| { |
| uint32 i; |
| |
| runtime·FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys); |
| runtime·FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys); |
| runtime·FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys); |
| runtime·FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys); |
| // h->mapcache needs no init |
| for(i=0; i<nelem(h->free); i++) { |
| runtime·MSpanList_Init(&h->free[i]); |
| runtime·MSpanList_Init(&h->busy[i]); |
| } |
| runtime·MSpanList_Init(&h->freelarge); |
| runtime·MSpanList_Init(&h->busylarge); |
| for(i=0; i<nelem(h->central); i++) |
| runtime·MCentral_Init(&h->central[i].mcentral, i); |
| } |
| |
| void |
| runtime·MHeap_MapSpans(MHeap *h) |
| { |
| uintptr n; |
| |
| // Map spans array, PageSize at a time. |
| n = (uintptr)h->arena_used; |
| n -= (uintptr)h->arena_start; |
| n = n / PageSize * sizeof(h->spans[0]); |
| n = ROUND(n, PhysPageSize); |
| if(h->spans_mapped >= n) |
| return; |
| runtime·SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys); |
| h->spans_mapped = n; |
| } |
| |
| // Sweeps spans in list until reclaims at least npages into heap. |
| // Returns the actual number of pages reclaimed. |
| static uintptr |
| MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages) |
| { |
| MSpan *s; |
| uintptr n; |
| uint32 sg; |
| |
| n = 0; |
| sg = runtime·mheap.sweepgen; |
| retry: |
| for(s = list->next; s != list; s = s->next) { |
| if(s->sweepgen == sg-2 && runtime·cas(&s->sweepgen, sg-2, sg-1)) { |
| runtime·MSpanList_Remove(s); |
| // swept spans are at the end of the list |
| runtime·MSpanList_InsertBack(list, s); |
| runtime·unlock(&h->lock); |
| n += runtime·MSpan_Sweep(s, false); |
| runtime·lock(&h->lock); |
| if(n >= npages) |
| return n; |
| // the span could have been moved elsewhere |
| goto retry; |
| } |
| if(s->sweepgen == sg-1) { |
| // the span is being sweept by background sweeper, skip |
| continue; |
| } |
| // already swept empty span, |
| // all subsequent ones must also be either swept or in process of sweeping |
| break; |
| } |
| return n; |
| } |
| |
| // Sweeps and reclaims at least npage pages into heap. |
| // Called before allocating npage pages. |
| static void |
| MHeap_Reclaim(MHeap *h, uintptr npage) |
| { |
| uintptr reclaimed, n; |
| |
| // First try to sweep busy spans with large objects of size >= npage, |
| // this has good chances of reclaiming the necessary space. |
| for(n=npage; n < nelem(h->busy); n++) { |
| if(MHeap_ReclaimList(h, &h->busy[n], npage)) |
| return; // Bingo! |
| } |
| |
| // Then -- even larger objects. |
| if(MHeap_ReclaimList(h, &h->busylarge, npage)) |
| return; // Bingo! |
| |
| // Now try smaller objects. |
| // One such object is not enough, so we need to reclaim several of them. |
| reclaimed = 0; |
| for(n=0; n < npage && n < nelem(h->busy); n++) { |
| reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed); |
| if(reclaimed >= npage) |
| return; |
| } |
| |
| // Now sweep everything that is not yet swept. |
| runtime·unlock(&h->lock); |
| for(;;) { |
| n = runtime·sweepone(); |
| if(n == -1) // all spans are swept |
| break; |
| reclaimed += n; |
| if(reclaimed >= npage) |
| break; |
| } |
| runtime·lock(&h->lock); |
| } |
| |
| // Allocate a new span of npage pages from the heap for GC'd memory |
| // and record its size class in the HeapMap and HeapMapCache. |
| static MSpan* |
| mheap_alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large) |
| { |
| MSpan *s; |
| |
| if(g != g->m->g0) |
| runtime·throw("mheap_alloc not on M stack"); |
| runtime·lock(&h->lock); |
| |
| // To prevent excessive heap growth, before allocating n pages |
| // we need to sweep and reclaim at least n pages. |
| if(!h->sweepdone) |
| MHeap_Reclaim(h, npage); |
| |
| // transfer stats from cache to global |
| mstats.heap_alloc += g->m->mcache->local_cachealloc; |
| g->m->mcache->local_cachealloc = 0; |
| mstats.tinyallocs += g->m->mcache->local_tinyallocs; |
| g->m->mcache->local_tinyallocs = 0; |
| |
| s = MHeap_AllocSpanLocked(h, npage); |
| if(s != nil) { |
| // Record span info, because gc needs to be |
| // able to map interior pointer to containing span. |
| runtime·atomicstore(&s->sweepgen, h->sweepgen); |
| s->state = MSpanInUse; |
| s->freelist = nil; |
| s->ref = 0; |
| s->sizeclass = sizeclass; |
| s->elemsize = (sizeclass==0 ? s->npages<<PageShift : runtime·class_to_size[sizeclass]); |
| |
| // update stats, sweep lists |
| if(large) { |
| mstats.heap_objects++; |
| mstats.heap_alloc += npage<<PageShift; |
| // Swept spans are at the end of lists. |
| if(s->npages < nelem(h->free)) |
| runtime·MSpanList_InsertBack(&h->busy[s->npages], s); |
| else |
| runtime·MSpanList_InsertBack(&h->busylarge, s); |
| } |
| } |
| runtime·unlock(&h->lock); |
| return s; |
| } |
| |
| static void |
| mheap_alloc_m(G *gp) |
| { |
| MHeap *h; |
| MSpan *s; |
| |
| h = g->m->ptrarg[0]; |
| g->m->ptrarg[0] = nil; |
| s = mheap_alloc(h, g->m->scalararg[0], g->m->scalararg[1], g->m->scalararg[2]); |
| g->m->ptrarg[0] = s; |
| |
| runtime·gogo(&gp->sched); |
| } |
| |
| MSpan* |
| runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero) |
| { |
| MSpan *s; |
| void (*fn)(G*); |
| |
| // Don't do any operations that lock the heap on the G stack. |
| // It might trigger stack growth, and the stack growth code needs |
| // to be able to allocate heap. |
| if(g == g->m->g0) { |
| s = mheap_alloc(h, npage, sizeclass, large); |
| } else { |
| g->m->ptrarg[0] = h; |
| g->m->scalararg[0] = npage; |
| g->m->scalararg[1] = sizeclass; |
| g->m->scalararg[2] = large; |
| fn = mheap_alloc_m; |
| runtime·mcall(&fn); |
| s = g->m->ptrarg[0]; |
| g->m->ptrarg[0] = nil; |
| } |
| if(s != nil) { |
| if(needzero && s->needzero) |
| runtime·memclr((byte*)(s->start<<PageShift), s->npages<<PageShift); |
| s->needzero = 0; |
| } |
| return s; |
| } |
| |
| MSpan* |
| runtime·MHeap_AllocStack(MHeap *h, uintptr npage) |
| { |
| MSpan *s; |
| |
| if(g != g->m->g0) |
| runtime·throw("mheap_allocstack not on M stack"); |
| runtime·lock(&h->lock); |
| s = MHeap_AllocSpanLocked(h, npage); |
| if(s != nil) { |
| s->state = MSpanStack; |
| s->freelist = nil; |
| s->ref = 0; |
| mstats.stacks_inuse += s->npages<<PageShift; |
| } |
| runtime·unlock(&h->lock); |
| return s; |
| } |
| |
| // Allocates a span of the given size. h must be locked. |
| // The returned span has been removed from the |
| // free list, but its state is still MSpanFree. |
| static MSpan* |
| MHeap_AllocSpanLocked(MHeap *h, uintptr npage) |
| { |
| uintptr n; |
| MSpan *s, *t; |
| pageID p; |
| |
| // Try in fixed-size lists up to max. |
| for(n=npage; n < nelem(h->free); n++) { |
| if(!runtime·MSpanList_IsEmpty(&h->free[n])) { |
| s = h->free[n].next; |
| goto HaveSpan; |
| } |
| } |
| |
| // Best fit in list of large spans. |
| if((s = MHeap_AllocLarge(h, npage)) == nil) { |
| if(!MHeap_Grow(h, npage)) |
| return nil; |
| if((s = MHeap_AllocLarge(h, npage)) == nil) |
| return nil; |
| } |
| |
| HaveSpan: |
| // Mark span in use. |
| if(s->state != MSpanFree) |
| runtime·throw("MHeap_AllocLocked - MSpan not free"); |
| if(s->npages < npage) |
| runtime·throw("MHeap_AllocLocked - bad npages"); |
| runtime·MSpanList_Remove(s); |
| if(s->next != nil || s->prev != nil) |
| runtime·throw("still in list"); |
| if(s->npreleased > 0) { |
| runtime·SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift); |
| mstats.heap_released -= s->npreleased<<PageShift; |
| s->npreleased = 0; |
| } |
| |
| if(s->npages > npage) { |
| // Trim extra and put it back in the heap. |
| t = runtime·FixAlloc_Alloc(&h->spanalloc); |
| runtime·MSpan_Init(t, s->start + npage, s->npages - npage); |
| s->npages = npage; |
| p = t->start; |
| p -= ((uintptr)h->arena_start>>PageShift); |
| if(p > 0) |
| h->spans[p-1] = s; |
| h->spans[p] = t; |
| h->spans[p+t->npages-1] = t; |
| t->needzero = s->needzero; |
| s->state = MSpanStack; // prevent coalescing with s |
| t->state = MSpanStack; |
| MHeap_FreeSpanLocked(h, t, false, false); |
| t->unusedsince = s->unusedsince; // preserve age (TODO: wrong: t is possibly merged and/or deallocated at this point) |
| s->state = MSpanFree; |
| } |
| s->unusedsince = 0; |
| |
| p = s->start; |
| p -= ((uintptr)h->arena_start>>PageShift); |
| for(n=0; n<npage; n++) |
| h->spans[p+n] = s; |
| |
| mstats.heap_inuse += npage<<PageShift; |
| mstats.heap_idle -= npage<<PageShift; |
| |
| //runtime·printf("spanalloc %p\n", s->start << PageShift); |
| if(s->next != nil || s->prev != nil) |
| runtime·throw("still in list"); |
| return s; |
| } |
| |
| // Allocate a span of exactly npage pages from the list of large spans. |
| static MSpan* |
| MHeap_AllocLarge(MHeap *h, uintptr npage) |
| { |
| return BestFit(&h->freelarge, npage, nil); |
| } |
| |
| // Search list for smallest span with >= npage pages. |
| // If there are multiple smallest spans, take the one |
| // with the earliest starting address. |
| static MSpan* |
| BestFit(MSpan *list, uintptr npage, MSpan *best) |
| { |
| MSpan *s; |
| |
| for(s=list->next; s != list; s=s->next) { |
| if(s->npages < npage) |
| continue; |
| if(best == nil |
| || s->npages < best->npages |
| || (s->npages == best->npages && s->start < best->start)) |
| best = s; |
| } |
| return best; |
| } |
| |
| // Try to add at least npage pages of memory to the heap, |
| // returning whether it worked. |
| static bool |
| MHeap_Grow(MHeap *h, uintptr npage) |
| { |
| uintptr ask; |
| void *v; |
| MSpan *s; |
| pageID p; |
| |
| // Ask for a big chunk, to reduce the number of mappings |
| // the operating system needs to track; also amortizes |
| // the overhead of an operating system mapping. |
| // Allocate a multiple of 64kB. |
| npage = ROUND(npage, (64<<10)/PageSize); |
| ask = npage<<PageShift; |
| if(ask < HeapAllocChunk) |
| ask = HeapAllocChunk; |
| |
| v = runtime·MHeap_SysAlloc(h, ask); |
| if(v == nil) { |
| if(ask > (npage<<PageShift)) { |
| ask = npage<<PageShift; |
| v = runtime·MHeap_SysAlloc(h, ask); |
| } |
| if(v == nil) { |
| runtime·printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys); |
| return false; |
| } |
| } |
| |
| // Create a fake "in use" span and free it, so that the |
| // right coalescing happens. |
| s = runtime·FixAlloc_Alloc(&h->spanalloc); |
| runtime·MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift); |
| p = s->start; |
| p -= ((uintptr)h->arena_start>>PageShift); |
| h->spans[p] = s; |
| h->spans[p + s->npages - 1] = s; |
| runtime·atomicstore(&s->sweepgen, h->sweepgen); |
| s->state = MSpanInUse; |
| MHeap_FreeSpanLocked(h, s, false, true); |
| return true; |
| } |
| |
| // Look up the span at the given address. |
| // Address is guaranteed to be in map |
| // and is guaranteed to be start or end of span. |
| MSpan* |
| runtime·MHeap_Lookup(MHeap *h, void *v) |
| { |
| uintptr p; |
| |
| p = (uintptr)v; |
| p -= (uintptr)h->arena_start; |
| return h->spans[p >> PageShift]; |
| } |
| |
| // Look up the span at the given address. |
| // Address is *not* guaranteed to be in map |
| // and may be anywhere in the span. |
| // Map entries for the middle of a span are only |
| // valid for allocated spans. Free spans may have |
| // other garbage in their middles, so we have to |
| // check for that. |
| MSpan* |
| runtime·MHeap_LookupMaybe(MHeap *h, void *v) |
| { |
| MSpan *s; |
| pageID p, q; |
| |
| if((byte*)v < h->arena_start || (byte*)v >= h->arena_used) |
| return nil; |
| p = (uintptr)v>>PageShift; |
| q = p; |
| q -= (uintptr)h->arena_start >> PageShift; |
| s = h->spans[q]; |
| if(s == nil || p < s->start || v >= s->limit || s->state != MSpanInUse) |
| return nil; |
| return s; |
| } |
| |
| // Free the span back into the heap. |
| static void |
| mheap_free(MHeap *h, MSpan *s, int32 acct) |
| { |
| if(g != g->m->g0) |
| runtime·throw("mheap_free not on M stack"); |
| runtime·lock(&h->lock); |
| mstats.heap_alloc += g->m->mcache->local_cachealloc; |
| g->m->mcache->local_cachealloc = 0; |
| mstats.tinyallocs += g->m->mcache->local_tinyallocs; |
| g->m->mcache->local_tinyallocs = 0; |
| if(acct) { |
| mstats.heap_alloc -= s->npages<<PageShift; |
| mstats.heap_objects--; |
| } |
| MHeap_FreeSpanLocked(h, s, true, true); |
| runtime·unlock(&h->lock); |
| } |
| |
| static void |
| mheap_free_m(G *gp) |
| { |
| MHeap *h; |
| MSpan *s; |
| |
| h = g->m->ptrarg[0]; |
| s = g->m->ptrarg[1]; |
| g->m->ptrarg[0] = nil; |
| g->m->ptrarg[1] = nil; |
| mheap_free(h, s, g->m->scalararg[0]); |
| runtime·gogo(&gp->sched); |
| } |
| |
| void |
| runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct) |
| { |
| void (*fn)(G*); |
| |
| if(g == g->m->g0) { |
| mheap_free(h, s, acct); |
| } else { |
| g->m->ptrarg[0] = h; |
| g->m->ptrarg[1] = s; |
| g->m->scalararg[0] = acct; |
| fn = mheap_free_m; |
| runtime·mcall(&fn); |
| } |
| } |
| |
| void |
| runtime·MHeap_FreeStack(MHeap *h, MSpan *s) |
| { |
| if(g != g->m->g0) |
| runtime·throw("mheap_freestack not on M stack"); |
| s->needzero = 1; |
| runtime·lock(&h->lock); |
| mstats.stacks_inuse -= s->npages<<PageShift; |
| MHeap_FreeSpanLocked(h, s, true, true); |
| runtime·unlock(&h->lock); |
| } |
| |
| static void |
| MHeap_FreeSpanLocked(MHeap *h, MSpan *s, bool acctinuse, bool acctidle) |
| { |
| MSpan *t; |
| pageID p; |
| |
| switch(s->state) { |
| case MSpanStack: |
| if(s->ref != 0) |
| runtime·throw("MHeap_FreeSpanLocked - invalid stack free"); |
| break; |
| case MSpanInUse: |
| if(s->ref != 0 || s->sweepgen != h->sweepgen) { |
| runtime·printf("MHeap_FreeSpanLocked - span %p ptr %p ref %d sweepgen %d/%d\n", |
| s, s->start<<PageShift, s->ref, s->sweepgen, h->sweepgen); |
| runtime·throw("MHeap_FreeSpanLocked - invalid free"); |
| } |
| break; |
| default: |
| runtime·throw("MHeap_FreeSpanLocked - invalid span state"); |
| break; |
| } |
| if(acctinuse) |
| mstats.heap_inuse -= s->npages<<PageShift; |
| if(acctidle) |
| mstats.heap_idle += s->npages<<PageShift; |
| s->state = MSpanFree; |
| runtime·MSpanList_Remove(s); |
| // Stamp newly unused spans. The scavenger will use that |
| // info to potentially give back some pages to the OS. |
| s->unusedsince = runtime·nanotime(); |
| s->npreleased = 0; |
| |
| // Coalesce with earlier, later spans. |
| p = s->start; |
| p -= (uintptr)h->arena_start >> PageShift; |
| if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse && t->state != MSpanStack) { |
| s->start = t->start; |
| s->npages += t->npages; |
| s->npreleased = t->npreleased; // absorb released pages |
| s->needzero |= t->needzero; |
| p -= t->npages; |
| h->spans[p] = s; |
| runtime·MSpanList_Remove(t); |
| t->state = MSpanDead; |
| runtime·FixAlloc_Free(&h->spanalloc, t); |
| } |
| if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse && t->state != MSpanStack) { |
| s->npages += t->npages; |
| s->npreleased += t->npreleased; |
| s->needzero |= t->needzero; |
| h->spans[p + s->npages - 1] = s; |
| runtime·MSpanList_Remove(t); |
| t->state = MSpanDead; |
| runtime·FixAlloc_Free(&h->spanalloc, t); |
| } |
| |
| // Insert s into appropriate list. |
| if(s->npages < nelem(h->free)) |
| runtime·MSpanList_Insert(&h->free[s->npages], s); |
| else |
| runtime·MSpanList_Insert(&h->freelarge, s); |
| } |
| |
| static uintptr |
| scavengelist(MSpan *list, uint64 now, uint64 limit) |
| { |
| uintptr released, sumreleased; |
| MSpan *s; |
| |
| if(runtime·MSpanList_IsEmpty(list)) |
| return 0; |
| |
| sumreleased = 0; |
| for(s=list->next; s != list; s=s->next) { |
| if((now - s->unusedsince) > limit && s->npreleased != s->npages) { |
| released = (s->npages - s->npreleased) << PageShift; |
| mstats.heap_released += released; |
| sumreleased += released; |
| s->npreleased = s->npages; |
| runtime·SysUnused((void*)(s->start << PageShift), s->npages << PageShift); |
| } |
| } |
| return sumreleased; |
| } |
| |
| void |
| runtime·MHeap_Scavenge(int32 k, uint64 now, uint64 limit) |
| { |
| uint32 i; |
| uintptr sumreleased; |
| MHeap *h; |
| |
| h = &runtime·mheap; |
| runtime·lock(&h->lock); |
| sumreleased = 0; |
| for(i=0; i < nelem(h->free); i++) |
| sumreleased += scavengelist(&h->free[i], now, limit); |
| sumreleased += scavengelist(&h->freelarge, now, limit); |
| runtime·unlock(&h->lock); |
| |
| if(runtime·debug.gctrace > 0) { |
| if(sumreleased > 0) |
| runtime·printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20); |
| // TODO(dvyukov): these stats are incorrect as we don't subtract stack usage from heap. |
| // But we can't call ReadMemStats on g0 holding locks. |
| runtime·printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n", |
| k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20, |
| mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20); |
| } |
| } |
| |
| void |
| runtime·scavenge_m(void) |
| { |
| runtime·MHeap_Scavenge(-1, ~(uintptr)0, 0); |
| } |
| |
| // Initialize a new span with the given start and npages. |
| void |
| runtime·MSpan_Init(MSpan *span, pageID start, uintptr npages) |
| { |
| span->next = nil; |
| span->prev = nil; |
| span->start = start; |
| span->npages = npages; |
| span->freelist = nil; |
| span->ref = 0; |
| span->sizeclass = 0; |
| span->incache = false; |
| span->elemsize = 0; |
| span->state = MSpanDead; |
| span->unusedsince = 0; |
| span->npreleased = 0; |
| span->specialLock.key = 0; |
| span->specials = nil; |
| span->needzero = 0; |
| } |
| |
| // Initialize an empty doubly-linked list. |
| void |
| runtime·MSpanList_Init(MSpan *list) |
| { |
| list->state = MSpanListHead; |
| list->next = list; |
| list->prev = list; |
| } |
| |
| void |
| runtime·MSpanList_Remove(MSpan *span) |
| { |
| if(span->prev == nil && span->next == nil) |
| return; |
| span->prev->next = span->next; |
| span->next->prev = span->prev; |
| span->prev = nil; |
| span->next = nil; |
| } |
| |
| bool |
| runtime·MSpanList_IsEmpty(MSpan *list) |
| { |
| return list->next == list; |
| } |
| |
| void |
| runtime·MSpanList_Insert(MSpan *list, MSpan *span) |
| { |
| if(span->next != nil || span->prev != nil) { |
| runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); |
| runtime·throw("MSpanList_Insert"); |
| } |
| span->next = list->next; |
| span->prev = list; |
| span->next->prev = span; |
| span->prev->next = span; |
| } |
| |
| void |
| runtime·MSpanList_InsertBack(MSpan *list, MSpan *span) |
| { |
| if(span->next != nil || span->prev != nil) { |
| runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); |
| runtime·throw("MSpanList_Insert"); |
| } |
| span->next = list; |
| span->prev = list->prev; |
| span->next->prev = span; |
| span->prev->next = span; |
| } |
| |
| // Adds the special record s to the list of special records for |
| // the object p. All fields of s should be filled in except for |
| // offset & next, which this routine will fill in. |
| // Returns true if the special was successfully added, false otherwise. |
| // (The add will fail only if a record with the same p and s->kind |
| // already exists.) |
| static bool |
| addspecial(void *p, Special *s) |
| { |
| MSpan *span; |
| Special **t, *x; |
| uintptr offset; |
| byte kind; |
| |
| span = runtime·MHeap_LookupMaybe(&runtime·mheap, p); |
| if(span == nil) |
| runtime·throw("addspecial on invalid pointer"); |
| |
| // Ensure that the span is swept. |
| // GC accesses specials list w/o locks. And it's just much safer. |
| g->m->locks++; |
| runtime·MSpan_EnsureSwept(span); |
| |
| offset = (uintptr)p - (span->start << PageShift); |
| kind = s->kind; |
| |
| runtime·lock(&span->specialLock); |
| |
| // Find splice point, check for existing record. |
| t = &span->specials; |
| while((x = *t) != nil) { |
| if(offset == x->offset && kind == x->kind) { |
| runtime·unlock(&span->specialLock); |
| g->m->locks--; |
| return false; // already exists |
| } |
| if(offset < x->offset || (offset == x->offset && kind < x->kind)) |
| break; |
| t = &x->next; |
| } |
| // Splice in record, fill in offset. |
| s->offset = offset; |
| s->next = x; |
| *t = s; |
| runtime·unlock(&span->specialLock); |
| g->m->locks--; |
| return true; |
| } |
| |
| // Removes the Special record of the given kind for the object p. |
| // Returns the record if the record existed, nil otherwise. |
| // The caller must FixAlloc_Free the result. |
| static Special* |
| removespecial(void *p, byte kind) |
| { |
| MSpan *span; |
| Special *s, **t; |
| uintptr offset; |
| |
| span = runtime·MHeap_LookupMaybe(&runtime·mheap, p); |
| if(span == nil) |
| runtime·throw("removespecial on invalid pointer"); |
| |
| // Ensure that the span is swept. |
| // GC accesses specials list w/o locks. And it's just much safer. |
| g->m->locks++; |
| runtime·MSpan_EnsureSwept(span); |
| |
| offset = (uintptr)p - (span->start << PageShift); |
| |
| runtime·lock(&span->specialLock); |
| t = &span->specials; |
| while((s = *t) != nil) { |
| // This function is used for finalizers only, so we don't check for |
| // "interior" specials (p must be exactly equal to s->offset). |
| if(offset == s->offset && kind == s->kind) { |
| *t = s->next; |
| runtime·unlock(&span->specialLock); |
| g->m->locks--; |
| return s; |
| } |
| t = &s->next; |
| } |
| runtime·unlock(&span->specialLock); |
| g->m->locks--; |
| return nil; |
| } |
| |
| // Adds a finalizer to the object p. Returns true if it succeeded. |
| bool |
| runtime·addfinalizer(void *p, FuncVal *f, uintptr nret, Type *fint, PtrType *ot) |
| { |
| SpecialFinalizer *s; |
| |
| runtime·lock(&runtime·mheap.speciallock); |
| s = runtime·FixAlloc_Alloc(&runtime·mheap.specialfinalizeralloc); |
| runtime·unlock(&runtime·mheap.speciallock); |
| s->special.kind = KindSpecialFinalizer; |
| s->fn = f; |
| s->nret = nret; |
| s->fint = fint; |
| s->ot = ot; |
| if(addspecial(p, &s->special)) |
| return true; |
| |
| // There was an old finalizer |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s); |
| runtime·unlock(&runtime·mheap.speciallock); |
| return false; |
| } |
| |
| // Removes the finalizer (if any) from the object p. |
| void |
| runtime·removefinalizer(void *p) |
| { |
| SpecialFinalizer *s; |
| |
| s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer); |
| if(s == nil) |
| return; // there wasn't a finalizer to remove |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s); |
| runtime·unlock(&runtime·mheap.speciallock); |
| } |
| |
| // Set the heap profile bucket associated with addr to b. |
| void |
| runtime·setprofilebucket_m(void) |
| { |
| void *p; |
| Bucket *b; |
| SpecialProfile *s; |
| |
| p = g->m->ptrarg[0]; |
| b = g->m->ptrarg[1]; |
| g->m->ptrarg[0] = nil; |
| g->m->ptrarg[1] = nil; |
| |
| runtime·lock(&runtime·mheap.speciallock); |
| s = runtime·FixAlloc_Alloc(&runtime·mheap.specialprofilealloc); |
| runtime·unlock(&runtime·mheap.speciallock); |
| s->special.kind = KindSpecialProfile; |
| s->b = b; |
| if(!addspecial(p, &s->special)) |
| runtime·throw("setprofilebucket: profile already set"); |
| } |
| |
| // Do whatever cleanup needs to be done to deallocate s. It has |
| // already been unlinked from the MSpan specials list. |
| // Returns true if we should keep working on deallocating p. |
| bool |
| runtime·freespecial(Special *s, void *p, uintptr size, bool freed) |
| { |
| SpecialFinalizer *sf; |
| SpecialProfile *sp; |
| |
| switch(s->kind) { |
| case KindSpecialFinalizer: |
| sf = (SpecialFinalizer*)s; |
| runtime·queuefinalizer(p, sf->fn, sf->nret, sf->fint, sf->ot); |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, sf); |
| runtime·unlock(&runtime·mheap.speciallock); |
| return false; // don't free p until finalizer is done |
| case KindSpecialProfile: |
| sp = (SpecialProfile*)s; |
| runtime·mProf_Free(sp->b, size, freed); |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialprofilealloc, sp); |
| runtime·unlock(&runtime·mheap.speciallock); |
| return true; |
| default: |
| runtime·throw("bad special kind"); |
| return true; |
| } |
| } |