| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package regexp |
| |
| import ( |
| "io" |
| "regexp/syntax" |
| "sync" |
| ) |
| |
| // A queue is a 'sparse array' holding pending threads of execution. |
| // See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html |
| type queue struct { |
| sparse []uint32 |
| dense []entry |
| } |
| |
| // An entry is an entry on a queue. |
| // It holds both the instruction pc and the actual thread. |
| // Some queue entries are just place holders so that the machine |
| // knows it has considered that pc. Such entries have t == nil. |
| type entry struct { |
| pc uint32 |
| t *thread |
| } |
| |
| // A thread is the state of a single path through the machine: |
| // an instruction and a corresponding capture array. |
| // See https://swtch.com/~rsc/regexp/regexp2.html |
| type thread struct { |
| inst *syntax.Inst |
| cap []int |
| } |
| |
| // A machine holds all the state during an NFA simulation for p. |
| type machine struct { |
| re *Regexp // corresponding Regexp |
| p *syntax.Prog // compiled program |
| q0, q1 queue // two queues for runq, nextq |
| pool []*thread // pool of available threads |
| matched bool // whether a match was found |
| matchcap []int // capture information for the match |
| |
| inputs inputs |
| } |
| |
| type inputs struct { |
| // cached inputs, to avoid allocation |
| bytes inputBytes |
| string inputString |
| reader inputReader |
| } |
| |
| func (i *inputs) newBytes(b []byte) input { |
| i.bytes.str = b |
| return &i.bytes |
| } |
| |
| func (i *inputs) newString(s string) input { |
| i.string.str = s |
| return &i.string |
| } |
| |
| func (i *inputs) newReader(r io.RuneReader) input { |
| i.reader.r = r |
| i.reader.atEOT = false |
| i.reader.pos = 0 |
| return &i.reader |
| } |
| |
| func (i *inputs) clear() { |
| // We need to clear 1 of these. |
| // Avoid the expense of clearing the others (pointer write barrier). |
| if i.bytes.str != nil { |
| i.bytes.str = nil |
| } else if i.reader.r != nil { |
| i.reader.r = nil |
| } else { |
| i.string.str = "" |
| } |
| } |
| |
| func (i *inputs) init(r io.RuneReader, b []byte, s string) (input, int) { |
| if r != nil { |
| return i.newReader(r), 0 |
| } |
| if b != nil { |
| return i.newBytes(b), len(b) |
| } |
| return i.newString(s), len(s) |
| } |
| |
| func (m *machine) init(ncap int) { |
| for _, t := range m.pool { |
| t.cap = t.cap[:ncap] |
| } |
| m.matchcap = m.matchcap[:ncap] |
| } |
| |
| // alloc allocates a new thread with the given instruction. |
| // It uses the free pool if possible. |
| func (m *machine) alloc(i *syntax.Inst) *thread { |
| var t *thread |
| if n := len(m.pool); n > 0 { |
| t = m.pool[n-1] |
| m.pool = m.pool[:n-1] |
| } else { |
| t = new(thread) |
| t.cap = make([]int, len(m.matchcap), cap(m.matchcap)) |
| } |
| t.inst = i |
| return t |
| } |
| |
| // A lazyFlag is a lazily-evaluated syntax.EmptyOp, |
| // for checking zero-width flags like ^ $ \A \z \B \b. |
| // It records the pair of relevant runes and does not |
| // determine the implied flags until absolutely necessary |
| // (most of the time, that means never). |
| type lazyFlag uint64 |
| |
| func newLazyFlag(r1, r2 rune) lazyFlag { |
| return lazyFlag(uint64(r1)<<32 | uint64(uint32(r2))) |
| } |
| |
| func (f lazyFlag) match(op syntax.EmptyOp) bool { |
| if op == 0 { |
| return true |
| } |
| r1 := rune(f >> 32) |
| if op&syntax.EmptyBeginLine != 0 { |
| if r1 != '\n' && r1 >= 0 { |
| return false |
| } |
| op &^= syntax.EmptyBeginLine |
| } |
| if op&syntax.EmptyBeginText != 0 { |
| if r1 >= 0 { |
| return false |
| } |
| op &^= syntax.EmptyBeginText |
| } |
| if op == 0 { |
| return true |
| } |
| r2 := rune(f) |
| if op&syntax.EmptyEndLine != 0 { |
| if r2 != '\n' && r2 >= 0 { |
| return false |
| } |
| op &^= syntax.EmptyEndLine |
| } |
| if op&syntax.EmptyEndText != 0 { |
| if r2 >= 0 { |
| return false |
| } |
| op &^= syntax.EmptyEndText |
| } |
| if op == 0 { |
| return true |
| } |
| if syntax.IsWordChar(r1) != syntax.IsWordChar(r2) { |
| op &^= syntax.EmptyWordBoundary |
| } else { |
| op &^= syntax.EmptyNoWordBoundary |
| } |
| return op == 0 |
| } |
| |
| // match runs the machine over the input starting at pos. |
| // It reports whether a match was found. |
| // If so, m.matchcap holds the submatch information. |
| func (m *machine) match(i input, pos int) bool { |
| startCond := m.re.cond |
| if startCond == ^syntax.EmptyOp(0) { // impossible |
| return false |
| } |
| m.matched = false |
| for i := range m.matchcap { |
| m.matchcap[i] = -1 |
| } |
| runq, nextq := &m.q0, &m.q1 |
| r, r1 := endOfText, endOfText |
| width, width1 := 0, 0 |
| r, width = i.step(pos) |
| if r != endOfText { |
| r1, width1 = i.step(pos + width) |
| } |
| var flag lazyFlag |
| if pos == 0 { |
| flag = newLazyFlag(-1, r) |
| } else { |
| flag = i.context(pos) |
| } |
| for { |
| if len(runq.dense) == 0 { |
| if startCond&syntax.EmptyBeginText != 0 && pos != 0 { |
| // Anchored match, past beginning of text. |
| break |
| } |
| if m.matched { |
| // Have match; finished exploring alternatives. |
| break |
| } |
| if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() { |
| // Match requires literal prefix; fast search for it. |
| advance := i.index(m.re, pos) |
| if advance < 0 { |
| break |
| } |
| pos += advance |
| r, width = i.step(pos) |
| r1, width1 = i.step(pos + width) |
| } |
| } |
| if !m.matched { |
| if len(m.matchcap) > 0 { |
| m.matchcap[0] = pos |
| } |
| m.add(runq, uint32(m.p.Start), pos, m.matchcap, &flag, nil) |
| } |
| flag = newLazyFlag(r, r1) |
| m.step(runq, nextq, pos, pos+width, r, &flag) |
| if width == 0 { |
| break |
| } |
| if len(m.matchcap) == 0 && m.matched { |
| // Found a match and not paying attention |
| // to where it is, so any match will do. |
| break |
| } |
| pos += width |
| r, width = r1, width1 |
| if r != endOfText { |
| r1, width1 = i.step(pos + width) |
| } |
| runq, nextq = nextq, runq |
| } |
| m.clear(nextq) |
| return m.matched |
| } |
| |
| // clear frees all threads on the thread queue. |
| func (m *machine) clear(q *queue) { |
| for _, d := range q.dense { |
| if d.t != nil { |
| m.pool = append(m.pool, d.t) |
| } |
| } |
| q.dense = q.dense[:0] |
| } |
| |
| // step executes one step of the machine, running each of the threads |
| // on runq and appending new threads to nextq. |
| // The step processes the rune c (which may be endOfText), |
| // which starts at position pos and ends at nextPos. |
| // nextCond gives the setting for the empty-width flags after c. |
| func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond *lazyFlag) { |
| longest := m.re.longest |
| for j := 0; j < len(runq.dense); j++ { |
| d := &runq.dense[j] |
| t := d.t |
| if t == nil { |
| continue |
| } |
| if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] { |
| m.pool = append(m.pool, t) |
| continue |
| } |
| i := t.inst |
| add := false |
| switch i.Op { |
| default: |
| panic("bad inst") |
| |
| case syntax.InstMatch: |
| if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) { |
| t.cap[1] = pos |
| copy(m.matchcap, t.cap) |
| } |
| if !longest { |
| // First-match mode: cut off all lower-priority threads. |
| for _, d := range runq.dense[j+1:] { |
| if d.t != nil { |
| m.pool = append(m.pool, d.t) |
| } |
| } |
| runq.dense = runq.dense[:0] |
| } |
| m.matched = true |
| |
| case syntax.InstRune: |
| add = i.MatchRune(c) |
| case syntax.InstRune1: |
| add = c == i.Rune[0] |
| case syntax.InstRuneAny: |
| add = true |
| case syntax.InstRuneAnyNotNL: |
| add = c != '\n' |
| } |
| if add { |
| t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t) |
| } |
| if t != nil { |
| m.pool = append(m.pool, t) |
| } |
| } |
| runq.dense = runq.dense[:0] |
| } |
| |
| // add adds an entry to q for pc, unless the q already has such an entry. |
| // It also recursively adds an entry for all instructions reachable from pc by following |
| // empty-width conditions satisfied by cond. pos gives the current position |
| // in the input. |
| func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond *lazyFlag, t *thread) *thread { |
| Again: |
| if pc == 0 { |
| return t |
| } |
| if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc { |
| return t |
| } |
| |
| j := len(q.dense) |
| q.dense = q.dense[:j+1] |
| d := &q.dense[j] |
| d.t = nil |
| d.pc = pc |
| q.sparse[pc] = uint32(j) |
| |
| i := &m.p.Inst[pc] |
| switch i.Op { |
| default: |
| panic("unhandled") |
| case syntax.InstFail: |
| // nothing |
| case syntax.InstAlt, syntax.InstAltMatch: |
| t = m.add(q, i.Out, pos, cap, cond, t) |
| pc = i.Arg |
| goto Again |
| case syntax.InstEmptyWidth: |
| if cond.match(syntax.EmptyOp(i.Arg)) { |
| pc = i.Out |
| goto Again |
| } |
| case syntax.InstNop: |
| pc = i.Out |
| goto Again |
| case syntax.InstCapture: |
| if int(i.Arg) < len(cap) { |
| opos := cap[i.Arg] |
| cap[i.Arg] = pos |
| m.add(q, i.Out, pos, cap, cond, nil) |
| cap[i.Arg] = opos |
| } else { |
| pc = i.Out |
| goto Again |
| } |
| case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL: |
| if t == nil { |
| t = m.alloc(i) |
| } else { |
| t.inst = i |
| } |
| if len(cap) > 0 && &t.cap[0] != &cap[0] { |
| copy(t.cap, cap) |
| } |
| d.t = t |
| t = nil |
| } |
| return t |
| } |
| |
| type onePassMachine struct { |
| inputs inputs |
| matchcap []int |
| } |
| |
| var onePassPool sync.Pool |
| |
| func newOnePassMachine() *onePassMachine { |
| m, ok := onePassPool.Get().(*onePassMachine) |
| if !ok { |
| m = new(onePassMachine) |
| } |
| return m |
| } |
| |
| func freeOnePassMachine(m *onePassMachine) { |
| m.inputs.clear() |
| onePassPool.Put(m) |
| } |
| |
| // doOnePass implements r.doExecute using the one-pass execution engine. |
| func (re *Regexp) doOnePass(ir io.RuneReader, ib []byte, is string, pos, ncap int, dstCap []int) []int { |
| startCond := re.cond |
| if startCond == ^syntax.EmptyOp(0) { // impossible |
| return nil |
| } |
| |
| m := newOnePassMachine() |
| if cap(m.matchcap) < ncap { |
| m.matchcap = make([]int, ncap) |
| } else { |
| m.matchcap = m.matchcap[:ncap] |
| } |
| |
| matched := false |
| for i := range m.matchcap { |
| m.matchcap[i] = -1 |
| } |
| |
| i, _ := m.inputs.init(ir, ib, is) |
| |
| r, r1 := endOfText, endOfText |
| width, width1 := 0, 0 |
| r, width = i.step(pos) |
| if r != endOfText { |
| r1, width1 = i.step(pos + width) |
| } |
| var flag lazyFlag |
| if pos == 0 { |
| flag = newLazyFlag(-1, r) |
| } else { |
| flag = i.context(pos) |
| } |
| pc := re.onepass.Start |
| inst := re.onepass.Inst[pc] |
| // If there is a simple literal prefix, skip over it. |
| if pos == 0 && flag.match(syntax.EmptyOp(inst.Arg)) && |
| len(re.prefix) > 0 && i.canCheckPrefix() { |
| // Match requires literal prefix; fast search for it. |
| if !i.hasPrefix(re) { |
| goto Return |
| } |
| pos += len(re.prefix) |
| r, width = i.step(pos) |
| r1, width1 = i.step(pos + width) |
| flag = i.context(pos) |
| pc = int(re.prefixEnd) |
| } |
| for { |
| inst = re.onepass.Inst[pc] |
| pc = int(inst.Out) |
| switch inst.Op { |
| default: |
| panic("bad inst") |
| case syntax.InstMatch: |
| matched = true |
| if len(m.matchcap) > 0 { |
| m.matchcap[0] = 0 |
| m.matchcap[1] = pos |
| } |
| goto Return |
| case syntax.InstRune: |
| if !inst.MatchRune(r) { |
| goto Return |
| } |
| case syntax.InstRune1: |
| if r != inst.Rune[0] { |
| goto Return |
| } |
| case syntax.InstRuneAny: |
| // Nothing |
| case syntax.InstRuneAnyNotNL: |
| if r == '\n' { |
| goto Return |
| } |
| // peek at the input rune to see which branch of the Alt to take |
| case syntax.InstAlt, syntax.InstAltMatch: |
| pc = int(onePassNext(&inst, r)) |
| continue |
| case syntax.InstFail: |
| goto Return |
| case syntax.InstNop: |
| continue |
| case syntax.InstEmptyWidth: |
| if !flag.match(syntax.EmptyOp(inst.Arg)) { |
| goto Return |
| } |
| continue |
| case syntax.InstCapture: |
| if int(inst.Arg) < len(m.matchcap) { |
| m.matchcap[inst.Arg] = pos |
| } |
| continue |
| } |
| if width == 0 { |
| break |
| } |
| flag = newLazyFlag(r, r1) |
| pos += width |
| r, width = r1, width1 |
| if r != endOfText { |
| r1, width1 = i.step(pos + width) |
| } |
| } |
| |
| Return: |
| if !matched { |
| freeOnePassMachine(m) |
| return nil |
| } |
| |
| dstCap = append(dstCap, m.matchcap...) |
| freeOnePassMachine(m) |
| return dstCap |
| } |
| |
| // doMatch reports whether either r, b or s match the regexp. |
| func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool { |
| return re.doExecute(r, b, s, 0, 0, nil) != nil |
| } |
| |
| // doExecute finds the leftmost match in the input, appends the position |
| // of its subexpressions to dstCap and returns dstCap. |
| // |
| // nil is returned if no matches are found and non-nil if matches are found. |
| func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int { |
| if dstCap == nil { |
| // Make sure 'return dstCap' is non-nil. |
| dstCap = arrayNoInts[:0:0] |
| } |
| |
| if r == nil && len(b)+len(s) < re.minInputLen { |
| return nil |
| } |
| |
| if re.onepass != nil { |
| return re.doOnePass(r, b, s, pos, ncap, dstCap) |
| } |
| if r == nil && len(b)+len(s) < re.maxBitStateLen { |
| return re.backtrack(b, s, pos, ncap, dstCap) |
| } |
| |
| m := re.get() |
| i, _ := m.inputs.init(r, b, s) |
| |
| m.init(ncap) |
| if !m.match(i, pos) { |
| re.put(m) |
| return nil |
| } |
| |
| dstCap = append(dstCap, m.matchcap...) |
| re.put(m) |
| return dstCap |
| } |
| |
| // arrayNoInts is returned by doExecute match if nil dstCap is passed |
| // to it with ncap=0. |
| var arrayNoInts [0]int |