| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package tls |
| |
| import ( |
| "bytes" |
| "container/list" |
| "context" |
| "crypto" |
| "crypto/ecdsa" |
| "crypto/ed25519" |
| "crypto/elliptic" |
| "crypto/rand" |
| "crypto/rsa" |
| "crypto/sha512" |
| "crypto/x509" |
| "errors" |
| "fmt" |
| "io" |
| "net" |
| "strings" |
| "sync" |
| "time" |
| ) |
| |
| const ( |
| VersionTLS10 = 0x0301 |
| VersionTLS11 = 0x0302 |
| VersionTLS12 = 0x0303 |
| VersionTLS13 = 0x0304 |
| |
| // Deprecated: SSLv3 is cryptographically broken, and is no longer |
| // supported by this package. See golang.org/issue/32716. |
| VersionSSL30 = 0x0300 |
| ) |
| |
| const ( |
| maxPlaintext = 16384 // maximum plaintext payload length |
| maxCiphertext = 16384 + 2048 // maximum ciphertext payload length |
| maxCiphertextTLS13 = 16384 + 256 // maximum ciphertext length in TLS 1.3 |
| recordHeaderLen = 5 // record header length |
| maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB) |
| maxUselessRecords = 16 // maximum number of consecutive non-advancing records |
| ) |
| |
| // TLS record types. |
| type recordType uint8 |
| |
| const ( |
| recordTypeChangeCipherSpec recordType = 20 |
| recordTypeAlert recordType = 21 |
| recordTypeHandshake recordType = 22 |
| recordTypeApplicationData recordType = 23 |
| ) |
| |
| // TLS handshake message types. |
| const ( |
| typeHelloRequest uint8 = 0 |
| typeClientHello uint8 = 1 |
| typeServerHello uint8 = 2 |
| typeNewSessionTicket uint8 = 4 |
| typeEndOfEarlyData uint8 = 5 |
| typeEncryptedExtensions uint8 = 8 |
| typeCertificate uint8 = 11 |
| typeServerKeyExchange uint8 = 12 |
| typeCertificateRequest uint8 = 13 |
| typeServerHelloDone uint8 = 14 |
| typeCertificateVerify uint8 = 15 |
| typeClientKeyExchange uint8 = 16 |
| typeFinished uint8 = 20 |
| typeCertificateStatus uint8 = 22 |
| typeKeyUpdate uint8 = 24 |
| typeNextProtocol uint8 = 67 // Not IANA assigned |
| typeMessageHash uint8 = 254 // synthetic message |
| ) |
| |
| // TLS compression types. |
| const ( |
| compressionNone uint8 = 0 |
| ) |
| |
| // TLS extension numbers |
| const ( |
| extensionServerName uint16 = 0 |
| extensionStatusRequest uint16 = 5 |
| extensionSupportedCurves uint16 = 10 // supported_groups in TLS 1.3, see RFC 8446, Section 4.2.7 |
| extensionSupportedPoints uint16 = 11 |
| extensionSignatureAlgorithms uint16 = 13 |
| extensionALPN uint16 = 16 |
| extensionSCT uint16 = 18 |
| extensionSessionTicket uint16 = 35 |
| extensionPreSharedKey uint16 = 41 |
| extensionEarlyData uint16 = 42 |
| extensionSupportedVersions uint16 = 43 |
| extensionCookie uint16 = 44 |
| extensionPSKModes uint16 = 45 |
| extensionCertificateAuthorities uint16 = 47 |
| extensionSignatureAlgorithmsCert uint16 = 50 |
| extensionKeyShare uint16 = 51 |
| extensionRenegotiationInfo uint16 = 0xff01 |
| ) |
| |
| // TLS signaling cipher suite values |
| const ( |
| scsvRenegotiation uint16 = 0x00ff |
| ) |
| |
| // CurveID is the type of a TLS identifier for an elliptic curve. See |
| // https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8. |
| // |
| // In TLS 1.3, this type is called NamedGroup, but at this time this library |
| // only supports Elliptic Curve based groups. See RFC 8446, Section 4.2.7. |
| type CurveID uint16 |
| |
| const ( |
| CurveP256 CurveID = 23 |
| CurveP384 CurveID = 24 |
| CurveP521 CurveID = 25 |
| X25519 CurveID = 29 |
| ) |
| |
| // TLS 1.3 Key Share. See RFC 8446, Section 4.2.8. |
| type keyShare struct { |
| group CurveID |
| data []byte |
| } |
| |
| // TLS 1.3 PSK Key Exchange Modes. See RFC 8446, Section 4.2.9. |
| const ( |
| pskModePlain uint8 = 0 |
| pskModeDHE uint8 = 1 |
| ) |
| |
| // TLS 1.3 PSK Identity. Can be a Session Ticket, or a reference to a saved |
| // session. See RFC 8446, Section 4.2.11. |
| type pskIdentity struct { |
| label []byte |
| obfuscatedTicketAge uint32 |
| } |
| |
| // TLS Elliptic Curve Point Formats |
| // https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9 |
| const ( |
| pointFormatUncompressed uint8 = 0 |
| ) |
| |
| // TLS CertificateStatusType (RFC 3546) |
| const ( |
| statusTypeOCSP uint8 = 1 |
| ) |
| |
| // Certificate types (for certificateRequestMsg) |
| const ( |
| certTypeRSASign = 1 |
| certTypeECDSASign = 64 // ECDSA or EdDSA keys, see RFC 8422, Section 3. |
| ) |
| |
| // Signature algorithms (for internal signaling use). Starting at 225 to avoid overlap with |
| // TLS 1.2 codepoints (RFC 5246, Appendix A.4.1), with which these have nothing to do. |
| const ( |
| signaturePKCS1v15 uint8 = iota + 225 |
| signatureRSAPSS |
| signatureECDSA |
| signatureEd25519 |
| ) |
| |
| // directSigning is a standard Hash value that signals that no pre-hashing |
| // should be performed, and that the input should be signed directly. It is the |
| // hash function associated with the Ed25519 signature scheme. |
| var directSigning crypto.Hash = 0 |
| |
| // supportedSignatureAlgorithms contains the signature and hash algorithms that |
| // the code advertises as supported in a TLS 1.2+ ClientHello and in a TLS 1.2+ |
| // CertificateRequest. The two fields are merged to match with TLS 1.3. |
| // Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc. |
| var supportedSignatureAlgorithms = []SignatureScheme{ |
| PSSWithSHA256, |
| ECDSAWithP256AndSHA256, |
| Ed25519, |
| PSSWithSHA384, |
| PSSWithSHA512, |
| PKCS1WithSHA256, |
| PKCS1WithSHA384, |
| PKCS1WithSHA512, |
| ECDSAWithP384AndSHA384, |
| ECDSAWithP521AndSHA512, |
| PKCS1WithSHA1, |
| ECDSAWithSHA1, |
| } |
| |
| // helloRetryRequestRandom is set as the Random value of a ServerHello |
| // to signal that the message is actually a HelloRetryRequest. |
| var helloRetryRequestRandom = []byte{ // See RFC 8446, Section 4.1.3. |
| 0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11, |
| 0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91, |
| 0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E, |
| 0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C, |
| } |
| |
| const ( |
| // downgradeCanaryTLS12 or downgradeCanaryTLS11 is embedded in the server |
| // random as a downgrade protection if the server would be capable of |
| // negotiating a higher version. See RFC 8446, Section 4.1.3. |
| downgradeCanaryTLS12 = "DOWNGRD\x01" |
| downgradeCanaryTLS11 = "DOWNGRD\x00" |
| ) |
| |
| // testingOnlyForceDowngradeCanary is set in tests to force the server side to |
| // include downgrade canaries even if it's using its highers supported version. |
| var testingOnlyForceDowngradeCanary bool |
| |
| // ConnectionState records basic TLS details about the connection. |
| type ConnectionState struct { |
| // Version is the TLS version used by the connection (e.g. VersionTLS12). |
| Version uint16 |
| |
| // HandshakeComplete is true if the handshake has concluded. |
| HandshakeComplete bool |
| |
| // DidResume is true if this connection was successfully resumed from a |
| // previous session with a session ticket or similar mechanism. |
| DidResume bool |
| |
| // CipherSuite is the cipher suite negotiated for the connection (e.g. |
| // TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_AES_128_GCM_SHA256). |
| CipherSuite uint16 |
| |
| // NegotiatedProtocol is the application protocol negotiated with ALPN. |
| NegotiatedProtocol string |
| |
| // NegotiatedProtocolIsMutual used to indicate a mutual NPN negotiation. |
| // |
| // Deprecated: this value is always true. |
| NegotiatedProtocolIsMutual bool |
| |
| // ServerName is the value of the Server Name Indication extension sent by |
| // the client. It's available both on the server and on the client side. |
| ServerName string |
| |
| // PeerCertificates are the parsed certificates sent by the peer, in the |
| // order in which they were sent. The first element is the leaf certificate |
| // that the connection is verified against. |
| // |
| // On the client side, it can't be empty. On the server side, it can be |
| // empty if Config.ClientAuth is not RequireAnyClientCert or |
| // RequireAndVerifyClientCert. |
| PeerCertificates []*x509.Certificate |
| |
| // VerifiedChains is a list of one or more chains where the first element is |
| // PeerCertificates[0] and the last element is from Config.RootCAs (on the |
| // client side) or Config.ClientCAs (on the server side). |
| // |
| // On the client side, it's set if Config.InsecureSkipVerify is false. On |
| // the server side, it's set if Config.ClientAuth is VerifyClientCertIfGiven |
| // (and the peer provided a certificate) or RequireAndVerifyClientCert. |
| VerifiedChains [][]*x509.Certificate |
| |
| // SignedCertificateTimestamps is a list of SCTs provided by the peer |
| // through the TLS handshake for the leaf certificate, if any. |
| SignedCertificateTimestamps [][]byte |
| |
| // OCSPResponse is a stapled Online Certificate Status Protocol (OCSP) |
| // response provided by the peer for the leaf certificate, if any. |
| OCSPResponse []byte |
| |
| // TLSUnique contains the "tls-unique" channel binding value (see RFC 5929, |
| // Section 3). This value will be nil for TLS 1.3 connections and for all |
| // resumed connections. |
| // |
| // Deprecated: there are conditions in which this value might not be unique |
| // to a connection. See the Security Considerations sections of RFC 5705 and |
| // RFC 7627, and https://mitls.org/pages/attacks/3SHAKE#channelbindings. |
| TLSUnique []byte |
| |
| // ekm is a closure exposed via ExportKeyingMaterial. |
| ekm func(label string, context []byte, length int) ([]byte, error) |
| } |
| |
| // ExportKeyingMaterial returns length bytes of exported key material in a new |
| // slice as defined in RFC 5705. If context is nil, it is not used as part of |
| // the seed. If the connection was set to allow renegotiation via |
| // Config.Renegotiation, this function will return an error. |
| func (cs *ConnectionState) ExportKeyingMaterial(label string, context []byte, length int) ([]byte, error) { |
| return cs.ekm(label, context, length) |
| } |
| |
| // ClientAuthType declares the policy the server will follow for |
| // TLS Client Authentication. |
| type ClientAuthType int |
| |
| const ( |
| // NoClientCert indicates that no client certificate should be requested |
| // during the handshake, and if any certificates are sent they will not |
| // be verified. |
| NoClientCert ClientAuthType = iota |
| // RequestClientCert indicates that a client certificate should be requested |
| // during the handshake, but does not require that the client send any |
| // certificates. |
| RequestClientCert |
| // RequireAnyClientCert indicates that a client certificate should be requested |
| // during the handshake, and that at least one certificate is required to be |
| // sent by the client, but that certificate is not required to be valid. |
| RequireAnyClientCert |
| // VerifyClientCertIfGiven indicates that a client certificate should be requested |
| // during the handshake, but does not require that the client sends a |
| // certificate. If the client does send a certificate it is required to be |
| // valid. |
| VerifyClientCertIfGiven |
| // RequireAndVerifyClientCert indicates that a client certificate should be requested |
| // during the handshake, and that at least one valid certificate is required |
| // to be sent by the client. |
| RequireAndVerifyClientCert |
| ) |
| |
| // requiresClientCert reports whether the ClientAuthType requires a client |
| // certificate to be provided. |
| func requiresClientCert(c ClientAuthType) bool { |
| switch c { |
| case RequireAnyClientCert, RequireAndVerifyClientCert: |
| return true |
| default: |
| return false |
| } |
| } |
| |
| // ClientSessionState contains the state needed by clients to resume TLS |
| // sessions. |
| type ClientSessionState struct { |
| sessionTicket []uint8 // Encrypted ticket used for session resumption with server |
| vers uint16 // TLS version negotiated for the session |
| cipherSuite uint16 // Ciphersuite negotiated for the session |
| masterSecret []byte // Full handshake MasterSecret, or TLS 1.3 resumption_master_secret |
| serverCertificates []*x509.Certificate // Certificate chain presented by the server |
| verifiedChains [][]*x509.Certificate // Certificate chains we built for verification |
| receivedAt time.Time // When the session ticket was received from the server |
| ocspResponse []byte // Stapled OCSP response presented by the server |
| scts [][]byte // SCTs presented by the server |
| |
| // TLS 1.3 fields. |
| nonce []byte // Ticket nonce sent by the server, to derive PSK |
| useBy time.Time // Expiration of the ticket lifetime as set by the server |
| ageAdd uint32 // Random obfuscation factor for sending the ticket age |
| } |
| |
| // ClientSessionCache is a cache of ClientSessionState objects that can be used |
| // by a client to resume a TLS session with a given server. ClientSessionCache |
| // implementations should expect to be called concurrently from different |
| // goroutines. Up to TLS 1.2, only ticket-based resumption is supported, not |
| // SessionID-based resumption. In TLS 1.3 they were merged into PSK modes, which |
| // are supported via this interface. |
| type ClientSessionCache interface { |
| // Get searches for a ClientSessionState associated with the given key. |
| // On return, ok is true if one was found. |
| Get(sessionKey string) (session *ClientSessionState, ok bool) |
| |
| // Put adds the ClientSessionState to the cache with the given key. It might |
| // get called multiple times in a connection if a TLS 1.3 server provides |
| // more than one session ticket. If called with a nil *ClientSessionState, |
| // it should remove the cache entry. |
| Put(sessionKey string, cs *ClientSessionState) |
| } |
| |
| //go:generate stringer -type=SignatureScheme,CurveID,ClientAuthType -output=common_string.go |
| |
| // SignatureScheme identifies a signature algorithm supported by TLS. See |
| // RFC 8446, Section 4.2.3. |
| type SignatureScheme uint16 |
| |
| const ( |
| // RSASSA-PKCS1-v1_5 algorithms. |
| PKCS1WithSHA256 SignatureScheme = 0x0401 |
| PKCS1WithSHA384 SignatureScheme = 0x0501 |
| PKCS1WithSHA512 SignatureScheme = 0x0601 |
| |
| // RSASSA-PSS algorithms with public key OID rsaEncryption. |
| PSSWithSHA256 SignatureScheme = 0x0804 |
| PSSWithSHA384 SignatureScheme = 0x0805 |
| PSSWithSHA512 SignatureScheme = 0x0806 |
| |
| // ECDSA algorithms. Only constrained to a specific curve in TLS 1.3. |
| ECDSAWithP256AndSHA256 SignatureScheme = 0x0403 |
| ECDSAWithP384AndSHA384 SignatureScheme = 0x0503 |
| ECDSAWithP521AndSHA512 SignatureScheme = 0x0603 |
| |
| // EdDSA algorithms. |
| Ed25519 SignatureScheme = 0x0807 |
| |
| // Legacy signature and hash algorithms for TLS 1.2. |
| PKCS1WithSHA1 SignatureScheme = 0x0201 |
| ECDSAWithSHA1 SignatureScheme = 0x0203 |
| ) |
| |
| // ClientHelloInfo contains information from a ClientHello message in order to |
| // guide application logic in the GetCertificate and GetConfigForClient callbacks. |
| type ClientHelloInfo struct { |
| // CipherSuites lists the CipherSuites supported by the client (e.g. |
| // TLS_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256). |
| CipherSuites []uint16 |
| |
| // ServerName indicates the name of the server requested by the client |
| // in order to support virtual hosting. ServerName is only set if the |
| // client is using SNI (see RFC 4366, Section 3.1). |
| ServerName string |
| |
| // SupportedCurves lists the elliptic curves supported by the client. |
| // SupportedCurves is set only if the Supported Elliptic Curves |
| // Extension is being used (see RFC 4492, Section 5.1.1). |
| SupportedCurves []CurveID |
| |
| // SupportedPoints lists the point formats supported by the client. |
| // SupportedPoints is set only if the Supported Point Formats Extension |
| // is being used (see RFC 4492, Section 5.1.2). |
| SupportedPoints []uint8 |
| |
| // SignatureSchemes lists the signature and hash schemes that the client |
| // is willing to verify. SignatureSchemes is set only if the Signature |
| // Algorithms Extension is being used (see RFC 5246, Section 7.4.1.4.1). |
| SignatureSchemes []SignatureScheme |
| |
| // SupportedProtos lists the application protocols supported by the client. |
| // SupportedProtos is set only if the Application-Layer Protocol |
| // Negotiation Extension is being used (see RFC 7301, Section 3.1). |
| // |
| // Servers can select a protocol by setting Config.NextProtos in a |
| // GetConfigForClient return value. |
| SupportedProtos []string |
| |
| // SupportedVersions lists the TLS versions supported by the client. |
| // For TLS versions less than 1.3, this is extrapolated from the max |
| // version advertised by the client, so values other than the greatest |
| // might be rejected if used. |
| SupportedVersions []uint16 |
| |
| // Conn is the underlying net.Conn for the connection. Do not read |
| // from, or write to, this connection; that will cause the TLS |
| // connection to fail. |
| Conn net.Conn |
| |
| // config is embedded by the GetCertificate or GetConfigForClient caller, |
| // for use with SupportsCertificate. |
| config *Config |
| |
| // ctx is the context of the handshake that is in progress. |
| ctx context.Context |
| } |
| |
| // Context returns the context of the handshake that is in progress. |
| // This context is a child of the context passed to HandshakeContext, |
| // if any, and is canceled when the handshake concludes. |
| func (c *ClientHelloInfo) Context() context.Context { |
| return c.ctx |
| } |
| |
| // CertificateRequestInfo contains information from a server's |
| // CertificateRequest message, which is used to demand a certificate and proof |
| // of control from a client. |
| type CertificateRequestInfo struct { |
| // AcceptableCAs contains zero or more, DER-encoded, X.501 |
| // Distinguished Names. These are the names of root or intermediate CAs |
| // that the server wishes the returned certificate to be signed by. An |
| // empty slice indicates that the server has no preference. |
| AcceptableCAs [][]byte |
| |
| // SignatureSchemes lists the signature schemes that the server is |
| // willing to verify. |
| SignatureSchemes []SignatureScheme |
| |
| // Version is the TLS version that was negotiated for this connection. |
| Version uint16 |
| |
| // ctx is the context of the handshake that is in progress. |
| ctx context.Context |
| } |
| |
| // Context returns the context of the handshake that is in progress. |
| // This context is a child of the context passed to HandshakeContext, |
| // if any, and is canceled when the handshake concludes. |
| func (c *CertificateRequestInfo) Context() context.Context { |
| return c.ctx |
| } |
| |
| // RenegotiationSupport enumerates the different levels of support for TLS |
| // renegotiation. TLS renegotiation is the act of performing subsequent |
| // handshakes on a connection after the first. This significantly complicates |
| // the state machine and has been the source of numerous, subtle security |
| // issues. Initiating a renegotiation is not supported, but support for |
| // accepting renegotiation requests may be enabled. |
| // |
| // Even when enabled, the server may not change its identity between handshakes |
| // (i.e. the leaf certificate must be the same). Additionally, concurrent |
| // handshake and application data flow is not permitted so renegotiation can |
| // only be used with protocols that synchronise with the renegotiation, such as |
| // HTTPS. |
| // |
| // Renegotiation is not defined in TLS 1.3. |
| type RenegotiationSupport int |
| |
| const ( |
| // RenegotiateNever disables renegotiation. |
| RenegotiateNever RenegotiationSupport = iota |
| |
| // RenegotiateOnceAsClient allows a remote server to request |
| // renegotiation once per connection. |
| RenegotiateOnceAsClient |
| |
| // RenegotiateFreelyAsClient allows a remote server to repeatedly |
| // request renegotiation. |
| RenegotiateFreelyAsClient |
| ) |
| |
| // A Config structure is used to configure a TLS client or server. |
| // After one has been passed to a TLS function it must not be |
| // modified. A Config may be reused; the tls package will also not |
| // modify it. |
| type Config struct { |
| // Rand provides the source of entropy for nonces and RSA blinding. |
| // If Rand is nil, TLS uses the cryptographic random reader in package |
| // crypto/rand. |
| // The Reader must be safe for use by multiple goroutines. |
| Rand io.Reader |
| |
| // Time returns the current time as the number of seconds since the epoch. |
| // If Time is nil, TLS uses time.Now. |
| Time func() time.Time |
| |
| // Certificates contains one or more certificate chains to present to the |
| // other side of the connection. The first certificate compatible with the |
| // peer's requirements is selected automatically. |
| // |
| // Server configurations must set one of Certificates, GetCertificate or |
| // GetConfigForClient. Clients doing client-authentication may set either |
| // Certificates or GetClientCertificate. |
| // |
| // Note: if there are multiple Certificates, and they don't have the |
| // optional field Leaf set, certificate selection will incur a significant |
| // per-handshake performance cost. |
| Certificates []Certificate |
| |
| // NameToCertificate maps from a certificate name to an element of |
| // Certificates. Note that a certificate name can be of the form |
| // '*.example.com' and so doesn't have to be a domain name as such. |
| // |
| // Deprecated: NameToCertificate only allows associating a single |
| // certificate with a given name. Leave this field nil to let the library |
| // select the first compatible chain from Certificates. |
| NameToCertificate map[string]*Certificate |
| |
| // GetCertificate returns a Certificate based on the given |
| // ClientHelloInfo. It will only be called if the client supplies SNI |
| // information or if Certificates is empty. |
| // |
| // If GetCertificate is nil or returns nil, then the certificate is |
| // retrieved from NameToCertificate. If NameToCertificate is nil, the |
| // best element of Certificates will be used. |
| GetCertificate func(*ClientHelloInfo) (*Certificate, error) |
| |
| // GetClientCertificate, if not nil, is called when a server requests a |
| // certificate from a client. If set, the contents of Certificates will |
| // be ignored. |
| // |
| // If GetClientCertificate returns an error, the handshake will be |
| // aborted and that error will be returned. Otherwise |
| // GetClientCertificate must return a non-nil Certificate. If |
| // Certificate.Certificate is empty then no certificate will be sent to |
| // the server. If this is unacceptable to the server then it may abort |
| // the handshake. |
| // |
| // GetClientCertificate may be called multiple times for the same |
| // connection if renegotiation occurs or if TLS 1.3 is in use. |
| GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error) |
| |
| // GetConfigForClient, if not nil, is called after a ClientHello is |
| // received from a client. It may return a non-nil Config in order to |
| // change the Config that will be used to handle this connection. If |
| // the returned Config is nil, the original Config will be used. The |
| // Config returned by this callback may not be subsequently modified. |
| // |
| // If GetConfigForClient is nil, the Config passed to Server() will be |
| // used for all connections. |
| // |
| // If SessionTicketKey was explicitly set on the returned Config, or if |
| // SetSessionTicketKeys was called on the returned Config, those keys will |
| // be used. Otherwise, the original Config keys will be used (and possibly |
| // rotated if they are automatically managed). |
| GetConfigForClient func(*ClientHelloInfo) (*Config, error) |
| |
| // VerifyPeerCertificate, if not nil, is called after normal |
| // certificate verification by either a TLS client or server. It |
| // receives the raw ASN.1 certificates provided by the peer and also |
| // any verified chains that normal processing found. If it returns a |
| // non-nil error, the handshake is aborted and that error results. |
| // |
| // If normal verification fails then the handshake will abort before |
| // considering this callback. If normal verification is disabled by |
| // setting InsecureSkipVerify, or (for a server) when ClientAuth is |
| // RequestClientCert or RequireAnyClientCert, then this callback will |
| // be considered but the verifiedChains argument will always be nil. |
| VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error |
| |
| // VerifyConnection, if not nil, is called after normal certificate |
| // verification and after VerifyPeerCertificate by either a TLS client |
| // or server. If it returns a non-nil error, the handshake is aborted |
| // and that error results. |
| // |
| // If normal verification fails then the handshake will abort before |
| // considering this callback. This callback will run for all connections |
| // regardless of InsecureSkipVerify or ClientAuth settings. |
| VerifyConnection func(ConnectionState) error |
| |
| // RootCAs defines the set of root certificate authorities |
| // that clients use when verifying server certificates. |
| // If RootCAs is nil, TLS uses the host's root CA set. |
| RootCAs *x509.CertPool |
| |
| // NextProtos is a list of supported application level protocols, in |
| // order of preference. If both peers support ALPN, the selected |
| // protocol will be one from this list, and the connection will fail |
| // if there is no mutually supported protocol. If NextProtos is empty |
| // or the peer doesn't support ALPN, the connection will succeed and |
| // ConnectionState.NegotiatedProtocol will be empty. |
| NextProtos []string |
| |
| // ServerName is used to verify the hostname on the returned |
| // certificates unless InsecureSkipVerify is given. It is also included |
| // in the client's handshake to support virtual hosting unless it is |
| // an IP address. |
| ServerName string |
| |
| // ClientAuth determines the server's policy for |
| // TLS Client Authentication. The default is NoClientCert. |
| ClientAuth ClientAuthType |
| |
| // ClientCAs defines the set of root certificate authorities |
| // that servers use if required to verify a client certificate |
| // by the policy in ClientAuth. |
| ClientCAs *x509.CertPool |
| |
| // InsecureSkipVerify controls whether a client verifies the server's |
| // certificate chain and host name. If InsecureSkipVerify is true, crypto/tls |
| // accepts any certificate presented by the server and any host name in that |
| // certificate. In this mode, TLS is susceptible to machine-in-the-middle |
| // attacks unless custom verification is used. This should be used only for |
| // testing or in combination with VerifyConnection or VerifyPeerCertificate. |
| InsecureSkipVerify bool |
| |
| // CipherSuites is a list of enabled TLS 1.0–1.2 cipher suites. The order of |
| // the list is ignored. Note that TLS 1.3 ciphersuites are not configurable. |
| // |
| // If CipherSuites is nil, a safe default list is used. The default cipher |
| // suites might change over time. |
| CipherSuites []uint16 |
| |
| // PreferServerCipherSuites is a legacy field and has no effect. |
| // |
| // It used to control whether the server would follow the client's or the |
| // server's preference. Servers now select the best mutually supported |
| // cipher suite based on logic that takes into account inferred client |
| // hardware, server hardware, and security. |
| // |
| // Deprecated: PreferServerCipherSuites is ignored. |
| PreferServerCipherSuites bool |
| |
| // SessionTicketsDisabled may be set to true to disable session ticket and |
| // PSK (resumption) support. Note that on clients, session ticket support is |
| // also disabled if ClientSessionCache is nil. |
| SessionTicketsDisabled bool |
| |
| // SessionTicketKey is used by TLS servers to provide session resumption. |
| // See RFC 5077 and the PSK mode of RFC 8446. If zero, it will be filled |
| // with random data before the first server handshake. |
| // |
| // Deprecated: if this field is left at zero, session ticket keys will be |
| // automatically rotated every day and dropped after seven days. For |
| // customizing the rotation schedule or synchronizing servers that are |
| // terminating connections for the same host, use SetSessionTicketKeys. |
| SessionTicketKey [32]byte |
| |
| // ClientSessionCache is a cache of ClientSessionState entries for TLS |
| // session resumption. It is only used by clients. |
| ClientSessionCache ClientSessionCache |
| |
| // MinVersion contains the minimum TLS version that is acceptable. |
| // If zero, TLS 1.0 is currently taken as the minimum. |
| MinVersion uint16 |
| |
| // MaxVersion contains the maximum TLS version that is acceptable. |
| // If zero, the maximum version supported by this package is used, |
| // which is currently TLS 1.3. |
| MaxVersion uint16 |
| |
| // CurvePreferences contains the elliptic curves that will be used in |
| // an ECDHE handshake, in preference order. If empty, the default will |
| // be used. The client will use the first preference as the type for |
| // its key share in TLS 1.3. This may change in the future. |
| CurvePreferences []CurveID |
| |
| // DynamicRecordSizingDisabled disables adaptive sizing of TLS records. |
| // When true, the largest possible TLS record size is always used. When |
| // false, the size of TLS records may be adjusted in an attempt to |
| // improve latency. |
| DynamicRecordSizingDisabled bool |
| |
| // Renegotiation controls what types of renegotiation are supported. |
| // The default, none, is correct for the vast majority of applications. |
| Renegotiation RenegotiationSupport |
| |
| // KeyLogWriter optionally specifies a destination for TLS master secrets |
| // in NSS key log format that can be used to allow external programs |
| // such as Wireshark to decrypt TLS connections. |
| // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format. |
| // Use of KeyLogWriter compromises security and should only be |
| // used for debugging. |
| KeyLogWriter io.Writer |
| |
| // mutex protects sessionTicketKeys and autoSessionTicketKeys. |
| mutex sync.RWMutex |
| // sessionTicketKeys contains zero or more ticket keys. If set, it means the |
| // the keys were set with SessionTicketKey or SetSessionTicketKeys. The |
| // first key is used for new tickets and any subsequent keys can be used to |
| // decrypt old tickets. The slice contents are not protected by the mutex |
| // and are immutable. |
| sessionTicketKeys []ticketKey |
| // autoSessionTicketKeys is like sessionTicketKeys but is owned by the |
| // auto-rotation logic. See Config.ticketKeys. |
| autoSessionTicketKeys []ticketKey |
| } |
| |
| const ( |
| // ticketKeyNameLen is the number of bytes of identifier that is prepended to |
| // an encrypted session ticket in order to identify the key used to encrypt it. |
| ticketKeyNameLen = 16 |
| |
| // ticketKeyLifetime is how long a ticket key remains valid and can be used to |
| // resume a client connection. |
| ticketKeyLifetime = 7 * 24 * time.Hour // 7 days |
| |
| // ticketKeyRotation is how often the server should rotate the session ticket key |
| // that is used for new tickets. |
| ticketKeyRotation = 24 * time.Hour |
| ) |
| |
| // ticketKey is the internal representation of a session ticket key. |
| type ticketKey struct { |
| // keyName is an opaque byte string that serves to identify the session |
| // ticket key. It's exposed as plaintext in every session ticket. |
| keyName [ticketKeyNameLen]byte |
| aesKey [16]byte |
| hmacKey [16]byte |
| // created is the time at which this ticket key was created. See Config.ticketKeys. |
| created time.Time |
| } |
| |
| // ticketKeyFromBytes converts from the external representation of a session |
| // ticket key to a ticketKey. Externally, session ticket keys are 32 random |
| // bytes and this function expands that into sufficient name and key material. |
| func (c *Config) ticketKeyFromBytes(b [32]byte) (key ticketKey) { |
| hashed := sha512.Sum512(b[:]) |
| copy(key.keyName[:], hashed[:ticketKeyNameLen]) |
| copy(key.aesKey[:], hashed[ticketKeyNameLen:ticketKeyNameLen+16]) |
| copy(key.hmacKey[:], hashed[ticketKeyNameLen+16:ticketKeyNameLen+32]) |
| key.created = c.time() |
| return key |
| } |
| |
| // maxSessionTicketLifetime is the maximum allowed lifetime of a TLS 1.3 session |
| // ticket, and the lifetime we set for tickets we send. |
| const maxSessionTicketLifetime = 7 * 24 * time.Hour |
| |
| // Clone returns a shallow clone of c or nil if c is nil. It is safe to clone a Config that is |
| // being used concurrently by a TLS client or server. |
| func (c *Config) Clone() *Config { |
| if c == nil { |
| return nil |
| } |
| c.mutex.RLock() |
| defer c.mutex.RUnlock() |
| return &Config{ |
| Rand: c.Rand, |
| Time: c.Time, |
| Certificates: c.Certificates, |
| NameToCertificate: c.NameToCertificate, |
| GetCertificate: c.GetCertificate, |
| GetClientCertificate: c.GetClientCertificate, |
| GetConfigForClient: c.GetConfigForClient, |
| VerifyPeerCertificate: c.VerifyPeerCertificate, |
| VerifyConnection: c.VerifyConnection, |
| RootCAs: c.RootCAs, |
| NextProtos: c.NextProtos, |
| ServerName: c.ServerName, |
| ClientAuth: c.ClientAuth, |
| ClientCAs: c.ClientCAs, |
| InsecureSkipVerify: c.InsecureSkipVerify, |
| CipherSuites: c.CipherSuites, |
| PreferServerCipherSuites: c.PreferServerCipherSuites, |
| SessionTicketsDisabled: c.SessionTicketsDisabled, |
| SessionTicketKey: c.SessionTicketKey, |
| ClientSessionCache: c.ClientSessionCache, |
| MinVersion: c.MinVersion, |
| MaxVersion: c.MaxVersion, |
| CurvePreferences: c.CurvePreferences, |
| DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled, |
| Renegotiation: c.Renegotiation, |
| KeyLogWriter: c.KeyLogWriter, |
| sessionTicketKeys: c.sessionTicketKeys, |
| autoSessionTicketKeys: c.autoSessionTicketKeys, |
| } |
| } |
| |
| // deprecatedSessionTicketKey is set as the prefix of SessionTicketKey if it was |
| // randomized for backwards compatibility but is not in use. |
| var deprecatedSessionTicketKey = []byte("DEPRECATED") |
| |
| // initLegacySessionTicketKeyRLocked ensures the legacy SessionTicketKey field is |
| // randomized if empty, and that sessionTicketKeys is populated from it otherwise. |
| func (c *Config) initLegacySessionTicketKeyRLocked() { |
| // Don't write if SessionTicketKey is already defined as our deprecated string, |
| // or if it is defined by the user but sessionTicketKeys is already set. |
| if c.SessionTicketKey != [32]byte{} && |
| (bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) || len(c.sessionTicketKeys) > 0) { |
| return |
| } |
| |
| // We need to write some data, so get an exclusive lock and re-check any conditions. |
| c.mutex.RUnlock() |
| defer c.mutex.RLock() |
| c.mutex.Lock() |
| defer c.mutex.Unlock() |
| if c.SessionTicketKey == [32]byte{} { |
| if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil { |
| panic(fmt.Sprintf("tls: unable to generate random session ticket key: %v", err)) |
| } |
| // Write the deprecated prefix at the beginning so we know we created |
| // it. This key with the DEPRECATED prefix isn't used as an actual |
| // session ticket key, and is only randomized in case the application |
| // reuses it for some reason. |
| copy(c.SessionTicketKey[:], deprecatedSessionTicketKey) |
| } else if !bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) && len(c.sessionTicketKeys) == 0 { |
| c.sessionTicketKeys = []ticketKey{c.ticketKeyFromBytes(c.SessionTicketKey)} |
| } |
| |
| } |
| |
| // ticketKeys returns the ticketKeys for this connection. |
| // If configForClient has explicitly set keys, those will |
| // be returned. Otherwise, the keys on c will be used and |
| // may be rotated if auto-managed. |
| // During rotation, any expired session ticket keys are deleted from |
| // c.sessionTicketKeys. If the session ticket key that is currently |
| // encrypting tickets (ie. the first ticketKey in c.sessionTicketKeys) |
| // is not fresh, then a new session ticket key will be |
| // created and prepended to c.sessionTicketKeys. |
| func (c *Config) ticketKeys(configForClient *Config) []ticketKey { |
| // If the ConfigForClient callback returned a Config with explicitly set |
| // keys, use those, otherwise just use the original Config. |
| if configForClient != nil { |
| configForClient.mutex.RLock() |
| if configForClient.SessionTicketsDisabled { |
| return nil |
| } |
| configForClient.initLegacySessionTicketKeyRLocked() |
| if len(configForClient.sessionTicketKeys) != 0 { |
| ret := configForClient.sessionTicketKeys |
| configForClient.mutex.RUnlock() |
| return ret |
| } |
| configForClient.mutex.RUnlock() |
| } |
| |
| c.mutex.RLock() |
| defer c.mutex.RUnlock() |
| if c.SessionTicketsDisabled { |
| return nil |
| } |
| c.initLegacySessionTicketKeyRLocked() |
| if len(c.sessionTicketKeys) != 0 { |
| return c.sessionTicketKeys |
| } |
| // Fast path for the common case where the key is fresh enough. |
| if len(c.autoSessionTicketKeys) > 0 && c.time().Sub(c.autoSessionTicketKeys[0].created) < ticketKeyRotation { |
| return c.autoSessionTicketKeys |
| } |
| |
| // autoSessionTicketKeys are managed by auto-rotation. |
| c.mutex.RUnlock() |
| defer c.mutex.RLock() |
| c.mutex.Lock() |
| defer c.mutex.Unlock() |
| // Re-check the condition in case it changed since obtaining the new lock. |
| if len(c.autoSessionTicketKeys) == 0 || c.time().Sub(c.autoSessionTicketKeys[0].created) >= ticketKeyRotation { |
| var newKey [32]byte |
| if _, err := io.ReadFull(c.rand(), newKey[:]); err != nil { |
| panic(fmt.Sprintf("unable to generate random session ticket key: %v", err)) |
| } |
| valid := make([]ticketKey, 0, len(c.autoSessionTicketKeys)+1) |
| valid = append(valid, c.ticketKeyFromBytes(newKey)) |
| for _, k := range c.autoSessionTicketKeys { |
| // While rotating the current key, also remove any expired ones. |
| if c.time().Sub(k.created) < ticketKeyLifetime { |
| valid = append(valid, k) |
| } |
| } |
| c.autoSessionTicketKeys = valid |
| } |
| return c.autoSessionTicketKeys |
| } |
| |
| // SetSessionTicketKeys updates the session ticket keys for a server. |
| // |
| // The first key will be used when creating new tickets, while all keys can be |
| // used for decrypting tickets. It is safe to call this function while the |
| // server is running in order to rotate the session ticket keys. The function |
| // will panic if keys is empty. |
| // |
| // Calling this function will turn off automatic session ticket key rotation. |
| // |
| // If multiple servers are terminating connections for the same host they should |
| // all have the same session ticket keys. If the session ticket keys leaks, |
| // previously recorded and future TLS connections using those keys might be |
| // compromised. |
| func (c *Config) SetSessionTicketKeys(keys [][32]byte) { |
| if len(keys) == 0 { |
| panic("tls: keys must have at least one key") |
| } |
| |
| newKeys := make([]ticketKey, len(keys)) |
| for i, bytes := range keys { |
| newKeys[i] = c.ticketKeyFromBytes(bytes) |
| } |
| |
| c.mutex.Lock() |
| c.sessionTicketKeys = newKeys |
| c.mutex.Unlock() |
| } |
| |
| func (c *Config) rand() io.Reader { |
| r := c.Rand |
| if r == nil { |
| return rand.Reader |
| } |
| return r |
| } |
| |
| func (c *Config) time() time.Time { |
| t := c.Time |
| if t == nil { |
| t = time.Now |
| } |
| return t() |
| } |
| |
| func (c *Config) cipherSuites() []uint16 { |
| if c.CipherSuites != nil { |
| return c.CipherSuites |
| } |
| return defaultCipherSuites |
| } |
| |
| var supportedVersions = []uint16{ |
| VersionTLS13, |
| VersionTLS12, |
| VersionTLS11, |
| VersionTLS10, |
| } |
| |
| func (c *Config) supportedVersions() []uint16 { |
| versions := make([]uint16, 0, len(supportedVersions)) |
| for _, v := range supportedVersions { |
| if c != nil && c.MinVersion != 0 && v < c.MinVersion { |
| continue |
| } |
| if c != nil && c.MaxVersion != 0 && v > c.MaxVersion { |
| continue |
| } |
| versions = append(versions, v) |
| } |
| return versions |
| } |
| |
| func (c *Config) maxSupportedVersion() uint16 { |
| supportedVersions := c.supportedVersions() |
| if len(supportedVersions) == 0 { |
| return 0 |
| } |
| return supportedVersions[0] |
| } |
| |
| // supportedVersionsFromMax returns a list of supported versions derived from a |
| // legacy maximum version value. Note that only versions supported by this |
| // library are returned. Any newer peer will use supportedVersions anyway. |
| func supportedVersionsFromMax(maxVersion uint16) []uint16 { |
| versions := make([]uint16, 0, len(supportedVersions)) |
| for _, v := range supportedVersions { |
| if v > maxVersion { |
| continue |
| } |
| versions = append(versions, v) |
| } |
| return versions |
| } |
| |
| var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521} |
| |
| func (c *Config) curvePreferences() []CurveID { |
| if c == nil || len(c.CurvePreferences) == 0 { |
| return defaultCurvePreferences |
| } |
| return c.CurvePreferences |
| } |
| |
| func (c *Config) supportsCurve(curve CurveID) bool { |
| for _, cc := range c.curvePreferences() { |
| if cc == curve { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // mutualVersion returns the protocol version to use given the advertised |
| // versions of the peer. Priority is given to the peer preference order. |
| func (c *Config) mutualVersion(peerVersions []uint16) (uint16, bool) { |
| supportedVersions := c.supportedVersions() |
| for _, peerVersion := range peerVersions { |
| for _, v := range supportedVersions { |
| if v == peerVersion { |
| return v, true |
| } |
| } |
| } |
| return 0, false |
| } |
| |
| var errNoCertificates = errors.New("tls: no certificates configured") |
| |
| // getCertificate returns the best certificate for the given ClientHelloInfo, |
| // defaulting to the first element of c.Certificates. |
| func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) { |
| if c.GetCertificate != nil && |
| (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) { |
| cert, err := c.GetCertificate(clientHello) |
| if cert != nil || err != nil { |
| return cert, err |
| } |
| } |
| |
| if len(c.Certificates) == 0 { |
| return nil, errNoCertificates |
| } |
| |
| if len(c.Certificates) == 1 { |
| // There's only one choice, so no point doing any work. |
| return &c.Certificates[0], nil |
| } |
| |
| if c.NameToCertificate != nil { |
| name := strings.ToLower(clientHello.ServerName) |
| if cert, ok := c.NameToCertificate[name]; ok { |
| return cert, nil |
| } |
| if len(name) > 0 { |
| labels := strings.Split(name, ".") |
| labels[0] = "*" |
| wildcardName := strings.Join(labels, ".") |
| if cert, ok := c.NameToCertificate[wildcardName]; ok { |
| return cert, nil |
| } |
| } |
| } |
| |
| for _, cert := range c.Certificates { |
| if err := clientHello.SupportsCertificate(&cert); err == nil { |
| return &cert, nil |
| } |
| } |
| |
| // If nothing matches, return the first certificate. |
| return &c.Certificates[0], nil |
| } |
| |
| // SupportsCertificate returns nil if the provided certificate is supported by |
| // the client that sent the ClientHello. Otherwise, it returns an error |
| // describing the reason for the incompatibility. |
| // |
| // If this ClientHelloInfo was passed to a GetConfigForClient or GetCertificate |
| // callback, this method will take into account the associated Config. Note that |
| // if GetConfigForClient returns a different Config, the change can't be |
| // accounted for by this method. |
| // |
| // This function will call x509.ParseCertificate unless c.Leaf is set, which can |
| // incur a significant performance cost. |
| func (chi *ClientHelloInfo) SupportsCertificate(c *Certificate) error { |
| // Note we don't currently support certificate_authorities nor |
| // signature_algorithms_cert, and don't check the algorithms of the |
| // signatures on the chain (which anyway are a SHOULD, see RFC 8446, |
| // Section 4.4.2.2). |
| |
| config := chi.config |
| if config == nil { |
| config = &Config{} |
| } |
| vers, ok := config.mutualVersion(chi.SupportedVersions) |
| if !ok { |
| return errors.New("no mutually supported protocol versions") |
| } |
| |
| // If the client specified the name they are trying to connect to, the |
| // certificate needs to be valid for it. |
| if chi.ServerName != "" { |
| x509Cert, err := c.leaf() |
| if err != nil { |
| return fmt.Errorf("failed to parse certificate: %w", err) |
| } |
| if err := x509Cert.VerifyHostname(chi.ServerName); err != nil { |
| return fmt.Errorf("certificate is not valid for requested server name: %w", err) |
| } |
| } |
| |
| // supportsRSAFallback returns nil if the certificate and connection support |
| // the static RSA key exchange, and unsupported otherwise. The logic for |
| // supporting static RSA is completely disjoint from the logic for |
| // supporting signed key exchanges, so we just check it as a fallback. |
| supportsRSAFallback := func(unsupported error) error { |
| // TLS 1.3 dropped support for the static RSA key exchange. |
| if vers == VersionTLS13 { |
| return unsupported |
| } |
| // The static RSA key exchange works by decrypting a challenge with the |
| // RSA private key, not by signing, so check the PrivateKey implements |
| // crypto.Decrypter, like *rsa.PrivateKey does. |
| if priv, ok := c.PrivateKey.(crypto.Decrypter); ok { |
| if _, ok := priv.Public().(*rsa.PublicKey); !ok { |
| return unsupported |
| } |
| } else { |
| return unsupported |
| } |
| // Finally, there needs to be a mutual cipher suite that uses the static |
| // RSA key exchange instead of ECDHE. |
| rsaCipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool { |
| if c.flags&suiteECDHE != 0 { |
| return false |
| } |
| if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 { |
| return false |
| } |
| return true |
| }) |
| if rsaCipherSuite == nil { |
| return unsupported |
| } |
| return nil |
| } |
| |
| // If the client sent the signature_algorithms extension, ensure it supports |
| // schemes we can use with this certificate and TLS version. |
| if len(chi.SignatureSchemes) > 0 { |
| if _, err := selectSignatureScheme(vers, c, chi.SignatureSchemes); err != nil { |
| return supportsRSAFallback(err) |
| } |
| } |
| |
| // In TLS 1.3 we are done because supported_groups is only relevant to the |
| // ECDHE computation, point format negotiation is removed, cipher suites are |
| // only relevant to the AEAD choice, and static RSA does not exist. |
| if vers == VersionTLS13 { |
| return nil |
| } |
| |
| // The only signed key exchange we support is ECDHE. |
| if !supportsECDHE(config, chi.SupportedCurves, chi.SupportedPoints) { |
| return supportsRSAFallback(errors.New("client doesn't support ECDHE, can only use legacy RSA key exchange")) |
| } |
| |
| var ecdsaCipherSuite bool |
| if priv, ok := c.PrivateKey.(crypto.Signer); ok { |
| switch pub := priv.Public().(type) { |
| case *ecdsa.PublicKey: |
| var curve CurveID |
| switch pub.Curve { |
| case elliptic.P256(): |
| curve = CurveP256 |
| case elliptic.P384(): |
| curve = CurveP384 |
| case elliptic.P521(): |
| curve = CurveP521 |
| default: |
| return supportsRSAFallback(unsupportedCertificateError(c)) |
| } |
| var curveOk bool |
| for _, c := range chi.SupportedCurves { |
| if c == curve && config.supportsCurve(c) { |
| curveOk = true |
| break |
| } |
| } |
| if !curveOk { |
| return errors.New("client doesn't support certificate curve") |
| } |
| ecdsaCipherSuite = true |
| case ed25519.PublicKey: |
| if vers < VersionTLS12 || len(chi.SignatureSchemes) == 0 { |
| return errors.New("connection doesn't support Ed25519") |
| } |
| ecdsaCipherSuite = true |
| case *rsa.PublicKey: |
| default: |
| return supportsRSAFallback(unsupportedCertificateError(c)) |
| } |
| } else { |
| return supportsRSAFallback(unsupportedCertificateError(c)) |
| } |
| |
| // Make sure that there is a mutually supported cipher suite that works with |
| // this certificate. Cipher suite selection will then apply the logic in |
| // reverse to pick it. See also serverHandshakeState.cipherSuiteOk. |
| cipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool { |
| if c.flags&suiteECDHE == 0 { |
| return false |
| } |
| if c.flags&suiteECSign != 0 { |
| if !ecdsaCipherSuite { |
| return false |
| } |
| } else { |
| if ecdsaCipherSuite { |
| return false |
| } |
| } |
| if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 { |
| return false |
| } |
| return true |
| }) |
| if cipherSuite == nil { |
| return supportsRSAFallback(errors.New("client doesn't support any cipher suites compatible with the certificate")) |
| } |
| |
| return nil |
| } |
| |
| // SupportsCertificate returns nil if the provided certificate is supported by |
| // the server that sent the CertificateRequest. Otherwise, it returns an error |
| // describing the reason for the incompatibility. |
| func (cri *CertificateRequestInfo) SupportsCertificate(c *Certificate) error { |
| if _, err := selectSignatureScheme(cri.Version, c, cri.SignatureSchemes); err != nil { |
| return err |
| } |
| |
| if len(cri.AcceptableCAs) == 0 { |
| return nil |
| } |
| |
| for j, cert := range c.Certificate { |
| x509Cert := c.Leaf |
| // Parse the certificate if this isn't the leaf node, or if |
| // chain.Leaf was nil. |
| if j != 0 || x509Cert == nil { |
| var err error |
| if x509Cert, err = x509.ParseCertificate(cert); err != nil { |
| return fmt.Errorf("failed to parse certificate #%d in the chain: %w", j, err) |
| } |
| } |
| |
| for _, ca := range cri.AcceptableCAs { |
| if bytes.Equal(x509Cert.RawIssuer, ca) { |
| return nil |
| } |
| } |
| } |
| return errors.New("chain is not signed by an acceptable CA") |
| } |
| |
| // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate |
| // from the CommonName and SubjectAlternateName fields of each of the leaf |
| // certificates. |
| // |
| // Deprecated: NameToCertificate only allows associating a single certificate |
| // with a given name. Leave that field nil to let the library select the first |
| // compatible chain from Certificates. |
| func (c *Config) BuildNameToCertificate() { |
| c.NameToCertificate = make(map[string]*Certificate) |
| for i := range c.Certificates { |
| cert := &c.Certificates[i] |
| x509Cert, err := cert.leaf() |
| if err != nil { |
| continue |
| } |
| // If SANs are *not* present, some clients will consider the certificate |
| // valid for the name in the Common Name. |
| if x509Cert.Subject.CommonName != "" && len(x509Cert.DNSNames) == 0 { |
| c.NameToCertificate[x509Cert.Subject.CommonName] = cert |
| } |
| for _, san := range x509Cert.DNSNames { |
| c.NameToCertificate[san] = cert |
| } |
| } |
| } |
| |
| const ( |
| keyLogLabelTLS12 = "CLIENT_RANDOM" |
| keyLogLabelClientHandshake = "CLIENT_HANDSHAKE_TRAFFIC_SECRET" |
| keyLogLabelServerHandshake = "SERVER_HANDSHAKE_TRAFFIC_SECRET" |
| keyLogLabelClientTraffic = "CLIENT_TRAFFIC_SECRET_0" |
| keyLogLabelServerTraffic = "SERVER_TRAFFIC_SECRET_0" |
| ) |
| |
| func (c *Config) writeKeyLog(label string, clientRandom, secret []byte) error { |
| if c.KeyLogWriter == nil { |
| return nil |
| } |
| |
| logLine := []byte(fmt.Sprintf("%s %x %x\n", label, clientRandom, secret)) |
| |
| writerMutex.Lock() |
| _, err := c.KeyLogWriter.Write(logLine) |
| writerMutex.Unlock() |
| |
| return err |
| } |
| |
| // writerMutex protects all KeyLogWriters globally. It is rarely enabled, |
| // and is only for debugging, so a global mutex saves space. |
| var writerMutex sync.Mutex |
| |
| // A Certificate is a chain of one or more certificates, leaf first. |
| type Certificate struct { |
| Certificate [][]byte |
| // PrivateKey contains the private key corresponding to the public key in |
| // Leaf. This must implement crypto.Signer with an RSA, ECDSA or Ed25519 PublicKey. |
| // For a server up to TLS 1.2, it can also implement crypto.Decrypter with |
| // an RSA PublicKey. |
| PrivateKey crypto.PrivateKey |
| // SupportedSignatureAlgorithms is an optional list restricting what |
| // signature algorithms the PrivateKey can be used for. |
| SupportedSignatureAlgorithms []SignatureScheme |
| // OCSPStaple contains an optional OCSP response which will be served |
| // to clients that request it. |
| OCSPStaple []byte |
| // SignedCertificateTimestamps contains an optional list of Signed |
| // Certificate Timestamps which will be served to clients that request it. |
| SignedCertificateTimestamps [][]byte |
| // Leaf is the parsed form of the leaf certificate, which may be initialized |
| // using x509.ParseCertificate to reduce per-handshake processing. If nil, |
| // the leaf certificate will be parsed as needed. |
| Leaf *x509.Certificate |
| } |
| |
| // leaf returns the parsed leaf certificate, either from c.Leaf or by parsing |
| // the corresponding c.Certificate[0]. |
| func (c *Certificate) leaf() (*x509.Certificate, error) { |
| if c.Leaf != nil { |
| return c.Leaf, nil |
| } |
| return x509.ParseCertificate(c.Certificate[0]) |
| } |
| |
| type handshakeMessage interface { |
| marshal() []byte |
| unmarshal([]byte) bool |
| } |
| |
| // lruSessionCache is a ClientSessionCache implementation that uses an LRU |
| // caching strategy. |
| type lruSessionCache struct { |
| sync.Mutex |
| |
| m map[string]*list.Element |
| q *list.List |
| capacity int |
| } |
| |
| type lruSessionCacheEntry struct { |
| sessionKey string |
| state *ClientSessionState |
| } |
| |
| // NewLRUClientSessionCache returns a ClientSessionCache with the given |
| // capacity that uses an LRU strategy. If capacity is < 1, a default capacity |
| // is used instead. |
| func NewLRUClientSessionCache(capacity int) ClientSessionCache { |
| const defaultSessionCacheCapacity = 64 |
| |
| if capacity < 1 { |
| capacity = defaultSessionCacheCapacity |
| } |
| return &lruSessionCache{ |
| m: make(map[string]*list.Element), |
| q: list.New(), |
| capacity: capacity, |
| } |
| } |
| |
| // Put adds the provided (sessionKey, cs) pair to the cache. If cs is nil, the entry |
| // corresponding to sessionKey is removed from the cache instead. |
| func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) { |
| c.Lock() |
| defer c.Unlock() |
| |
| if elem, ok := c.m[sessionKey]; ok { |
| if cs == nil { |
| c.q.Remove(elem) |
| delete(c.m, sessionKey) |
| } else { |
| entry := elem.Value.(*lruSessionCacheEntry) |
| entry.state = cs |
| c.q.MoveToFront(elem) |
| } |
| return |
| } |
| |
| if c.q.Len() < c.capacity { |
| entry := &lruSessionCacheEntry{sessionKey, cs} |
| c.m[sessionKey] = c.q.PushFront(entry) |
| return |
| } |
| |
| elem := c.q.Back() |
| entry := elem.Value.(*lruSessionCacheEntry) |
| delete(c.m, entry.sessionKey) |
| entry.sessionKey = sessionKey |
| entry.state = cs |
| c.q.MoveToFront(elem) |
| c.m[sessionKey] = elem |
| } |
| |
| // Get returns the ClientSessionState value associated with a given key. It |
| // returns (nil, false) if no value is found. |
| func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) { |
| c.Lock() |
| defer c.Unlock() |
| |
| if elem, ok := c.m[sessionKey]; ok { |
| c.q.MoveToFront(elem) |
| return elem.Value.(*lruSessionCacheEntry).state, true |
| } |
| return nil, false |
| } |
| |
| var emptyConfig Config |
| |
| func defaultConfig() *Config { |
| return &emptyConfig |
| } |
| |
| func unexpectedMessageError(wanted, got interface{}) error { |
| return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted) |
| } |
| |
| func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool { |
| for _, s := range supportedSignatureAlgorithms { |
| if s == sigAlg { |
| return true |
| } |
| } |
| return false |
| } |