blob: 65568f23077d9d914faf10617568069f11bc19da [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) expr(expr syntax.Expr) ir.Node {
expr = unparen(expr) // skip parens; unneeded after parse+typecheck
if expr == nil {
return nil
}
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
return ir.BlankNode
}
tv, ok := g.info.Types[expr]
if !ok {
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
}
switch {
case tv.IsBuiltin():
// Qualified builtins, such as unsafe.Add and unsafe.Slice.
if expr, ok := expr.(*syntax.SelectorExpr); ok {
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
}
return g.use(expr.(*syntax.Name))
case tv.IsType():
return ir.TypeNode(g.typ(tv.Type))
case tv.IsValue(), tv.IsVoid():
// ok
default:
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
}
base.Assert(g.exprStmtOK)
// The gc backend expects all expressions to have a concrete type, and
// types2 mostly satisfies this expectation already. But there are a few
// cases where the Go spec doesn't require converting to concrete type,
// and so types2 leaves them untyped. So we need to fix those up here.
typ := tv.Type
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
switch basic.Kind() {
case types2.UntypedNil:
// ok; can appear in type switch case clauses
// TODO(mdempsky): Handle as part of type switches instead?
case types2.UntypedBool:
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
case types2.UntypedString:
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
default:
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
}
}
// Constant expression.
if tv.Value != nil {
typ := g.typ(typ)
value := FixValue(typ, tv.Value)
return OrigConst(g.pos(expr), typ, value, constExprOp(expr), syntax.String(expr))
}
n := g.expr0(typ, expr)
if n.Typecheck() != 1 && n.Typecheck() != 3 {
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
}
if n.Op() != ir.OFUNCINST && !g.match(n.Type(), typ, tv.HasOk()) {
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
}
return n
}
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
pos := g.pos(expr)
assert(pos.IsKnown())
// Set base.Pos for transformation code that still uses base.Pos, rather than
// the pos of the node being converted.
base.Pos = pos
switch expr := expr.(type) {
case *syntax.Name:
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
return Nil(pos, g.typ(typ))
}
return g.use(expr)
case *syntax.CompositeLit:
return g.compLit(typ, expr)
case *syntax.FuncLit:
return g.funcLit(typ, expr)
case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr:
fun := g.expr(expr.Fun)
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr:
args := unpackListExpr(expr.Index)
if len(args) == 1 {
tv, ok := g.info.Types[args[0]]
assert(ok)
if tv.IsValue() {
// This is just a normal index expression
n := Index(pos, g.typ(typ), g.expr(expr.X), g.expr(args[0]))
if !g.delayTransform() {
// transformIndex will modify n.Type() for OINDEXMAP.
transformIndex(n)
}
return n
}
}
// expr.Index is a list of type args, so we ignore it, since types2 has
// already provided this info with the Info.Instances map.
return g.expr(expr.X)
case *syntax.SelectorExpr:
// Qualified identifier.
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
return g.use(expr.Sel)
}
}
return g.selectorExpr(pos, typ, expr)
case *syntax.SliceExpr:
n := Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
if !g.delayTransform() {
transformSlice(n)
}
return n
case *syntax.Operation:
if expr.Y == nil {
n := Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
if n.Op() == ir.OADDR && !g.delayTransform() {
transformAddr(n.(*ir.AddrExpr))
}
return n
}
switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
n := Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
if !g.delayTransform() {
transformCompare(n)
}
return n
case ir.OANDAND, ir.OOROR:
x := g.expr(expr.X)
y := g.expr(expr.Y)
return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
default:
n := Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
if op == ir.OADD && !g.delayTransform() {
return transformAdd(n)
}
return n
}
default:
g.unhandled("expression", expr)
panic("unreachable")
}
}
// substType does a normal type substition, but tparams is in the form of a field
// list, and targs is in terms of a slice of type nodes. substType records any newly
// instantiated types into g.instTypeList.
func (g *irgen) substType(typ *types.Type, tparams *types.Type, targs []ir.Node) *types.Type {
fields := tparams.FieldSlice()
tparams1 := make([]*types.Type, len(fields))
for i, f := range fields {
tparams1[i] = f.Type
}
targs1 := make([]*types.Type, len(targs))
for i, n := range targs {
targs1[i] = n.Type()
}
ts := typecheck.Tsubster{
Tparams: tparams1,
Targs: targs1,
}
newt := ts.Typ(typ)
return newt
}
// selectorExpr resolves the choice of ODOT, ODOTPTR, OMETHVALUE (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
x := g.expr(expr.X)
if x.Type().HasTParam() {
// Leave a method call on a type param as an OXDOT, since it can
// only be fully transformed once it has an instantiated type.
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
typed(g.typ(typ), n)
return n
}
selinfo := g.info.Selections[expr]
// Everything up to the last selection is an implicit embedded field access,
// and the last selection is determined by selinfo.Kind().
index := selinfo.Index()
embeds, last := index[:len(index)-1], index[len(index)-1]
origx := x
for _, ix := range embeds {
x = Implicit(DotField(pos, x, ix))
}
kind := selinfo.Kind()
if kind == types2.FieldVal {
return DotField(pos, x, last)
}
// TODO(danscales,mdempsky): Interface method sets are not sorted the
// same between types and types2. In particular, using "last" here
// without conversion will likely fail if an interface contains
// unexported methods from two different packages (due to cross-package
// interface embedding).
var n ir.Node
method2 := selinfo.Obj().(*types2.Func)
if kind == types2.MethodExpr {
// OMETHEXPR is unusual in using directly the node and type of the
// original OTYPE node (origx) before passing through embedded
// fields, even though the method is selected from the type
// (x.Type()) reached after following the embedded fields. We will
// actually drop any ODOT nodes we created due to the embedded
// fields.
n = MethodExpr(pos, origx, x.Type(), last)
} else {
// Add implicit addr/deref for method values, if needed.
if x.Type().IsInterface() {
n = DotMethod(pos, x, last)
} else {
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
_, wantPtr := recvType2.(*types2.Pointer)
havePtr := x.Type().IsPtr()
if havePtr != wantPtr {
if havePtr {
x = Implicit(Deref(pos, x.Type().Elem(), x))
} else {
x = Implicit(Addr(pos, x))
}
}
recvType2Base := recvType2
if wantPtr {
recvType2Base = types2.AsPointer(recvType2).Elem()
}
if types2.AsNamed(recvType2Base).TypeParams().Len() > 0 {
// recvType2 is the original generic type that is
// instantiated for this method call.
// selinfo.Recv() is the instantiated type
recvType2 = recvType2Base
recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
recvType := recvTypeSym.Def.(*ir.Name).Type()
// method is the generic method associated with
// the base generic type. The instantiated type may not
// have method bodies filled in, if it was imported.
method := recvType.Methods().Index(last).Nname.(*ir.Name)
n = ir.NewSelectorExpr(pos, ir.OMETHVALUE, x, typecheck.Lookup(expr.Sel.Value))
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
n.(*ir.SelectorExpr).Selection.Nname = method
typed(method.Type(), n)
xt := deref(x.Type())
targs := make([]ir.Node, len(xt.RParams()))
for i := range targs {
targs[i] = ir.TypeNode(xt.RParams()[i])
}
// Create function instantiation with the type
// args for the receiver type for the method call.
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
typed(g.typ(typ), n)
return n
}
if !g.match(x.Type(), recvType2, false) {
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
} else {
n = DotMethod(pos, x, last)
}
}
}
if have, want := n.Sym(), g.selector(method2); have != want {
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
}
return n
}
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
return g.exprs(unpackListExpr(expr))
}
func unpackListExpr(expr syntax.Expr) []syntax.Expr {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return expr.ElemList
default:
return []syntax.Expr{expr}
}
}
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, len(exprs))
for i, expr := range exprs {
nodes[i] = g.expr(expr)
}
return nodes
}
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
n.SetOp(ir.OPTRLIT)
return typed(g.typ(typ), n)
}
_, isStruct := typ.Underlying().(*types2.Struct)
exprs := make([]ir.Node, len(lit.ElemList))
for i, elem := range lit.ElemList {
switch elem := elem.(type) {
case *syntax.KeyValueExpr:
var key ir.Node
if isStruct {
key = ir.NewIdent(g.pos(elem.Key), g.name(elem.Key.(*syntax.Name)))
} else {
key = g.expr(elem.Key)
}
value := wrapname(g.pos(elem.Value), g.expr(elem.Value))
if value.Op() == ir.OPAREN {
// Make sure any PAREN node added by wrapper has a type
typed(value.(*ir.ParenExpr).X.Type(), value)
}
exprs[i] = ir.NewKeyExpr(g.pos(elem), key, value)
default:
exprs[i] = wrapname(g.pos(elem), g.expr(elem))
if exprs[i].Op() == ir.OPAREN {
// Make sure any PAREN node added by wrapper has a type
typed(exprs[i].(*ir.ParenExpr).X.Type(), exprs[i])
}
}
}
n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
typed(g.typ(typ), n)
var r ir.Node = n
if !g.delayTransform() {
r = transformCompLit(n)
}
return r
}
func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
fn := ir.NewClosureFunc(g.pos(expr), ir.CurFunc != nil)
ir.NameClosure(fn.OClosure, ir.CurFunc)
typ := g.typ(typ2)
typed(typ, fn.Nname)
typed(typ, fn.OClosure)
fn.SetTypecheck(1)
g.funcBody(fn, nil, expr.Type, expr.Body)
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
// TODO(mdempsky): ir.CaptureName should probably handle
// copying these fields from the canonical variable.
for _, cv := range fn.ClosureVars {
cv.SetType(cv.Canonical().Type())
cv.SetTypecheck(1)
cv.SetWalkdef(1)
}
if g.topFuncIsGeneric {
// Don't add any closure inside a generic function/method to the
// g.target.Decls list, even though it may not be generic itself.
// See issue #47514.
return ir.UseClosure(fn.OClosure, nil)
} else {
return ir.UseClosure(fn.OClosure, g.target)
}
}
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
n := g.expr(typ)
if n.Op() != ir.OTYPE {
base.FatalfAt(g.pos(typ), "expected type: %L", n)
}
return n.Type()
}
// constExprOp returns an ir.Op that represents the outermost
// operation of the given constant expression. It's intended for use
// with ir.RawOrigExpr.
func constExprOp(expr syntax.Expr) ir.Op {
switch expr := expr.(type) {
default:
panic(fmt.Sprintf("%s: unexpected expression: %T", expr.Pos(), expr))
case *syntax.BasicLit:
return ir.OLITERAL
case *syntax.Name, *syntax.SelectorExpr:
return ir.ONAME
case *syntax.CallExpr:
return ir.OCALL
case *syntax.Operation:
if expr.Y == nil {
return unOps[expr.Op]
}
return binOps[expr.Op]
}
}
func unparen(expr syntax.Expr) syntax.Expr {
for {
paren, ok := expr.(*syntax.ParenExpr)
if !ok {
return expr
}
expr = paren.X
}
}