|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Package regexp implements regular expression search. | 
|  | // | 
|  | // The syntax of the regular expressions accepted is the same | 
|  | // general syntax used by Perl, Python, and other languages. | 
|  | // More precisely, it is the syntax accepted by RE2 and described at | 
|  | // https://golang.org/s/re2syntax, except for \C. | 
|  | // For an overview of the syntax, run | 
|  | //   go doc regexp/syntax | 
|  | // | 
|  | // The regexp implementation provided by this package is | 
|  | // guaranteed to run in time linear in the size of the input. | 
|  | // (This is a property not guaranteed by most open source | 
|  | // implementations of regular expressions.) For more information | 
|  | // about this property, see | 
|  | //	https://swtch.com/~rsc/regexp/regexp1.html | 
|  | // or any book about automata theory. | 
|  | // | 
|  | // All characters are UTF-8-encoded code points. | 
|  | // Following utf8.DecodeRune, each byte of an invalid UTF-8 sequence | 
|  | // is treated as if it encoded utf8.RuneError (U+FFFD). | 
|  | // | 
|  | // There are 16 methods of Regexp that match a regular expression and identify | 
|  | // the matched text. Their names are matched by this regular expression: | 
|  | // | 
|  | //	Find(All)?(String)?(Submatch)?(Index)? | 
|  | // | 
|  | // If 'All' is present, the routine matches successive non-overlapping | 
|  | // matches of the entire expression. Empty matches abutting a preceding | 
|  | // match are ignored. The return value is a slice containing the successive | 
|  | // return values of the corresponding non-'All' routine. These routines take | 
|  | // an extra integer argument, n. If n >= 0, the function returns at most n | 
|  | // matches/submatches; otherwise, it returns all of them. | 
|  | // | 
|  | // If 'String' is present, the argument is a string; otherwise it is a slice | 
|  | // of bytes; return values are adjusted as appropriate. | 
|  | // | 
|  | // If 'Submatch' is present, the return value is a slice identifying the | 
|  | // successive submatches of the expression. Submatches are matches of | 
|  | // parenthesized subexpressions (also known as capturing groups) within the | 
|  | // regular expression, numbered from left to right in order of opening | 
|  | // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 | 
|  | // the match of the first parenthesized subexpression, and so on. | 
|  | // | 
|  | // If 'Index' is present, matches and submatches are identified by byte index | 
|  | // pairs within the input string: result[2*n:2*n+1] identifies the indexes of | 
|  | // the nth submatch. The pair for n==0 identifies the match of the entire | 
|  | // expression. If 'Index' is not present, the match is identified by the text | 
|  | // of the match/submatch. If an index is negative or text is nil, it means that | 
|  | // subexpression did not match any string in the input. For 'String' versions | 
|  | // an empty string means either no match or an empty match. | 
|  | // | 
|  | // There is also a subset of the methods that can be applied to text read | 
|  | // from a RuneReader: | 
|  | // | 
|  | //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex | 
|  | // | 
|  | // This set may grow. Note that regular expression matches may need to | 
|  | // examine text beyond the text returned by a match, so the methods that | 
|  | // match text from a RuneReader may read arbitrarily far into the input | 
|  | // before returning. | 
|  | // | 
|  | // (There are a few other methods that do not match this pattern.) | 
|  | // | 
|  | package regexp | 
|  |  | 
|  | import ( | 
|  | "bytes" | 
|  | "io" | 
|  | "regexp/syntax" | 
|  | "strconv" | 
|  | "strings" | 
|  | "sync" | 
|  | "unicode" | 
|  | "unicode/utf8" | 
|  | ) | 
|  |  | 
|  | // Regexp is the representation of a compiled regular expression. | 
|  | // A Regexp is safe for concurrent use by multiple goroutines, | 
|  | // except for configuration methods, such as Longest. | 
|  | type Regexp struct { | 
|  | expr           string       // as passed to Compile | 
|  | prog           *syntax.Prog // compiled program | 
|  | onepass        *onePassProg // onepass program or nil | 
|  | numSubexp      int | 
|  | maxBitStateLen int | 
|  | subexpNames    []string | 
|  | prefix         string         // required prefix in unanchored matches | 
|  | prefixBytes    []byte         // prefix, as a []byte | 
|  | prefixRune     rune           // first rune in prefix | 
|  | prefixEnd      uint32         // pc for last rune in prefix | 
|  | mpool          int            // pool for machines | 
|  | matchcap       int            // size of recorded match lengths | 
|  | prefixComplete bool           // prefix is the entire regexp | 
|  | cond           syntax.EmptyOp // empty-width conditions required at start of match | 
|  | minInputLen    int            // minimum length of the input in bytes | 
|  |  | 
|  | // This field can be modified by the Longest method, | 
|  | // but it is otherwise read-only. | 
|  | longest bool // whether regexp prefers leftmost-longest match | 
|  | } | 
|  |  | 
|  | // String returns the source text used to compile the regular expression. | 
|  | func (re *Regexp) String() string { | 
|  | return re.expr | 
|  | } | 
|  |  | 
|  | // Copy returns a new Regexp object copied from re. | 
|  | // Calling Longest on one copy does not affect another. | 
|  | // | 
|  | // Deprecated: In earlier releases, when using a Regexp in multiple goroutines, | 
|  | // giving each goroutine its own copy helped to avoid lock contention. | 
|  | // As of Go 1.12, using Copy is no longer necessary to avoid lock contention. | 
|  | // Copy may still be appropriate if the reason for its use is to make | 
|  | // two copies with different Longest settings. | 
|  | func (re *Regexp) Copy() *Regexp { | 
|  | re2 := *re | 
|  | return &re2 | 
|  | } | 
|  |  | 
|  | // Compile parses a regular expression and returns, if successful, | 
|  | // a Regexp object that can be used to match against text. | 
|  | // | 
|  | // When matching against text, the regexp returns a match that | 
|  | // begins as early as possible in the input (leftmost), and among those | 
|  | // it chooses the one that a backtracking search would have found first. | 
|  | // This so-called leftmost-first matching is the same semantics | 
|  | // that Perl, Python, and other implementations use, although this | 
|  | // package implements it without the expense of backtracking. | 
|  | // For POSIX leftmost-longest matching, see CompilePOSIX. | 
|  | func Compile(expr string) (*Regexp, error) { | 
|  | return compile(expr, syntax.Perl, false) | 
|  | } | 
|  |  | 
|  | // CompilePOSIX is like Compile but restricts the regular expression | 
|  | // to POSIX ERE (egrep) syntax and changes the match semantics to | 
|  | // leftmost-longest. | 
|  | // | 
|  | // That is, when matching against text, the regexp returns a match that | 
|  | // begins as early as possible in the input (leftmost), and among those | 
|  | // it chooses a match that is as long as possible. | 
|  | // This so-called leftmost-longest matching is the same semantics | 
|  | // that early regular expression implementations used and that POSIX | 
|  | // specifies. | 
|  | // | 
|  | // However, there can be multiple leftmost-longest matches, with different | 
|  | // submatch choices, and here this package diverges from POSIX. | 
|  | // Among the possible leftmost-longest matches, this package chooses | 
|  | // the one that a backtracking search would have found first, while POSIX | 
|  | // specifies that the match be chosen to maximize the length of the first | 
|  | // subexpression, then the second, and so on from left to right. | 
|  | // The POSIX rule is computationally prohibitive and not even well-defined. | 
|  | // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details. | 
|  | func CompilePOSIX(expr string) (*Regexp, error) { | 
|  | return compile(expr, syntax.POSIX, true) | 
|  | } | 
|  |  | 
|  | // Longest makes future searches prefer the leftmost-longest match. | 
|  | // That is, when matching against text, the regexp returns a match that | 
|  | // begins as early as possible in the input (leftmost), and among those | 
|  | // it chooses a match that is as long as possible. | 
|  | // This method modifies the Regexp and may not be called concurrently | 
|  | // with any other methods. | 
|  | func (re *Regexp) Longest() { | 
|  | re.longest = true | 
|  | } | 
|  |  | 
|  | func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) { | 
|  | re, err := syntax.Parse(expr, mode) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | maxCap := re.MaxCap() | 
|  | capNames := re.CapNames() | 
|  |  | 
|  | re = re.Simplify() | 
|  | prog, err := syntax.Compile(re) | 
|  | if err != nil { | 
|  | return nil, err | 
|  | } | 
|  | matchcap := prog.NumCap | 
|  | if matchcap < 2 { | 
|  | matchcap = 2 | 
|  | } | 
|  | regexp := &Regexp{ | 
|  | expr:        expr, | 
|  | prog:        prog, | 
|  | onepass:     compileOnePass(prog), | 
|  | numSubexp:   maxCap, | 
|  | subexpNames: capNames, | 
|  | cond:        prog.StartCond(), | 
|  | longest:     longest, | 
|  | matchcap:    matchcap, | 
|  | minInputLen: minInputLen(re), | 
|  | } | 
|  | if regexp.onepass == nil { | 
|  | regexp.prefix, regexp.prefixComplete = prog.Prefix() | 
|  | regexp.maxBitStateLen = maxBitStateLen(prog) | 
|  | } else { | 
|  | regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog) | 
|  | } | 
|  | if regexp.prefix != "" { | 
|  | // TODO(rsc): Remove this allocation by adding | 
|  | // IndexString to package bytes. | 
|  | regexp.prefixBytes = []byte(regexp.prefix) | 
|  | regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix) | 
|  | } | 
|  |  | 
|  | n := len(prog.Inst) | 
|  | i := 0 | 
|  | for matchSize[i] != 0 && matchSize[i] < n { | 
|  | i++ | 
|  | } | 
|  | regexp.mpool = i | 
|  |  | 
|  | return regexp, nil | 
|  | } | 
|  |  | 
|  | // Pools of *machine for use during (*Regexp).doExecute, | 
|  | // split up by the size of the execution queues. | 
|  | // matchPool[i] machines have queue size matchSize[i]. | 
|  | // On a 64-bit system each queue entry is 16 bytes, | 
|  | // so matchPool[0] has 16*2*128 = 4kB queues, etc. | 
|  | // The final matchPool is a catch-all for very large queues. | 
|  | var ( | 
|  | matchSize = [...]int{128, 512, 2048, 16384, 0} | 
|  | matchPool [len(matchSize)]sync.Pool | 
|  | ) | 
|  |  | 
|  | // get returns a machine to use for matching re. | 
|  | // It uses the re's machine cache if possible, to avoid | 
|  | // unnecessary allocation. | 
|  | func (re *Regexp) get() *machine { | 
|  | m, ok := matchPool[re.mpool].Get().(*machine) | 
|  | if !ok { | 
|  | m = new(machine) | 
|  | } | 
|  | m.re = re | 
|  | m.p = re.prog | 
|  | if cap(m.matchcap) < re.matchcap { | 
|  | m.matchcap = make([]int, re.matchcap) | 
|  | for _, t := range m.pool { | 
|  | t.cap = make([]int, re.matchcap) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate queues if needed. | 
|  | // Or reallocate, for "large" match pool. | 
|  | n := matchSize[re.mpool] | 
|  | if n == 0 { // large pool | 
|  | n = len(re.prog.Inst) | 
|  | } | 
|  | if len(m.q0.sparse) < n { | 
|  | m.q0 = queue{make([]uint32, n), make([]entry, 0, n)} | 
|  | m.q1 = queue{make([]uint32, n), make([]entry, 0, n)} | 
|  | } | 
|  | return m | 
|  | } | 
|  |  | 
|  | // put returns a machine to the correct machine pool. | 
|  | func (re *Regexp) put(m *machine) { | 
|  | m.re = nil | 
|  | m.p = nil | 
|  | m.inputs.clear() | 
|  | matchPool[re.mpool].Put(m) | 
|  | } | 
|  |  | 
|  | // minInputLen walks the regexp to find the minimum length of any matchable input | 
|  | func minInputLen(re *syntax.Regexp) int { | 
|  | switch re.Op { | 
|  | default: | 
|  | return 0 | 
|  | case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass: | 
|  | return 1 | 
|  | case syntax.OpLiteral: | 
|  | l := 0 | 
|  | for _, r := range re.Rune { | 
|  | if r == utf8.RuneError { | 
|  | l++ | 
|  | } else { | 
|  | l += utf8.RuneLen(r) | 
|  | } | 
|  | } | 
|  | return l | 
|  | case syntax.OpCapture, syntax.OpPlus: | 
|  | return minInputLen(re.Sub[0]) | 
|  | case syntax.OpRepeat: | 
|  | return re.Min * minInputLen(re.Sub[0]) | 
|  | case syntax.OpConcat: | 
|  | l := 0 | 
|  | for _, sub := range re.Sub { | 
|  | l += minInputLen(sub) | 
|  | } | 
|  | return l | 
|  | case syntax.OpAlternate: | 
|  | l := minInputLen(re.Sub[0]) | 
|  | var lnext int | 
|  | for _, sub := range re.Sub[1:] { | 
|  | lnext = minInputLen(sub) | 
|  | if lnext < l { | 
|  | l = lnext | 
|  | } | 
|  | } | 
|  | return l | 
|  | } | 
|  | } | 
|  |  | 
|  | // MustCompile is like Compile but panics if the expression cannot be parsed. | 
|  | // It simplifies safe initialization of global variables holding compiled regular | 
|  | // expressions. | 
|  | func MustCompile(str string) *Regexp { | 
|  | regexp, err := Compile(str) | 
|  | if err != nil { | 
|  | panic(`regexp: Compile(` + quote(str) + `): ` + err.Error()) | 
|  | } | 
|  | return regexp | 
|  | } | 
|  |  | 
|  | // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed. | 
|  | // It simplifies safe initialization of global variables holding compiled regular | 
|  | // expressions. | 
|  | func MustCompilePOSIX(str string) *Regexp { | 
|  | regexp, err := CompilePOSIX(str) | 
|  | if err != nil { | 
|  | panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error()) | 
|  | } | 
|  | return regexp | 
|  | } | 
|  |  | 
|  | func quote(s string) string { | 
|  | if strconv.CanBackquote(s) { | 
|  | return "`" + s + "`" | 
|  | } | 
|  | return strconv.Quote(s) | 
|  | } | 
|  |  | 
|  | // NumSubexp returns the number of parenthesized subexpressions in this Regexp. | 
|  | func (re *Regexp) NumSubexp() int { | 
|  | return re.numSubexp | 
|  | } | 
|  |  | 
|  | // SubexpNames returns the names of the parenthesized subexpressions | 
|  | // in this Regexp. The name for the first sub-expression is names[1], | 
|  | // so that if m is a match slice, the name for m[i] is SubexpNames()[i]. | 
|  | // Since the Regexp as a whole cannot be named, names[0] is always | 
|  | // the empty string. The slice should not be modified. | 
|  | func (re *Regexp) SubexpNames() []string { | 
|  | return re.subexpNames | 
|  | } | 
|  |  | 
|  | // SubexpIndex returns the index of the first subexpression with the given name, | 
|  | // or -1 if there is no subexpression with that name. | 
|  | // | 
|  | // Note that multiple subexpressions can be written using the same name, as in | 
|  | // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob". | 
|  | // In this case, SubexpIndex returns the index of the leftmost such subexpression | 
|  | // in the regular expression. | 
|  | func (re *Regexp) SubexpIndex(name string) int { | 
|  | if name != "" { | 
|  | for i, s := range re.subexpNames { | 
|  | if name == s { | 
|  | return i | 
|  | } | 
|  | } | 
|  | } | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | const endOfText rune = -1 | 
|  |  | 
|  | // input abstracts different representations of the input text. It provides | 
|  | // one-character lookahead. | 
|  | type input interface { | 
|  | step(pos int) (r rune, width int) // advance one rune | 
|  | canCheckPrefix() bool             // can we look ahead without losing info? | 
|  | hasPrefix(re *Regexp) bool | 
|  | index(re *Regexp, pos int) int | 
|  | context(pos int) lazyFlag | 
|  | } | 
|  |  | 
|  | // inputString scans a string. | 
|  | type inputString struct { | 
|  | str string | 
|  | } | 
|  |  | 
|  | func (i *inputString) step(pos int) (rune, int) { | 
|  | if pos < len(i.str) { | 
|  | c := i.str[pos] | 
|  | if c < utf8.RuneSelf { | 
|  | return rune(c), 1 | 
|  | } | 
|  | return utf8.DecodeRuneInString(i.str[pos:]) | 
|  | } | 
|  | return endOfText, 0 | 
|  | } | 
|  |  | 
|  | func (i *inputString) canCheckPrefix() bool { | 
|  | return true | 
|  | } | 
|  |  | 
|  | func (i *inputString) hasPrefix(re *Regexp) bool { | 
|  | return strings.HasPrefix(i.str, re.prefix) | 
|  | } | 
|  |  | 
|  | func (i *inputString) index(re *Regexp, pos int) int { | 
|  | return strings.Index(i.str[pos:], re.prefix) | 
|  | } | 
|  |  | 
|  | func (i *inputString) context(pos int) lazyFlag { | 
|  | r1, r2 := endOfText, endOfText | 
|  | // 0 < pos && pos <= len(i.str) | 
|  | if uint(pos-1) < uint(len(i.str)) { | 
|  | r1 = rune(i.str[pos-1]) | 
|  | if r1 >= utf8.RuneSelf { | 
|  | r1, _ = utf8.DecodeLastRuneInString(i.str[:pos]) | 
|  | } | 
|  | } | 
|  | // 0 <= pos && pos < len(i.str) | 
|  | if uint(pos) < uint(len(i.str)) { | 
|  | r2 = rune(i.str[pos]) | 
|  | if r2 >= utf8.RuneSelf { | 
|  | r2, _ = utf8.DecodeRuneInString(i.str[pos:]) | 
|  | } | 
|  | } | 
|  | return newLazyFlag(r1, r2) | 
|  | } | 
|  |  | 
|  | // inputBytes scans a byte slice. | 
|  | type inputBytes struct { | 
|  | str []byte | 
|  | } | 
|  |  | 
|  | func (i *inputBytes) step(pos int) (rune, int) { | 
|  | if pos < len(i.str) { | 
|  | c := i.str[pos] | 
|  | if c < utf8.RuneSelf { | 
|  | return rune(c), 1 | 
|  | } | 
|  | return utf8.DecodeRune(i.str[pos:]) | 
|  | } | 
|  | return endOfText, 0 | 
|  | } | 
|  |  | 
|  | func (i *inputBytes) canCheckPrefix() bool { | 
|  | return true | 
|  | } | 
|  |  | 
|  | func (i *inputBytes) hasPrefix(re *Regexp) bool { | 
|  | return bytes.HasPrefix(i.str, re.prefixBytes) | 
|  | } | 
|  |  | 
|  | func (i *inputBytes) index(re *Regexp, pos int) int { | 
|  | return bytes.Index(i.str[pos:], re.prefixBytes) | 
|  | } | 
|  |  | 
|  | func (i *inputBytes) context(pos int) lazyFlag { | 
|  | r1, r2 := endOfText, endOfText | 
|  | // 0 < pos && pos <= len(i.str) | 
|  | if uint(pos-1) < uint(len(i.str)) { | 
|  | r1 = rune(i.str[pos-1]) | 
|  | if r1 >= utf8.RuneSelf { | 
|  | r1, _ = utf8.DecodeLastRune(i.str[:pos]) | 
|  | } | 
|  | } | 
|  | // 0 <= pos && pos < len(i.str) | 
|  | if uint(pos) < uint(len(i.str)) { | 
|  | r2 = rune(i.str[pos]) | 
|  | if r2 >= utf8.RuneSelf { | 
|  | r2, _ = utf8.DecodeRune(i.str[pos:]) | 
|  | } | 
|  | } | 
|  | return newLazyFlag(r1, r2) | 
|  | } | 
|  |  | 
|  | // inputReader scans a RuneReader. | 
|  | type inputReader struct { | 
|  | r     io.RuneReader | 
|  | atEOT bool | 
|  | pos   int | 
|  | } | 
|  |  | 
|  | func (i *inputReader) step(pos int) (rune, int) { | 
|  | if !i.atEOT && pos != i.pos { | 
|  | return endOfText, 0 | 
|  |  | 
|  | } | 
|  | r, w, err := i.r.ReadRune() | 
|  | if err != nil { | 
|  | i.atEOT = true | 
|  | return endOfText, 0 | 
|  | } | 
|  | i.pos += w | 
|  | return r, w | 
|  | } | 
|  |  | 
|  | func (i *inputReader) canCheckPrefix() bool { | 
|  | return false | 
|  | } | 
|  |  | 
|  | func (i *inputReader) hasPrefix(re *Regexp) bool { | 
|  | return false | 
|  | } | 
|  |  | 
|  | func (i *inputReader) index(re *Regexp, pos int) int { | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | func (i *inputReader) context(pos int) lazyFlag { | 
|  | return 0 // not used | 
|  | } | 
|  |  | 
|  | // LiteralPrefix returns a literal string that must begin any match | 
|  | // of the regular expression re. It returns the boolean true if the | 
|  | // literal string comprises the entire regular expression. | 
|  | func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { | 
|  | return re.prefix, re.prefixComplete | 
|  | } | 
|  |  | 
|  | // MatchReader reports whether the text returned by the RuneReader | 
|  | // contains any match of the regular expression re. | 
|  | func (re *Regexp) MatchReader(r io.RuneReader) bool { | 
|  | return re.doMatch(r, nil, "") | 
|  | } | 
|  |  | 
|  | // MatchString reports whether the string s | 
|  | // contains any match of the regular expression re. | 
|  | func (re *Regexp) MatchString(s string) bool { | 
|  | return re.doMatch(nil, nil, s) | 
|  | } | 
|  |  | 
|  | // Match reports whether the byte slice b | 
|  | // contains any match of the regular expression re. | 
|  | func (re *Regexp) Match(b []byte) bool { | 
|  | return re.doMatch(nil, b, "") | 
|  | } | 
|  |  | 
|  | // MatchReader reports whether the text returned by the RuneReader | 
|  | // contains any match of the regular expression pattern. | 
|  | // More complicated queries need to use Compile and the full Regexp interface. | 
|  | func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) { | 
|  | re, err := Compile(pattern) | 
|  | if err != nil { | 
|  | return false, err | 
|  | } | 
|  | return re.MatchReader(r), nil | 
|  | } | 
|  |  | 
|  | // MatchString reports whether the string s | 
|  | // contains any match of the regular expression pattern. | 
|  | // More complicated queries need to use Compile and the full Regexp interface. | 
|  | func MatchString(pattern string, s string) (matched bool, err error) { | 
|  | re, err := Compile(pattern) | 
|  | if err != nil { | 
|  | return false, err | 
|  | } | 
|  | return re.MatchString(s), nil | 
|  | } | 
|  |  | 
|  | // Match reports whether the byte slice b | 
|  | // contains any match of the regular expression pattern. | 
|  | // More complicated queries need to use Compile and the full Regexp interface. | 
|  | func Match(pattern string, b []byte) (matched bool, err error) { | 
|  | re, err := Compile(pattern) | 
|  | if err != nil { | 
|  | return false, err | 
|  | } | 
|  | return re.Match(b), nil | 
|  | } | 
|  |  | 
|  | // ReplaceAllString returns a copy of src, replacing matches of the Regexp | 
|  | // with the replacement string repl. Inside repl, $ signs are interpreted as | 
|  | // in Expand, so for instance $1 represents the text of the first submatch. | 
|  | func (re *Regexp) ReplaceAllString(src, repl string) string { | 
|  | n := 2 | 
|  | if strings.Contains(repl, "$") { | 
|  | n = 2 * (re.numSubexp + 1) | 
|  | } | 
|  | b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte { | 
|  | return re.expand(dst, repl, nil, src, match) | 
|  | }) | 
|  | return string(b) | 
|  | } | 
|  |  | 
|  | // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp | 
|  | // with the replacement string repl. The replacement repl is substituted directly, | 
|  | // without using Expand. | 
|  | func (re *Regexp) ReplaceAllLiteralString(src, repl string) string { | 
|  | return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { | 
|  | return append(dst, repl...) | 
|  | })) | 
|  | } | 
|  |  | 
|  | // ReplaceAllStringFunc returns a copy of src in which all matches of the | 
|  | // Regexp have been replaced by the return value of function repl applied | 
|  | // to the matched substring. The replacement returned by repl is substituted | 
|  | // directly, without using Expand. | 
|  | func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { | 
|  | b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte { | 
|  | return append(dst, repl(src[match[0]:match[1]])...) | 
|  | }) | 
|  | return string(b) | 
|  | } | 
|  |  | 
|  | func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte { | 
|  | lastMatchEnd := 0 // end position of the most recent match | 
|  | searchPos := 0    // position where we next look for a match | 
|  | var buf []byte | 
|  | var endPos int | 
|  | if bsrc != nil { | 
|  | endPos = len(bsrc) | 
|  | } else { | 
|  | endPos = len(src) | 
|  | } | 
|  | if nmatch > re.prog.NumCap { | 
|  | nmatch = re.prog.NumCap | 
|  | } | 
|  |  | 
|  | var dstCap [2]int | 
|  | for searchPos <= endPos { | 
|  | a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0]) | 
|  | if len(a) == 0 { | 
|  | break // no more matches | 
|  | } | 
|  |  | 
|  | // Copy the unmatched characters before this match. | 
|  | if bsrc != nil { | 
|  | buf = append(buf, bsrc[lastMatchEnd:a[0]]...) | 
|  | } else { | 
|  | buf = append(buf, src[lastMatchEnd:a[0]]...) | 
|  | } | 
|  |  | 
|  | // Now insert a copy of the replacement string, but not for a | 
|  | // match of the empty string immediately after another match. | 
|  | // (Otherwise, we get double replacement for patterns that | 
|  | // match both empty and nonempty strings.) | 
|  | if a[1] > lastMatchEnd || a[0] == 0 { | 
|  | buf = repl(buf, a) | 
|  | } | 
|  | lastMatchEnd = a[1] | 
|  |  | 
|  | // Advance past this match; always advance at least one character. | 
|  | var width int | 
|  | if bsrc != nil { | 
|  | _, width = utf8.DecodeRune(bsrc[searchPos:]) | 
|  | } else { | 
|  | _, width = utf8.DecodeRuneInString(src[searchPos:]) | 
|  | } | 
|  | if searchPos+width > a[1] { | 
|  | searchPos += width | 
|  | } else if searchPos+1 > a[1] { | 
|  | // This clause is only needed at the end of the input | 
|  | // string. In that case, DecodeRuneInString returns width=0. | 
|  | searchPos++ | 
|  | } else { | 
|  | searchPos = a[1] | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy the unmatched characters after the last match. | 
|  | if bsrc != nil { | 
|  | buf = append(buf, bsrc[lastMatchEnd:]...) | 
|  | } else { | 
|  | buf = append(buf, src[lastMatchEnd:]...) | 
|  | } | 
|  |  | 
|  | return buf | 
|  | } | 
|  |  | 
|  | // ReplaceAll returns a copy of src, replacing matches of the Regexp | 
|  | // with the replacement text repl. Inside repl, $ signs are interpreted as | 
|  | // in Expand, so for instance $1 represents the text of the first submatch. | 
|  | func (re *Regexp) ReplaceAll(src, repl []byte) []byte { | 
|  | n := 2 | 
|  | if bytes.IndexByte(repl, '$') >= 0 { | 
|  | n = 2 * (re.numSubexp + 1) | 
|  | } | 
|  | srepl := "" | 
|  | b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte { | 
|  | if len(srepl) != len(repl) { | 
|  | srepl = string(repl) | 
|  | } | 
|  | return re.expand(dst, srepl, src, "", match) | 
|  | }) | 
|  | return b | 
|  | } | 
|  |  | 
|  | // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp | 
|  | // with the replacement bytes repl. The replacement repl is substituted directly, | 
|  | // without using Expand. | 
|  | func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte { | 
|  | return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { | 
|  | return append(dst, repl...) | 
|  | }) | 
|  | } | 
|  |  | 
|  | // ReplaceAllFunc returns a copy of src in which all matches of the | 
|  | // Regexp have been replaced by the return value of function repl applied | 
|  | // to the matched byte slice. The replacement returned by repl is substituted | 
|  | // directly, without using Expand. | 
|  | func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { | 
|  | return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte { | 
|  | return append(dst, repl(src[match[0]:match[1]])...) | 
|  | }) | 
|  | } | 
|  |  | 
|  | // Bitmap used by func special to check whether a character needs to be escaped. | 
|  | var specialBytes [16]byte | 
|  |  | 
|  | // special reports whether byte b needs to be escaped by QuoteMeta. | 
|  | func special(b byte) bool { | 
|  | return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0 | 
|  | } | 
|  |  | 
|  | func init() { | 
|  | for _, b := range []byte(`\.+*?()|[]{}^$`) { | 
|  | specialBytes[b%16] |= 1 << (b / 16) | 
|  | } | 
|  | } | 
|  |  | 
|  | // QuoteMeta returns a string that escapes all regular expression metacharacters | 
|  | // inside the argument text; the returned string is a regular expression matching | 
|  | // the literal text. | 
|  | func QuoteMeta(s string) string { | 
|  | // A byte loop is correct because all metacharacters are ASCII. | 
|  | var i int | 
|  | for i = 0; i < len(s); i++ { | 
|  | if special(s[i]) { | 
|  | break | 
|  | } | 
|  | } | 
|  | // No meta characters found, so return original string. | 
|  | if i >= len(s) { | 
|  | return s | 
|  | } | 
|  |  | 
|  | b := make([]byte, 2*len(s)-i) | 
|  | copy(b, s[:i]) | 
|  | j := i | 
|  | for ; i < len(s); i++ { | 
|  | if special(s[i]) { | 
|  | b[j] = '\\' | 
|  | j++ | 
|  | } | 
|  | b[j] = s[i] | 
|  | j++ | 
|  | } | 
|  | return string(b[:j]) | 
|  | } | 
|  |  | 
|  | // The number of capture values in the program may correspond | 
|  | // to fewer capturing expressions than are in the regexp. | 
|  | // For example, "(a){0}" turns into an empty program, so the | 
|  | // maximum capture in the program is 0 but we need to return | 
|  | // an expression for \1.  Pad appends -1s to the slice a as needed. | 
|  | func (re *Regexp) pad(a []int) []int { | 
|  | if a == nil { | 
|  | // No match. | 
|  | return nil | 
|  | } | 
|  | n := (1 + re.numSubexp) * 2 | 
|  | for len(a) < n { | 
|  | a = append(a, -1) | 
|  | } | 
|  | return a | 
|  | } | 
|  |  | 
|  | // allMatches calls deliver at most n times | 
|  | // with the location of successive matches in the input text. | 
|  | // The input text is b if non-nil, otherwise s. | 
|  | func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { | 
|  | var end int | 
|  | if b == nil { | 
|  | end = len(s) | 
|  | } else { | 
|  | end = len(b) | 
|  | } | 
|  |  | 
|  | for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { | 
|  | matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil) | 
|  | if len(matches) == 0 { | 
|  | break | 
|  | } | 
|  |  | 
|  | accept := true | 
|  | if matches[1] == pos { | 
|  | // We've found an empty match. | 
|  | if matches[0] == prevMatchEnd { | 
|  | // We don't allow an empty match right | 
|  | // after a previous match, so ignore it. | 
|  | accept = false | 
|  | } | 
|  | var width int | 
|  | // TODO: use step() | 
|  | if b == nil { | 
|  | _, width = utf8.DecodeRuneInString(s[pos:end]) | 
|  | } else { | 
|  | _, width = utf8.DecodeRune(b[pos:end]) | 
|  | } | 
|  | if width > 0 { | 
|  | pos += width | 
|  | } else { | 
|  | pos = end + 1 | 
|  | } | 
|  | } else { | 
|  | pos = matches[1] | 
|  | } | 
|  | prevMatchEnd = matches[1] | 
|  |  | 
|  | if accept { | 
|  | deliver(re.pad(matches)) | 
|  | i++ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find returns a slice holding the text of the leftmost match in b of the regular expression. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) Find(b []byte) []byte { | 
|  | var dstCap [2]int | 
|  | a := re.doExecute(nil, b, "", 0, 2, dstCap[:0]) | 
|  | if a == nil { | 
|  | return nil | 
|  | } | 
|  | return b[a[0]:a[1]:a[1]] | 
|  | } | 
|  |  | 
|  | // FindIndex returns a two-element slice of integers defining the location of | 
|  | // the leftmost match in b of the regular expression. The match itself is at | 
|  | // b[loc[0]:loc[1]]. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindIndex(b []byte) (loc []int) { | 
|  | a := re.doExecute(nil, b, "", 0, 2, nil) | 
|  | if a == nil { | 
|  | return nil | 
|  | } | 
|  | return a[0:2] | 
|  | } | 
|  |  | 
|  | // FindString returns a string holding the text of the leftmost match in s of the regular | 
|  | // expression. If there is no match, the return value is an empty string, | 
|  | // but it will also be empty if the regular expression successfully matches | 
|  | // an empty string. Use FindStringIndex or FindStringSubmatch if it is | 
|  | // necessary to distinguish these cases. | 
|  | func (re *Regexp) FindString(s string) string { | 
|  | var dstCap [2]int | 
|  | a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0]) | 
|  | if a == nil { | 
|  | return "" | 
|  | } | 
|  | return s[a[0]:a[1]] | 
|  | } | 
|  |  | 
|  | // FindStringIndex returns a two-element slice of integers defining the | 
|  | // location of the leftmost match in s of the regular expression. The match | 
|  | // itself is at s[loc[0]:loc[1]]. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindStringIndex(s string) (loc []int) { | 
|  | a := re.doExecute(nil, nil, s, 0, 2, nil) | 
|  | if a == nil { | 
|  | return nil | 
|  | } | 
|  | return a[0:2] | 
|  | } | 
|  |  | 
|  | // FindReaderIndex returns a two-element slice of integers defining the | 
|  | // location of the leftmost match of the regular expression in text read from | 
|  | // the RuneReader. The match text was found in the input stream at | 
|  | // byte offset loc[0] through loc[1]-1. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) { | 
|  | a := re.doExecute(r, nil, "", 0, 2, nil) | 
|  | if a == nil { | 
|  | return nil | 
|  | } | 
|  | return a[0:2] | 
|  | } | 
|  |  | 
|  | // FindSubmatch returns a slice of slices holding the text of the leftmost | 
|  | // match of the regular expression in b and the matches, if any, of its | 
|  | // subexpressions, as defined by the 'Submatch' descriptions in the package | 
|  | // comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindSubmatch(b []byte) [][]byte { | 
|  | var dstCap [4]int | 
|  | a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0]) | 
|  | if a == nil { | 
|  | return nil | 
|  | } | 
|  | ret := make([][]byte, 1+re.numSubexp) | 
|  | for i := range ret { | 
|  | if 2*i < len(a) && a[2*i] >= 0 { | 
|  | ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]] | 
|  | } | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | // Expand appends template to dst and returns the result; during the | 
|  | // append, Expand replaces variables in the template with corresponding | 
|  | // matches drawn from src. The match slice should have been returned by | 
|  | // FindSubmatchIndex. | 
|  | // | 
|  | // In the template, a variable is denoted by a substring of the form | 
|  | // $name or ${name}, where name is a non-empty sequence of letters, | 
|  | // digits, and underscores. A purely numeric name like $1 refers to | 
|  | // the submatch with the corresponding index; other names refer to | 
|  | // capturing parentheses named with the (?P<name>...) syntax. A | 
|  | // reference to an out of range or unmatched index or a name that is not | 
|  | // present in the regular expression is replaced with an empty slice. | 
|  | // | 
|  | // In the $name form, name is taken to be as long as possible: $1x is | 
|  | // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0. | 
|  | // | 
|  | // To insert a literal $ in the output, use $$ in the template. | 
|  | func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte { | 
|  | return re.expand(dst, string(template), src, "", match) | 
|  | } | 
|  |  | 
|  | // ExpandString is like Expand but the template and source are strings. | 
|  | // It appends to and returns a byte slice in order to give the calling | 
|  | // code control over allocation. | 
|  | func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte { | 
|  | return re.expand(dst, template, nil, src, match) | 
|  | } | 
|  |  | 
|  | func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte { | 
|  | for len(template) > 0 { | 
|  | before, after, ok := strings.Cut(template, "$") | 
|  | if !ok { | 
|  | break | 
|  | } | 
|  | dst = append(dst, before...) | 
|  | template = after | 
|  | if template != "" && template[0] == '$' { | 
|  | // Treat $$ as $. | 
|  | dst = append(dst, '$') | 
|  | template = template[1:] | 
|  | continue | 
|  | } | 
|  | name, num, rest, ok := extract(template) | 
|  | if !ok { | 
|  | // Malformed; treat $ as raw text. | 
|  | dst = append(dst, '$') | 
|  | continue | 
|  | } | 
|  | template = rest | 
|  | if num >= 0 { | 
|  | if 2*num+1 < len(match) && match[2*num] >= 0 { | 
|  | if bsrc != nil { | 
|  | dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...) | 
|  | } else { | 
|  | dst = append(dst, src[match[2*num]:match[2*num+1]]...) | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for i, namei := range re.subexpNames { | 
|  | if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 { | 
|  | if bsrc != nil { | 
|  | dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...) | 
|  | } else { | 
|  | dst = append(dst, src[match[2*i]:match[2*i+1]]...) | 
|  | } | 
|  | break | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | dst = append(dst, template...) | 
|  | return dst | 
|  | } | 
|  |  | 
|  | // extract returns the name from a leading "name" or "{name}" in str. | 
|  | // (The $ has already been removed by the caller.) | 
|  | // If it is a number, extract returns num set to that number; otherwise num = -1. | 
|  | func extract(str string) (name string, num int, rest string, ok bool) { | 
|  | if str == "" { | 
|  | return | 
|  | } | 
|  | brace := false | 
|  | if str[0] == '{' { | 
|  | brace = true | 
|  | str = str[1:] | 
|  | } | 
|  | i := 0 | 
|  | for i < len(str) { | 
|  | rune, size := utf8.DecodeRuneInString(str[i:]) | 
|  | if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' { | 
|  | break | 
|  | } | 
|  | i += size | 
|  | } | 
|  | if i == 0 { | 
|  | // empty name is not okay | 
|  | return | 
|  | } | 
|  | name = str[:i] | 
|  | if brace { | 
|  | if i >= len(str) || str[i] != '}' { | 
|  | // missing closing brace | 
|  | return | 
|  | } | 
|  | i++ | 
|  | } | 
|  |  | 
|  | // Parse number. | 
|  | num = 0 | 
|  | for i := 0; i < len(name); i++ { | 
|  | if name[i] < '0' || '9' < name[i] || num >= 1e8 { | 
|  | num = -1 | 
|  | break | 
|  | } | 
|  | num = num*10 + int(name[i]) - '0' | 
|  | } | 
|  | // Disallow leading zeros. | 
|  | if name[0] == '0' && len(name) > 1 { | 
|  | num = -1 | 
|  | } | 
|  |  | 
|  | rest = str[i:] | 
|  | ok = true | 
|  | return | 
|  | } | 
|  |  | 
|  | // FindSubmatchIndex returns a slice holding the index pairs identifying the | 
|  | // leftmost match of the regular expression in b and the matches, if any, of | 
|  | // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions | 
|  | // in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindSubmatchIndex(b []byte) []int { | 
|  | return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil)) | 
|  | } | 
|  |  | 
|  | // FindStringSubmatch returns a slice of strings holding the text of the | 
|  | // leftmost match of the regular expression in s and the matches, if any, of | 
|  | // its subexpressions, as defined by the 'Submatch' description in the | 
|  | // package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindStringSubmatch(s string) []string { | 
|  | var dstCap [4]int | 
|  | a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0]) | 
|  | if a == nil { | 
|  | return nil | 
|  | } | 
|  | ret := make([]string, 1+re.numSubexp) | 
|  | for i := range ret { | 
|  | if 2*i < len(a) && a[2*i] >= 0 { | 
|  | ret[i] = s[a[2*i]:a[2*i+1]] | 
|  | } | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | // FindStringSubmatchIndex returns a slice holding the index pairs | 
|  | // identifying the leftmost match of the regular expression in s and the | 
|  | // matches, if any, of its subexpressions, as defined by the 'Submatch' and | 
|  | // 'Index' descriptions in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindStringSubmatchIndex(s string) []int { | 
|  | return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil)) | 
|  | } | 
|  |  | 
|  | // FindReaderSubmatchIndex returns a slice holding the index pairs | 
|  | // identifying the leftmost match of the regular expression of text read by | 
|  | // the RuneReader, and the matches, if any, of its subexpressions, as defined | 
|  | // by the 'Submatch' and 'Index' descriptions in the package comment. A | 
|  | // return value of nil indicates no match. | 
|  | func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { | 
|  | return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil)) | 
|  | } | 
|  |  | 
|  | const startSize = 10 // The size at which to start a slice in the 'All' routines. | 
|  |  | 
|  | // FindAll is the 'All' version of Find; it returns a slice of all successive | 
|  | // matches of the expression, as defined by the 'All' description in the | 
|  | // package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAll(b []byte, n int) [][]byte { | 
|  | if n < 0 { | 
|  | n = len(b) + 1 | 
|  | } | 
|  | var result [][]byte | 
|  | re.allMatches("", b, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][]byte, 0, startSize) | 
|  | } | 
|  | result = append(result, b[match[0]:match[1]:match[1]]) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all | 
|  | // successive matches of the expression, as defined by the 'All' description | 
|  | // in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { | 
|  | if n < 0 { | 
|  | n = len(b) + 1 | 
|  | } | 
|  | var result [][]int | 
|  | re.allMatches("", b, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][]int, 0, startSize) | 
|  | } | 
|  | result = append(result, match[0:2]) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllString is the 'All' version of FindString; it returns a slice of all | 
|  | // successive matches of the expression, as defined by the 'All' description | 
|  | // in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllString(s string, n int) []string { | 
|  | if n < 0 { | 
|  | n = len(s) + 1 | 
|  | } | 
|  | var result []string | 
|  | re.allMatches(s, nil, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([]string, 0, startSize) | 
|  | } | 
|  | result = append(result, s[match[0]:match[1]]) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a | 
|  | // slice of all successive matches of the expression, as defined by the 'All' | 
|  | // description in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { | 
|  | if n < 0 { | 
|  | n = len(s) + 1 | 
|  | } | 
|  | var result [][]int | 
|  | re.allMatches(s, nil, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][]int, 0, startSize) | 
|  | } | 
|  | result = append(result, match[0:2]) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice | 
|  | // of all successive matches of the expression, as defined by the 'All' | 
|  | // description in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { | 
|  | if n < 0 { | 
|  | n = len(b) + 1 | 
|  | } | 
|  | var result [][][]byte | 
|  | re.allMatches("", b, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][][]byte, 0, startSize) | 
|  | } | 
|  | slice := make([][]byte, len(match)/2) | 
|  | for j := range slice { | 
|  | if match[2*j] >= 0 { | 
|  | slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]] | 
|  | } | 
|  | } | 
|  | result = append(result, slice) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns | 
|  | // a slice of all successive matches of the expression, as defined by the | 
|  | // 'All' description in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { | 
|  | if n < 0 { | 
|  | n = len(b) + 1 | 
|  | } | 
|  | var result [][]int | 
|  | re.allMatches("", b, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][]int, 0, startSize) | 
|  | } | 
|  | result = append(result, match) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it | 
|  | // returns a slice of all successive matches of the expression, as defined by | 
|  | // the 'All' description in the package comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { | 
|  | if n < 0 { | 
|  | n = len(s) + 1 | 
|  | } | 
|  | var result [][]string | 
|  | re.allMatches(s, nil, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][]string, 0, startSize) | 
|  | } | 
|  | slice := make([]string, len(match)/2) | 
|  | for j := range slice { | 
|  | if match[2*j] >= 0 { | 
|  | slice[j] = s[match[2*j]:match[2*j+1]] | 
|  | } | 
|  | } | 
|  | result = append(result, slice) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // FindAllStringSubmatchIndex is the 'All' version of | 
|  | // FindStringSubmatchIndex; it returns a slice of all successive matches of | 
|  | // the expression, as defined by the 'All' description in the package | 
|  | // comment. | 
|  | // A return value of nil indicates no match. | 
|  | func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { | 
|  | if n < 0 { | 
|  | n = len(s) + 1 | 
|  | } | 
|  | var result [][]int | 
|  | re.allMatches(s, nil, n, func(match []int) { | 
|  | if result == nil { | 
|  | result = make([][]int, 0, startSize) | 
|  | } | 
|  | result = append(result, match) | 
|  | }) | 
|  | return result | 
|  | } | 
|  |  | 
|  | // Split slices s into substrings separated by the expression and returns a slice of | 
|  | // the substrings between those expression matches. | 
|  | // | 
|  | // The slice returned by this method consists of all the substrings of s | 
|  | // not contained in the slice returned by FindAllString. When called on an expression | 
|  | // that contains no metacharacters, it is equivalent to strings.SplitN. | 
|  | // | 
|  | // Example: | 
|  | //   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5) | 
|  | //   // s: ["", "b", "b", "c", "cadaaae"] | 
|  | // | 
|  | // The count determines the number of substrings to return: | 
|  | //   n > 0: at most n substrings; the last substring will be the unsplit remainder. | 
|  | //   n == 0: the result is nil (zero substrings) | 
|  | //   n < 0: all substrings | 
|  | func (re *Regexp) Split(s string, n int) []string { | 
|  |  | 
|  | if n == 0 { | 
|  | return nil | 
|  | } | 
|  |  | 
|  | if len(re.expr) > 0 && len(s) == 0 { | 
|  | return []string{""} | 
|  | } | 
|  |  | 
|  | matches := re.FindAllStringIndex(s, n) | 
|  | strings := make([]string, 0, len(matches)) | 
|  |  | 
|  | beg := 0 | 
|  | end := 0 | 
|  | for _, match := range matches { | 
|  | if n > 0 && len(strings) >= n-1 { | 
|  | break | 
|  | } | 
|  |  | 
|  | end = match[0] | 
|  | if match[1] != 0 { | 
|  | strings = append(strings, s[beg:end]) | 
|  | } | 
|  | beg = match[1] | 
|  | } | 
|  |  | 
|  | if end != len(s) { | 
|  | strings = append(strings, s[beg:]) | 
|  | } | 
|  |  | 
|  | return strings | 
|  | } |