| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Simplifications that apply to all backend architectures. As an example, this |
| // Go source code |
| // |
| // y := 0 * x |
| // |
| // can be translated into y := 0 without losing any information, which saves a |
| // pointless multiplication instruction. Other .rules files in this directory |
| // (for example AMD64.rules) contain rules specific to the architecture in the |
| // filename. The rules here apply to every architecture. |
| // |
| // The code for parsing this file lives in rulegen.go; this file generates |
| // ssa/rewritegeneric.go. |
| |
| // values are specified using the following format: |
| // (op <type> [auxint] {aux} arg0 arg1 ...) |
| // the type, aux, and auxint fields are optional |
| // on the matching side |
| // - the type, aux, and auxint fields must match if they are specified. |
| // - the first occurrence of a variable defines that variable. Subsequent |
| // uses must match (be == to) the first use. |
| // - v is defined to be the value matched. |
| // - an additional conditional can be provided after the match pattern with "&&". |
| // on the generated side |
| // - the type of the top-level expression is the same as the one on the left-hand side. |
| // - the type of any subexpressions must be specified explicitly (or |
| // be specified in the op's type field). |
| // - auxint will be 0 if not specified. |
| // - aux will be nil if not specified. |
| |
| // blocks are specified using the following format: |
| // (kind controlvalue succ0 succ1 ...) |
| // controlvalue must be "nil" or a value expression |
| // succ* fields must be variables |
| // For now, the generated successors must be a permutation of the matched successors. |
| |
| // constant folding |
| (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) |
| (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) |
| (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) |
| (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) |
| (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) |
| (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) |
| (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))]) |
| (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float |
| (Cvt32to32F (Const32 [c])) -> (Const32F [f2i(float64(float32(int32(c))))]) |
| (Cvt32to64F (Const32 [c])) -> (Const64F [f2i(float64(int32(c)))]) |
| (Cvt64to32F (Const64 [c])) -> (Const32F [f2i(float64(float32(c)))]) |
| (Cvt64to64F (Const64 [c])) -> (Const64F [f2i(float64(c))]) |
| (Cvt32Fto32 (Const32F [c])) -> (Const32 [int64(int32(i2f(c)))]) |
| (Cvt32Fto64 (Const32F [c])) -> (Const64 [int64(i2f(c))]) |
| (Cvt64Fto32 (Const64F [c])) -> (Const32 [int64(int32(i2f(c)))]) |
| (Cvt64Fto64 (Const64F [c])) -> (Const64 [int64(i2f(c))]) |
| (Round32F x:(Const32F)) -> x |
| (Round64F x:(Const64F)) -> x |
| |
| (Trunc16to8 (ZeroExt8to16 x)) -> x |
| (Trunc32to8 (ZeroExt8to32 x)) -> x |
| (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) |
| (Trunc32to16 (ZeroExt16to32 x)) -> x |
| (Trunc64to8 (ZeroExt8to64 x)) -> x |
| (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) |
| (Trunc64to16 (ZeroExt16to64 x)) -> x |
| (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) |
| (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) |
| (Trunc64to32 (ZeroExt32to64 x)) -> x |
| (Trunc16to8 (SignExt8to16 x)) -> x |
| (Trunc32to8 (SignExt8to32 x)) -> x |
| (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) |
| (Trunc32to16 (SignExt16to32 x)) -> x |
| (Trunc64to8 (SignExt8to64 x)) -> x |
| (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) |
| (Trunc64to16 (SignExt16to64 x)) -> x |
| (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) |
| (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) |
| (Trunc64to32 (SignExt32to64 x)) -> x |
| |
| (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) |
| (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) |
| (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) |
| (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) |
| (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) |
| (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) |
| (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) |
| (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) |
| (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) |
| (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) |
| (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) |
| (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) |
| |
| (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) |
| (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) |
| (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) |
| (Neg64 (Const64 [c])) -> (Const64 [-c]) |
| (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))]) |
| (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))]) |
| |
| (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) |
| (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) |
| (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) |
| (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) |
| (Add32F (Const32F [c]) (Const32F [d])) -> |
| (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision |
| (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))]) |
| (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c]) |
| (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c]) |
| |
| (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) |
| (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) |
| (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) |
| (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) |
| (Sub32F (Const32F [c]) (Const32F [d])) -> |
| (Const32F [f2i(float64(i2f32(c) - i2f32(d)))]) |
| (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))]) |
| |
| (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) |
| (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) |
| (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) |
| (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) |
| (Mul32F (Const32F [c]) (Const32F [d])) -> |
| (Const32F [f2i(float64(i2f32(c) * i2f32(d)))]) |
| (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))]) |
| |
| (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) |
| (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) |
| (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) |
| (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) |
| |
| (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) |
| (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) |
| (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) |
| (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) |
| |
| (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) |
| (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) |
| (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) |
| (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) |
| |
| (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) |
| (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) |
| (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) |
| (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) |
| (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) |
| (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) |
| (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) |
| (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) |
| (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))]) |
| (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))]) |
| |
| (Not (ConstBool [c])) -> (ConstBool [1-c]) |
| |
| // Convert x * 1 to x. |
| (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) -> x |
| |
| // Convert x * -1 to -x. |
| (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) -> (Neg(8|16|32|64) x) |
| |
| // Convert multiplication by a power of two to a shift. |
| (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(c)])) |
| (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(c)])) |
| (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(c)])) |
| (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(c)])) |
| (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) |
| (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) |
| (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) |
| (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log2(-c)]))) |
| |
| (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) |
| (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) |
| (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) |
| (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) |
| |
| (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) |
| (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) |
| (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) |
| (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) |
| |
| (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) |
| (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) |
| (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) |
| (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) |
| (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) |
| (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) |
| (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) |
| (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) |
| (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) |
| (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) |
| (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) |
| (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) |
| |
| // Fold IsInBounds when the range of the index cannot exceed the limit. |
| (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) |
| (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) |
| (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) |
| (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) |
| (IsInBounds x x) -> (ConstBool [0]) |
| (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) |
| (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) |
| (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) |
| // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). |
| (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) |
| (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) |
| // Right shifting an unsigned number limits its value. |
| (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d -> (ConstBool [1]) |
| (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d -> (ConstBool [1]) |
| |
| (IsSliceInBounds x x) -> (ConstBool [1]) |
| (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) |
| (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) |
| (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) |
| (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) |
| (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) |
| (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) |
| (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) |
| |
| (Eq(64|32|16|8) x x) -> (ConstBool [1]) |
| (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) |
| (EqB (ConstBool [0]) x) -> (Not x) |
| (EqB (ConstBool [1]) x) -> x |
| |
| (Neq(64|32|16|8) x x) -> (ConstBool [0]) |
| (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) |
| (NeqB (ConstBool [0]) x) -> x |
| (NeqB (ConstBool [1]) x) -> (Not x) |
| (NeqB (Not x) (Not y)) -> (NeqB x y) |
| |
| (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x) |
| (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x) |
| (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x) |
| (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Eq8 (Const8 <t> [int64(int8(c-d))]) x) |
| |
| (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x) |
| (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x) |
| (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x) |
| (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x) |
| |
| // Canonicalize x-const to x+(-const) |
| (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x) |
| (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x) |
| (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x) |
| (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 -> (Add8 (Const8 <t> [int64(int8(-c))]) x) |
| |
| // fold negation into comparison operators |
| (Not (Eq(64|32|16|8|B) x y)) -> (Neq(64|32|16|8|B) x y) |
| (Not (Neq(64|32|16|8|B) x y)) -> (Eq(64|32|16|8|B) x y) |
| |
| (Not (Greater(64|32|16|8) x y)) -> (Leq(64|32|16|8) x y) |
| (Not (Greater(64|32|16|8)U x y)) -> (Leq(64|32|16|8)U x y) |
| (Not (Geq(64|32|16|8) x y)) -> (Less(64|32|16|8) x y) |
| (Not (Geq(64|32|16|8)U x y)) -> (Less(64|32|16|8)U x y) |
| |
| (Not (Less(64|32|16|8) x y)) -> (Geq(64|32|16|8) x y) |
| (Not (Less(64|32|16|8)U x y)) -> (Geq(64|32|16|8)U x y) |
| (Not (Leq(64|32|16|8) x y)) -> (Greater(64|32|16|8) x y) |
| (Not (Leq(64|32|16|8)U x y)) -> (Greater(64|32|16|8)U x y) |
| |
| |
| // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: |
| // a[i].b = ...; a[i+1].b = ... |
| (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) -> |
| (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) |
| (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) -> |
| (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x)) |
| |
| // Rewrite x*y ± x*z to x*(y±z) |
| (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) |
| -> (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z)) |
| (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) |
| -> (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z)) |
| |
| // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce |
| // the number of the other rewrite rules for const shifts |
| (Lsh64x32 <t> x (Const32 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh64x16 <t> x (Const16 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh64x8 <t> x (Const8 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh64x32 <t> x (Const32 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh64x16 <t> x (Const16 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh64x8 <t> x (Const8 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh64Ux8 <t> x (Const8 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| (Lsh32x32 <t> x (Const32 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh32x16 <t> x (Const16 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh32x8 <t> x (Const8 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh32x32 <t> x (Const32 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh32x16 <t> x (Const16 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh32x8 <t> x (Const8 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh32Ux8 <t> x (Const8 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| (Lsh16x32 <t> x (Const32 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh16x16 <t> x (Const16 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh16x8 <t> x (Const8 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh16x32 <t> x (Const32 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh16x16 <t> x (Const16 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh16x8 <t> x (Const8 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh16Ux8 <t> x (Const8 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| (Lsh8x32 <t> x (Const32 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) |
| (Lsh8x16 <t> x (Const16 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) |
| (Lsh8x8 <t> x (Const8 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh8x32 <t> x (Const32 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh8x16 <t> x (Const16 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh8x8 <t> x (Const8 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) |
| (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) |
| (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) |
| (Rsh8Ux8 <t> x (Const8 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) |
| |
| // shifts by zero |
| (Lsh(64|32|16|8)x64 x (Const64 [0])) -> x |
| (Rsh(64|32|16|8)x64 x (Const64 [0])) -> x |
| (Rsh(64|32|16|8)Ux64 x (Const64 [0])) -> x |
| |
| // zero shifted |
| (Lsh64x(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) |
| (Rsh64x(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) |
| (Rsh64Ux(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) |
| (Lsh32x(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) |
| (Rsh32x(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) |
| (Rsh32Ux(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) |
| (Lsh16x(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) |
| (Rsh16x(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) |
| (Rsh16Ux(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) |
| (Lsh8x(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) |
| (Rsh8x(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) |
| (Rsh8Ux(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) |
| |
| // large left shifts of all values, and right shifts of unsigned values |
| ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) |
| ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) |
| ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) |
| ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) |
| |
| // combine const shifts |
| (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d])) |
| (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d])) |
| (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d])) |
| (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 <t> [c+d])) |
| |
| (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d])) |
| (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d])) |
| (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d])) |
| (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 <t> [c+d])) |
| |
| (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d])) |
| (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d])) |
| (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d])) |
| (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 <t> [c+d])) |
| |
| // ((x >> c1) << c2) >> c3 |
| (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) |
| && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) |
| -> (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) |
| |
| // ((x << c1) >> c2) << c3 |
| (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) |
| && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) |
| -> (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3])) |
| |
| // (x >> c) & uppermask = 0 |
| (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const64 [0]) |
| (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const32 [0]) |
| (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const16 [0]) |
| (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const8 [0]) |
| |
| // (x << c) & lowermask = 0 |
| (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const64 [0]) |
| (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const32 [0]) |
| (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const16 [0]) |
| (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const8 [0]) |
| |
| // replace shifts with zero extensions |
| (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) |
| (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) |
| (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) |
| (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) |
| (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) |
| (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) |
| |
| // replace shifts with sign extensions |
| (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 <typ.Int8> x)) |
| (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 <typ.Int8> x)) |
| (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 <typ.Int8> x)) |
| (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <typ.Int16> x)) |
| (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <typ.Int16> x)) |
| (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <typ.Int32> x)) |
| |
| // constant comparisons |
| (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c == d)]) |
| (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c != d)]) |
| (Greater(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c > d)]) |
| (Geq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c >= d)]) |
| (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c < d)]) |
| (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c <= d)]) |
| |
| (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) |
| (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) |
| (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) |
| (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) |
| |
| (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) |
| (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) |
| (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) |
| (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) |
| |
| (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) |
| (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) |
| (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) |
| (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) |
| |
| (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) |
| (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) |
| (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) |
| (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) |
| |
| // constant floating point comparisons |
| (Eq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) == i2f(d))]) |
| (Neq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) != i2f(d))]) |
| (Greater(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) > i2f(d))]) |
| (Geq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) >= i2f(d))]) |
| (Less(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) < i2f(d))]) |
| (Leq(64|32)F (Const(64|32)F [c]) (Const(64|32)F [d])) -> (ConstBool [b2i(i2f(c) <= i2f(d))]) |
| |
| // simplifications |
| (Or(64|32|16|8) x x) -> x |
| (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x |
| (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) -> (Const(64|32|16|8) [-1]) |
| |
| (And(64|32|16|8) x x) -> x |
| (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) -> x |
| (And(64|32|16|8) (Const(64|32|16|8) [0]) _) -> (Const(64|32|16|8) [0]) |
| |
| (Xor(64|32|16|8) x x) -> (Const(64|32|16|8) [0]) |
| (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x |
| |
| (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x |
| (Sub(64|32|16|8) x x) -> (Const(64|32|16|8) [0]) |
| (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) -> (Const(64|32|16|8) [0]) |
| |
| (Com(64|32|16|8) (Com(64|32|16|8) x)) -> x |
| (Com(64|32|16|8) (Const(64|32|16|8) [c])) -> (Const(64|32|16|8) [^c]) |
| |
| (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) -> (Sub(64|32|16|8) y x) |
| |
| (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) -> (Neg(64|32|16|8) x) |
| |
| (And(64|32|16|8) x (And(64|32|16|8) x y)) -> (And(64|32|16|8) x y) |
| (Or(64|32|16|8) x (Or(64|32|16|8) x y)) -> (Or(64|32|16|8) x y) |
| (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) -> y |
| |
| // Ands clear bits. Ors set bits. |
| // If a subsequent Or will set all the bits |
| // that an And cleared, we can skip the And. |
| // This happens in bitmasking code like: |
| // x &^= 3 << shift // clear two old bits |
| // x |= v << shift // set two new bits |
| // when shift is a small constant and v ends up a constant 3. |
| (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 -> (Or8 (Const8 <t> [c1]) x) |
| (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 <t> [c1]) x) |
| (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 <t> [c1]) x) |
| (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 <t> [c1]) x) |
| |
| (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) |
| (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) |
| (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) |
| (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) |
| (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) |
| (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) |
| |
| (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x |
| (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x |
| (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x |
| (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x |
| (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x |
| (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x |
| |
| (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x |
| (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x |
| (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x |
| (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x |
| (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x |
| (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x |
| |
| (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) |
| (Slicemask (Const32 [0])) -> (Const32 [0]) |
| (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) |
| (Slicemask (Const64 [0])) -> (Const64 [0]) |
| |
| // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands |
| // leading zeros can be shifted left, then right |
| (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32 |
| -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)])) |
| // trailing zeros can be shifted right, then left |
| (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32 |
| -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)])) |
| |
| // simplifications often used for lengths. e.g. len(s[i:i+5])==5 |
| (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) -> y |
| (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) -> x |
| |
| // basic phi simplifications |
| (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) |
| (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) |
| (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) |
| (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) |
| |
| // slice and interface comparisons |
| // The frontend ensures that we can only compare against nil, |
| // so we need only compare the first word (interface type or slice ptr). |
| (EqInter x y) -> (EqPtr (ITab x) (ITab y)) |
| (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) |
| (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) |
| (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) |
| |
| // Load of store of same address, with compatibly typed value and same size |
| (Load <t1> p1 (Store {t2} p2 x _)) |
| && isSamePtr(p1, p2) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == sizeof(t2) |
| -> x |
| (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _))) |
| && isSamePtr(p1, p3) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == sizeof(t2) |
| && disjoint(p3, sizeof(t3), p2, sizeof(t2)) |
| -> x |
| (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) |
| && isSamePtr(p1, p4) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == sizeof(t2) |
| && disjoint(p4, sizeof(t4), p2, sizeof(t2)) |
| && disjoint(p4, sizeof(t4), p3, sizeof(t3)) |
| -> x |
| (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) |
| && isSamePtr(p1, p5) |
| && t1.Compare(x.Type) == types.CMPeq |
| && t1.Size() == sizeof(t2) |
| && disjoint(p5, sizeof(t5), p2, sizeof(t2)) |
| && disjoint(p5, sizeof(t5), p3, sizeof(t3)) |
| && disjoint(p5, sizeof(t5), p4, sizeof(t4)) |
| -> x |
| |
| // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits |
| (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) -> (Const64F [x]) |
| (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) -> (Const32F [f2i(float64(math.Float32frombits(uint32(x))))]) |
| (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) -> (Const64 [x]) |
| (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) -> (Const32 [int64(int32(math.Float32bits(float32(i2f(x)))))]) |
| |
| // Float Loads up to Zeros so they can be constant folded. |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| mem:(Zero [n] p3 _))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, sizeof(t2)) |
| -> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem) |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| (Store {t3} p3 _ |
| mem:(Zero [n] p4 _)))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, sizeof(t2)) |
| && disjoint(op, t1.Size(), p3, sizeof(t3)) |
| -> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem) |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| (Store {t3} p3 _ |
| (Store {t4} p4 _ |
| mem:(Zero [n] p5 _))))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, sizeof(t2)) |
| && disjoint(op, t1.Size(), p3, sizeof(t3)) |
| && disjoint(op, t1.Size(), p4, sizeof(t4)) |
| -> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem) |
| (Load <t1> op:(OffPtr [o1] p1) |
| (Store {t2} p2 _ |
| (Store {t3} p3 _ |
| (Store {t4} p4 _ |
| (Store {t5} p5 _ |
| mem:(Zero [n] p6 _)))))) |
| && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) |
| && fe.CanSSA(t1) |
| && disjoint(op, t1.Size(), p2, sizeof(t2)) |
| && disjoint(op, t1.Size(), p3, sizeof(t3)) |
| && disjoint(op, t1.Size(), p4, sizeof(t4)) |
| && disjoint(op, t1.Size(), p5, sizeof(t5)) |
| -> @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem) |
| |
| // Zero to Load forwarding. |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && t1.IsBoolean() |
| && isSamePtr(p1, p2) |
| && n >= o + 1 |
| -> (ConstBool [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is8BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 1 |
| -> (Const8 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is16BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 2 |
| -> (Const16 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is32BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 4 |
| -> (Const32 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is64BitInt(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 8 |
| -> (Const64 [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is32BitFloat(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 4 |
| -> (Const32F [0]) |
| (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) |
| && is64BitFloat(t1) |
| && isSamePtr(p1, p2) |
| && n >= o + 8 |
| -> (Const64F [0]) |
| |
| // Eliminate stores of values that have just been loaded from the same location. |
| // We also handle the common case where there are some intermediate stores. |
| (Store {t1} p1 (Load <t2> p2 mem) mem) |
| && isSamePtr(p1, p2) |
| && t2.Size() == sizeof(t1) |
| -> mem |
| (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem)) |
| && isSamePtr(p1, p2) |
| && t2.Size() == sizeof(t1) |
| && disjoint(p1, sizeof(t1), p3, sizeof(t3)) |
| -> mem |
| (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) |
| && isSamePtr(p1, p2) |
| && t2.Size() == sizeof(t1) |
| && disjoint(p1, sizeof(t1), p3, sizeof(t3)) |
| && disjoint(p1, sizeof(t1), p4, sizeof(t4)) |
| -> mem |
| (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) |
| && isSamePtr(p1, p2) |
| && t2.Size() == sizeof(t1) |
| && disjoint(p1, sizeof(t1), p3, sizeof(t3)) |
| && disjoint(p1, sizeof(t1), p4, sizeof(t4)) |
| && disjoint(p1, sizeof(t1), p5, sizeof(t5)) |
| -> mem |
| |
| // Don't Store zeros to cleared variables. |
| (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) |
| && isConstZero(x) |
| && o >= 0 && sizeof(t) + o <= n && isSamePtr(p1, p2) |
| -> mem |
| (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) |
| && isConstZero(x) |
| && o1 >= 0 && sizeof(t1) + o1 <= n && isSamePtr(p1, p3) |
| && disjoint(op, sizeof(t1), p2, sizeof(t2)) |
| -> mem |
| (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) |
| && isConstZero(x) |
| && o1 >= 0 && sizeof(t1) + o1 <= n && isSamePtr(p1, p4) |
| && disjoint(op, sizeof(t1), p2, sizeof(t2)) |
| && disjoint(op, sizeof(t1), p3, sizeof(t3)) |
| -> mem |
| (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) |
| && isConstZero(x) |
| && o1 >= 0 && sizeof(t1) + o1 <= n && isSamePtr(p1, p5) |
| && disjoint(op, sizeof(t1), p2, sizeof(t2)) |
| && disjoint(op, sizeof(t1), p3, sizeof(t3)) |
| && disjoint(op, sizeof(t1), p4, sizeof(t4)) |
| -> mem |
| |
| // Collapse OffPtr |
| (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) |
| (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p |
| |
| // indexing operations |
| // Note: bounds check has already been done |
| (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [t.Elem().Size()]))) |
| (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()]))) |
| |
| // struct operations |
| (StructSelect (StructMake1 x)) -> x |
| (StructSelect [0] (StructMake2 x _)) -> x |
| (StructSelect [1] (StructMake2 _ x)) -> x |
| (StructSelect [0] (StructMake3 x _ _)) -> x |
| (StructSelect [1] (StructMake3 _ x _)) -> x |
| (StructSelect [2] (StructMake3 _ _ x)) -> x |
| (StructSelect [0] (StructMake4 x _ _ _)) -> x |
| (StructSelect [1] (StructMake4 _ x _ _)) -> x |
| (StructSelect [2] (StructMake4 _ _ x _)) -> x |
| (StructSelect [3] (StructMake4 _ _ _ x)) -> x |
| |
| (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> |
| (StructMake0) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> |
| (StructMake1 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> |
| (StructMake2 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) |
| (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> |
| (StructMake3 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) |
| (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) |
| (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) |
| (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> |
| (StructMake4 |
| (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) |
| (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) |
| (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) |
| (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) |
| |
| (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) -> |
| @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) |
| |
| (Store _ (StructMake0) mem) -> mem |
| (Store dst (StructMake1 <t> f0) mem) -> |
| (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) |
| (Store dst (StructMake2 <t> f0 f1) mem) -> |
| (Store {t.FieldType(1)} |
| (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) |
| f1 |
| (Store {t.FieldType(0)} |
| (OffPtr <t.FieldType(0).PtrTo()> [0] dst) |
| f0 mem)) |
| (Store dst (StructMake3 <t> f0 f1 f2) mem) -> |
| (Store {t.FieldType(2)} |
| (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) |
| f2 |
| (Store {t.FieldType(1)} |
| (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) |
| f1 |
| (Store {t.FieldType(0)} |
| (OffPtr <t.FieldType(0).PtrTo()> [0] dst) |
| f0 mem))) |
| (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) -> |
| (Store {t.FieldType(3)} |
| (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) |
| f3 |
| (Store {t.FieldType(2)} |
| (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) |
| f2 |
| (Store {t.FieldType(1)} |
| (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) |
| f1 |
| (Store {t.FieldType(0)} |
| (OffPtr <t.FieldType(0).PtrTo()> [0] dst) |
| f0 mem)))) |
| |
| // Putting struct{*byte} and similar into direct interfaces. |
| (IMake typ (StructMake1 val)) -> (IMake typ val) |
| (StructSelect [0] x:(IData _)) -> x |
| |
| // un-SSAable values use mem->mem copies |
| (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) -> |
| (Move {t} [sizeof(t)] dst src mem) |
| (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) -> |
| (Move {t} [sizeof(t)] dst src (VarDef {x} mem)) |
| |
| // array ops |
| (ArraySelect (ArrayMake1 x)) -> x |
| |
| (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 -> |
| (ArrayMake0) |
| |
| (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> |
| (ArrayMake1 (Load <t.Elem()> ptr mem)) |
| |
| (Store _ (ArrayMake0) mem) -> mem |
| (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) |
| |
| // Putting [1]{*byte} and similar into direct interfaces. |
| (IMake typ (ArrayMake1 val)) -> (IMake typ val) |
| (ArraySelect [0] x:(IData _)) -> x |
| |
| // string ops |
| // Decomposing StringMake and lowering of StringPtr and StringLen |
| // happens in a later pass, dec, so that these operations are available |
| // to other passes for optimizations. |
| (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c]) |
| (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c]) |
| (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> |
| (StringMake (ConstNil) (Const32 <typ.Int> [0])) |
| (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> |
| (StringMake (ConstNil) (Const64 <typ.Int> [0])) |
| (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> |
| (StringMake |
| (Addr <typ.BytePtr> {fe.StringData(s.(string))} |
| (SB)) |
| (Const32 <typ.Int> [int64(len(s.(string)))])) |
| (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> |
| (StringMake |
| (Addr <typ.BytePtr> {fe.StringData(s.(string))} |
| (SB)) |
| (Const64 <typ.Int> [int64(len(s.(string)))])) |
| |
| // slice ops |
| // Only a few slice rules are provided here. See dec.rules for |
| // a more comprehensive set. |
| (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c]) |
| (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c]) |
| (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c]) |
| (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c]) |
| (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) |
| (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) |
| (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) |
| (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) |
| (ConstSlice) && config.PtrSize == 4 -> |
| (SliceMake |
| (ConstNil <v.Type.Elem().PtrTo()>) |
| (Const32 <typ.Int> [0]) |
| (Const32 <typ.Int> [0])) |
| (ConstSlice) && config.PtrSize == 8 -> |
| (SliceMake |
| (ConstNil <v.Type.Elem().PtrTo()>) |
| (Const64 <typ.Int> [0]) |
| (Const64 <typ.Int> [0])) |
| |
| // interface ops |
| (ConstInterface) -> |
| (IMake |
| (ConstNil <typ.Uintptr>) |
| (ConstNil <typ.BytePtr>)) |
| |
| (NilCheck (GetG mem) mem) -> mem |
| |
| (If (Not cond) yes no) -> (If cond no yes) |
| (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no) |
| (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes) |
| |
| // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. |
| (Convert (Add(64|32) (Convert ptr mem) off) mem) -> (Add(64|32) ptr off) |
| (Convert (Convert ptr mem) mem) -> ptr |
| |
| // Decompose compound argument values |
| (Arg {n} [off]) && v.Type.IsString() -> |
| (StringMake |
| (Arg <typ.BytePtr> {n} [off]) |
| (Arg <typ.Int> {n} [off+config.PtrSize])) |
| |
| (Arg {n} [off]) && v.Type.IsSlice() -> |
| (SliceMake |
| (Arg <v.Type.Elem().PtrTo()> {n} [off]) |
| (Arg <typ.Int> {n} [off+config.PtrSize]) |
| (Arg <typ.Int> {n} [off+2*config.PtrSize])) |
| |
| (Arg {n} [off]) && v.Type.IsInterface() -> |
| (IMake |
| (Arg <typ.Uintptr> {n} [off]) |
| (Arg <typ.BytePtr> {n} [off+config.PtrSize])) |
| |
| (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 -> |
| (ComplexMake |
| (Arg <typ.Float64> {n} [off]) |
| (Arg <typ.Float64> {n} [off+8])) |
| |
| (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 -> |
| (ComplexMake |
| (Arg <typ.Float32> {n} [off]) |
| (Arg <typ.Float32> {n} [off+4])) |
| |
| (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> |
| (StructMake0) |
| (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> |
| (StructMake1 |
| (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])) |
| (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> |
| (StructMake2 |
| (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) |
| (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])) |
| (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> |
| (StructMake3 |
| (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) |
| (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) |
| (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])) |
| (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> |
| (StructMake4 |
| (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) |
| (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) |
| (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]) |
| (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)])) |
| |
| (Arg <t>) && t.IsArray() && t.NumElem() == 0 -> |
| (ArrayMake0) |
| (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> |
| (ArrayMake1 (Arg <t.Elem()> {n} [off])) |
| |
| // strength reduction of divide by a constant. |
| // See ../magic.go for a detailed description of these algorithms. |
| |
| // Unsigned divide by power of 2. Strength reduce to a shift. |
| (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) |
| (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) |
| (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) |
| (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) |
| (Div64u n (Const64 [-1<<63])) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) |
| |
| // Signed non-negative divide by power of 2. |
| (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <typ.UInt64> [log2(c&0xff)])) |
| (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <typ.UInt64> [log2(c&0xffff)])) |
| (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <typ.UInt64> [log2(c&0xffffffff)])) |
| (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <typ.UInt64> [log2(c)])) |
| (Div64 n (Const64 [-1<<63])) && isNonNegative(n) -> (Const64 [0]) |
| |
| // Unsigned divide, not a power of 2. Strength reduce to a multiply. |
| // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. |
| (Div8u x (Const8 [c])) && umagicOK(8, c) -> |
| (Trunc32to8 |
| (Rsh32Ux64 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(1<<8+umagic(8,c).m)]) |
| (ZeroExt8to32 x)) |
| (Const64 <typ.UInt64> [8+umagic(8,c).s]))) |
| |
| // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. |
| (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> |
| (Trunc64to16 |
| (Rsh64Ux64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<16+umagic(16,c).m)]) |
| (ZeroExt16to64 x)) |
| (Const64 <typ.UInt64> [16+umagic(16,c).s]))) |
| |
| // For 16-bit divides on 32-bit machines |
| (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> |
| (Trunc32to16 |
| (Rsh32Ux64 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(1<<15+umagic(16,c).m/2)]) |
| (ZeroExt16to32 x)) |
| (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) |
| (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> |
| (Trunc32to16 |
| (Rsh32Ux64 <typ.UInt32> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)]) |
| (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [16+umagic(16,c).s-2]))) |
| (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && config.useAvg -> |
| (Trunc32to16 |
| (Rsh32Ux64 <typ.UInt32> |
| (Avg32u |
| (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(umagic(16,c).m)]) |
| (ZeroExt16to32 x))) |
| (Const64 <typ.UInt64> [16+umagic(16,c).s-1]))) |
| |
| // For 32-bit divides on 32-bit machines |
| (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 && config.useHmul -> |
| (Rsh32Ux64 <typ.UInt32> |
| (Hmul32u <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))]) |
| x) |
| (Const64 <typ.UInt64> [umagic(32,c).s-1])) |
| (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 && config.useHmul -> |
| (Rsh32Ux64 <typ.UInt32> |
| (Hmul32u <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) |
| (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [umagic(32,c).s-2])) |
| (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && config.useAvg && config.useHmul -> |
| (Rsh32Ux64 <typ.UInt32> |
| (Avg32u |
| x |
| (Hmul32u <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(int32(umagic(32,c).m))]) |
| x)) |
| (Const64 <typ.UInt64> [umagic(32,c).s-1])) |
| |
| // For 32-bit divides on 64-bit machines |
| // We'll use a regular (non-hi) multiply for this case. |
| (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> |
| (Trunc64to32 |
| (Rsh64Ux64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<31+umagic(32,c).m/2)]) |
| (ZeroExt32to64 x)) |
| (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) |
| (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> |
| (Trunc64to32 |
| (Rsh64Ux64 <typ.UInt64> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)]) |
| (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [32+umagic(32,c).s-2]))) |
| (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && config.useAvg -> |
| (Trunc64to32 |
| (Rsh64Ux64 <typ.UInt64> |
| (Avg64u |
| (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt32> [int64(umagic(32,c).m)]) |
| (ZeroExt32to64 x))) |
| (Const64 <typ.UInt64> [32+umagic(32,c).s-1]))) |
| |
| // For 64-bit divides on 64-bit machines |
| // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) |
| (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 && config.useHmul -> |
| (Rsh64Ux64 <typ.UInt64> |
| (Hmul64u <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<63+umagic(64,c).m/2)]) |
| x) |
| (Const64 <typ.UInt64> [umagic(64,c).s-1])) |
| (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 && config.useHmul -> |
| (Rsh64Ux64 <typ.UInt64> |
| (Hmul64u <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)]) |
| (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) |
| (Const64 <typ.UInt64> [umagic(64,c).s-2])) |
| (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && config.useAvg && config.useHmul -> |
| (Rsh64Ux64 <typ.UInt64> |
| (Avg64u |
| x |
| (Hmul64u <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(umagic(64,c).m)]) |
| x)) |
| (Const64 <typ.UInt64> [umagic(64,c).s-1])) |
| |
| // Signed divide by a negative constant. Rewrite to divide by a positive constant. |
| (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 <t> n (Const8 <t> [-c]))) |
| (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c]))) |
| (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c]))) |
| (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c]))) |
| |
| // Dividing by the most-negative number. Result is always 0 except |
| // if the input is also the most-negative number. |
| // We can detect that using the sign bit of x & -x. |
| (Div8 <t> x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) |
| (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) |
| (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) |
| (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) |
| |
| // Signed divide by power of 2. |
| // n / c = n >> log(c) if n >= 0 |
| // = (n+c-1) >> log(c) if n < 0 |
| // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). |
| (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> |
| (Rsh8x64 |
| (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [ 8-log2(c)]))) |
| (Const64 <typ.UInt64> [log2(c)])) |
| (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> |
| (Rsh16x64 |
| (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [16-log2(c)]))) |
| (Const64 <typ.UInt64> [log2(c)])) |
| (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> |
| (Rsh32x64 |
| (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [32-log2(c)]))) |
| (Const64 <typ.UInt64> [log2(c)])) |
| (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> |
| (Rsh64x64 |
| (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [64-log2(c)]))) |
| (Const64 <typ.UInt64> [log2(c)])) |
| |
| // Signed divide, not a power of 2. Strength reduce to a multiply. |
| (Div8 <t> x (Const8 [c])) && smagicOK(8,c) -> |
| (Sub8 <t> |
| (Rsh32x64 <t> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(smagic(8,c).m)]) |
| (SignExt8to32 x)) |
| (Const64 <typ.UInt64> [8+smagic(8,c).s])) |
| (Rsh32x64 <t> |
| (SignExt8to32 x) |
| (Const64 <typ.UInt64> [31]))) |
| (Div16 <t> x (Const16 [c])) && smagicOK(16,c) -> |
| (Sub16 <t> |
| (Rsh32x64 <t> |
| (Mul32 <typ.UInt32> |
| (Const32 <typ.UInt32> [int64(smagic(16,c).m)]) |
| (SignExt16to32 x)) |
| (Const64 <typ.UInt64> [16+smagic(16,c).s])) |
| (Rsh32x64 <t> |
| (SignExt16to32 x) |
| (Const64 <typ.UInt64> [31]))) |
| (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> |
| (Sub32 <t> |
| (Rsh64x64 <t> |
| (Mul64 <typ.UInt64> |
| (Const64 <typ.UInt64> [int64(smagic(32,c).m)]) |
| (SignExt32to64 x)) |
| (Const64 <typ.UInt64> [32+smagic(32,c).s])) |
| (Rsh64x64 <t> |
| (SignExt32to64 x) |
| (Const64 <typ.UInt64> [63]))) |
| (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 && config.useHmul -> |
| (Sub32 <t> |
| (Rsh32x64 <t> |
| (Hmul32 <t> |
| (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m/2))]) |
| x) |
| (Const64 <typ.UInt64> [smagic(32,c).s-1])) |
| (Rsh32x64 <t> |
| x |
| (Const64 <typ.UInt64> [31]))) |
| (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 && config.useHmul -> |
| (Sub32 <t> |
| (Rsh32x64 <t> |
| (Add32 <t> |
| (Hmul32 <t> |
| (Const32 <typ.UInt32> [int64(int32(smagic(32,c).m))]) |
| x) |
| x) |
| (Const64 <typ.UInt64> [smagic(32,c).s])) |
| (Rsh32x64 <t> |
| x |
| (Const64 <typ.UInt64> [31]))) |
| (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 && config.useHmul -> |
| (Sub64 <t> |
| (Rsh64x64 <t> |
| (Hmul64 <t> |
| (Const64 <typ.UInt64> [int64(smagic(64,c).m/2)]) |
| x) |
| (Const64 <typ.UInt64> [smagic(64,c).s-1])) |
| (Rsh64x64 <t> |
| x |
| (Const64 <typ.UInt64> [63]))) |
| (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 && config.useHmul -> |
| (Sub64 <t> |
| (Rsh64x64 <t> |
| (Add64 <t> |
| (Hmul64 <t> |
| (Const64 <typ.UInt64> [int64(smagic(64,c).m)]) |
| x) |
| x) |
| (Const64 <typ.UInt64> [smagic(64,c).s])) |
| (Rsh64x64 <t> |
| x |
| (Const64 <typ.UInt64> [63]))) |
| |
| // Unsigned mod by power of 2 constant. |
| (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) |
| (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) |
| (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) |
| (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) |
| (Mod64u <t> n (Const64 [-1<<63])) -> (And64 n (Const64 <t> [1<<63-1])) |
| |
| // Signed non-negative mod by power of 2 constant. |
| (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) |
| (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) |
| (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) |
| (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) |
| (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) -> n |
| |
| // Signed mod by negative constant. |
| (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 <t> n (Const8 <t> [-c])) |
| (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c])) |
| (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c])) |
| (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c])) |
| |
| // All other mods by constants, do A%B = A-(A/B*B). |
| // This implements % with two * and a bunch of ancillary ops. |
| // One of the * is free if the user's code also computes A/B. |
| (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) |
| -> (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) |
| (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) |
| -> (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) |
| (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) |
| -> (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) |
| (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) |
| -> (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) |
| (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8 ,c) |
| -> (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) |
| (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) |
| -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) |
| (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) |
| -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) |
| (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) |
| -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) |
| |
| (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 -> (Eq(8|16|32|64) x y) |
| (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 -> (Neq(8|16|32|64) x y) |
| |
| // Reassociate expressions involving |
| // constants such that constants come first, |
| // exposing obvious constant-folding opportunities. |
| // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C |
| // is constant, which pushes constants to the outside |
| // of the expression. At that point, any constant-folding |
| // opportunities should be obvious. |
| |
| // x + (C + z) -> C + (x + z) |
| (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x)) |
| (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x)) |
| (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x)) |
| (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 <t> z x)) |
| |
| // x + (C - z) -> C + (x - z) |
| (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) |
| (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) |
| (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) |
| (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) |
| (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) |
| (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) |
| (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) |
| (Add8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) |
| |
| // x + (z - C) -> (x + z) - C |
| (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) |
| (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) |
| (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) |
| (Add8 (Sub8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) |
| (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) |
| (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) |
| (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) |
| (Add8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) |
| |
| // x - (C - z) -> x + (z - C) -> (x + z) - C |
| (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) |
| (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) |
| (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) |
| (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) |
| |
| // x - (z - C) -> x + (C - z) -> (x - z) + C |
| (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) |
| (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) |
| (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) |
| (Sub8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) |
| |
| // x & (C & z) -> C & (x & z) |
| (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x)) |
| (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x)) |
| (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x)) |
| (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 <t> z x)) |
| |
| // x | (C | z) -> C | (x | z) |
| (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x)) |
| (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x)) |
| (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x)) |
| (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 <t> z x)) |
| |
| // x ^ (C ^ z) -> C ^ (x ^ z) |
| (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x)) |
| (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x)) |
| (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x)) |
| (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 <t> z x)) |
| |
| // C + (D + x) -> (C + D) + x |
| (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x) |
| (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x) |
| (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x) |
| (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c+d))]) x) |
| |
| // C + (D - x) -> (C + D) - x |
| (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x) |
| (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) |
| (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) |
| (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) |
| |
| // C + (x - D) -> (C - D) + x |
| (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x) |
| (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) |
| (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) |
| (Add8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) |
| |
| // C - (x - D) -> (C + D) - x |
| (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x) |
| (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) |
| (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) |
| (Sub8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) |
| |
| // C - (D - x) -> (C - D) + x |
| (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x) |
| (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) |
| (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) |
| (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) |
| |
| // C & (D & x) -> (C & D) & x |
| (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x) |
| (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x) |
| (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x) |
| (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) -> (And8 (Const8 <t> [int64(int8(c&d))]) x) |
| |
| // C | (D | x) -> (C | D) | x |
| (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x) |
| (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x) |
| (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x) |
| (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) -> (Or8 (Const8 <t> [int64(int8(c|d))]) x) |
| |
| // C ^ (D ^ x) -> (C ^ D) ^ x |
| (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x) |
| (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x) |
| (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x) |
| (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) -> (Xor8 (Const8 <t> [int64(int8(c^d))]) x) |
| |
| // C * (D * x) = (C * D) * x |
| (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x) |
| (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x) |
| (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x) |
| (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) -> (Mul8 (Const8 <t> [int64(int8(c*d))]) x) |
| |
| // floating point optimizations |
| (Add(32|64)F x (Const(32|64)F [0])) -> x |
| (Sub(32|64)F x (Const(32|64)F [0])) -> x |
| |
| (Mul(32|64)F x (Const(32|64)F [f2i(1)])) -> x |
| (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x) |
| (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x) |
| (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x) |
| (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x) |
| |
| (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))])) |
| (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c)) -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))])) |
| |
| (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))]) |
| |
| // recognize runtime.newobject and don't Zero/Nilcheck it |
| (Zero (Load (OffPtr [c] (SP)) mem) mem) |
| && mem.Op == OpStaticCall |
| && isSameSym(mem.Aux, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| -> mem |
| (Store (Load (OffPtr [c] (SP)) mem) x mem) |
| && isConstZero(x) |
| && mem.Op == OpStaticCall |
| && isSameSym(mem.Aux, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| -> mem |
| (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) |
| && isConstZero(x) |
| && mem.Op == OpStaticCall |
| && isSameSym(mem.Aux, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| -> mem |
| // nil checks just need to rewrite to something useless. |
| // they will be deadcode eliminated soon afterwards. |
| (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _) |
| && isSameSym(sym, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") |
| -> (Invalid) |
| (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _) |
| && isSameSym(sym, "runtime.newobject") |
| && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value |
| && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") |
| -> (Invalid) |
| |
| // Evaluate constant address comparisons. |
| (EqPtr x x) -> (ConstBool [1]) |
| (NeqPtr x x) -> (ConstBool [0]) |
| (EqPtr (Addr {a} _) (Addr {b} _)) -> (ConstBool [b2i(a == b)]) |
| (NeqPtr (Addr {a} _) (Addr {b} _)) -> (ConstBool [b2i(a != b)]) |
| (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 == 0)]) |
| (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 != 0)]) |
| (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 == o2)]) |
| (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 != o2)]) |
| (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) -> (ConstBool [b2i(c == d)]) |
| (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) -> (ConstBool [b2i(c != d)]) |
| |
| // Simplify address comparisons. |
| (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) -> (Not (IsNonNil o1)) |
| (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) -> (IsNonNil o1) |
| (EqPtr (Const(32|64) [0]) p) -> (Not (IsNonNil p)) |
| (NeqPtr (Const(32|64) [0]) p) -> (IsNonNil p) |
| (EqPtr (ConstNil) p) -> (Not (IsNonNil p)) |
| (NeqPtr (ConstNil) p) -> (IsNonNil p) |
| |
| // Evaluate constant user nil checks. |
| (IsNonNil (ConstNil)) -> (ConstBool [0]) |
| (IsNonNil (Const(32|64) [c])) -> (ConstBool [b2i(c != 0)]) |
| (IsNonNil (Addr _)) -> (ConstBool [1]) |
| |
| // Inline small or disjoint runtime.memmove calls with constant length. |
| (StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) |
| && isSameSym(sym,"runtime.memmove") |
| && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 |
| && isInlinableMemmove(dst,src,sz,config) |
| && clobber(s1) && clobber(s2) && clobber(s3) |
| -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) |
| |
| // De-virtualize interface calls into static calls. |
| // Note that (ITab (IMake)) doesn't get |
| // rewritten until after the first opt pass, |
| // so this rule should trigger reliably. |
| (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> |
| (StaticCall [argsize] {devirt(v, itab, off)} mem) |
| |
| // Move and Zero optimizations. |
| // Move source and destination may overlap. |
| |
| // Convert Moves into Zeros when the source is known to be zeros. |
| (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) |
| -> (Zero {t} [n] dst1 mem) |
| (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) |
| -> (Zero {t} [n] dst1 mem) |
| |
| // Don't Store to variables that are about to be overwritten by Move/Zero. |
| (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) |
| && isSamePtr(p1, p2) && store.Uses == 1 |
| && n >= o2 + sizeof(t2) |
| && clobber(store) |
| -> (Zero {t1} [n] p1 mem) |
| (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) |
| && isSamePtr(dst1, dst2) && store.Uses == 1 |
| && n >= o2 + sizeof(t2) |
| && disjoint(src1, n, op, sizeof(t2)) |
| && clobber(store) |
| -> (Move {t1} [n] dst1 src1 mem) |
| |
| // Don't Move to variables that are immediately completely overwritten. |
| (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) |
| && move.Uses == 1 |
| && isSamePtr(dst1, dst2) |
| && clobber(move) |
| -> (Zero {t} [n] dst1 mem) |
| (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) |
| && move.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(move) |
| -> (Move {t} [n] dst1 src1 mem) |
| (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) |
| && move.Uses == 1 && vardef.Uses == 1 |
| && isSamePtr(dst1, dst2) |
| && clobber(move) && clobber(vardef) |
| -> (Zero {t} [n] dst1 (VarDef {x} mem)) |
| (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) |
| && move.Uses == 1 && vardef.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(move) && clobber(vardef) |
| -> (Move {t} [n] dst1 src1 (VarDef {x} mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [0] p2) d2 |
| m3:(Move [n] p3 _ mem))) |
| && m2.Uses == 1 && m3.Uses == 1 |
| && o1 == sizeof(t2) |
| && n == sizeof(t2) + sizeof(t1) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && clobber(m2) && clobber(m3) |
| -> (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [0] p3) d3 |
| m4:(Move [n] p4 _ mem)))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 |
| && o2 == sizeof(t3) |
| && o1-o2 == sizeof(t2) |
| && n == sizeof(t3) + sizeof(t2) + sizeof(t1) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && clobber(m2) && clobber(m3) && clobber(m4) |
| -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [o3] p3) d3 |
| m4:(Store {t4} op4:(OffPtr [0] p4) d4 |
| m5:(Move [n] p5 _ mem))))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 |
| && o3 == sizeof(t4) |
| && o2-o3 == sizeof(t3) |
| && o1-o2 == sizeof(t2) |
| && n == sizeof(t4) + sizeof(t3) + sizeof(t2) + sizeof(t1) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && clobber(m2) && clobber(m3) && clobber(m4) && clobber(m5) |
| -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) |
| |
| // Don't Zero variables that are immediately completely overwritten |
| // before being accessed. |
| (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) |
| && zero.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(zero) |
| -> (Move {t} [n] dst1 src1 mem) |
| (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) |
| && zero.Uses == 1 && vardef.Uses == 1 |
| && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) |
| && clobber(zero) && clobber(vardef) |
| -> (Move {t} [n] dst1 src1 (VarDef {x} mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [0] p2) d2 |
| m3:(Zero [n] p3 mem))) |
| && m2.Uses == 1 && m3.Uses == 1 |
| && o1 == sizeof(t2) |
| && n == sizeof(t2) + sizeof(t1) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && clobber(m2) && clobber(m3) |
| -> (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [0] p3) d3 |
| m4:(Zero [n] p4 mem)))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 |
| && o2 == sizeof(t3) |
| && o1-o2 == sizeof(t2) |
| && n == sizeof(t3) + sizeof(t2) + sizeof(t1) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && clobber(m2) && clobber(m3) && clobber(m4) |
| -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) |
| (Store {t1} op1:(OffPtr [o1] p1) d1 |
| m2:(Store {t2} op2:(OffPtr [o2] p2) d2 |
| m3:(Store {t3} op3:(OffPtr [o3] p3) d3 |
| m4:(Store {t4} op4:(OffPtr [0] p4) d4 |
| m5:(Zero [n] p5 mem))))) |
| && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 |
| && o3 == sizeof(t4) |
| && o2-o3 == sizeof(t3) |
| && o1-o2 == sizeof(t2) |
| && n == sizeof(t4) + sizeof(t3) + sizeof(t2) + sizeof(t1) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && clobber(m2) && clobber(m3) && clobber(m4) && clobber(m5) |
| -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) |
| |
| // Don't Move from memory if the values are likely to already be |
| // in registers. |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr [o2] p2) d1 |
| (Store {t3} op3:(OffPtr [0] p3) d2 _))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && o2 == sizeof(t3) |
| && n == sizeof(t2) + sizeof(t3) |
| -> (Store {t2} (OffPtr <t2.(*types.Type)> [o2] dst) d1 |
| (Store {t3} (OffPtr <t3.(*types.Type)> [0] dst) d2 mem)) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr [o2] p2) d1 |
| (Store {t3} op3:(OffPtr [o3] p3) d2 |
| (Store {t4} op4:(OffPtr [0] p4) d3 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && o3 == sizeof(t4) |
| && o2-o3 == sizeof(t3) |
| && n == sizeof(t2) + sizeof(t3) + sizeof(t4) |
| -> (Store {t2} (OffPtr <t2.(*types.Type)> [o2] dst) d1 |
| (Store {t3} (OffPtr <t3.(*types.Type)> [o3] dst) d2 |
| (Store {t4} (OffPtr <t4.(*types.Type)> [0] dst) d3 mem))) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr [o2] p2) d1 |
| (Store {t3} op3:(OffPtr [o3] p3) d2 |
| (Store {t4} op4:(OffPtr [o4] p4) d3 |
| (Store {t5} op5:(OffPtr [0] p5) d4 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && alignof(t5) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && o4 == sizeof(t5) |
| && o3-o4 == sizeof(t4) |
| && o2-o3 == sizeof(t3) |
| && n == sizeof(t2) + sizeof(t3) + sizeof(t4) + sizeof(t5) |
| -> (Store {t2} (OffPtr <t2.(*types.Type)> [o2] dst) d1 |
| (Store {t3} (OffPtr <t3.(*types.Type)> [o3] dst) d2 |
| (Store {t4} (OffPtr <t4.(*types.Type)> [o4] dst) d3 |
| (Store {t5} (OffPtr <t5.(*types.Type)> [0] dst) d4 mem)))) |
| |
| // Same thing but with VarDef in the middle. |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr [o2] p2) d1 |
| (Store {t3} op3:(OffPtr [0] p3) d2 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && o2 == sizeof(t3) |
| && n == sizeof(t2) + sizeof(t3) |
| -> (Store {t2} (OffPtr <t2.(*types.Type)> [o2] dst) d1 |
| (Store {t3} (OffPtr <t3.(*types.Type)> [0] dst) d2 mem)) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr [o2] p2) d1 |
| (Store {t3} op3:(OffPtr [o3] p3) d2 |
| (Store {t4} op4:(OffPtr [0] p4) d3 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && o3 == sizeof(t4) |
| && o2-o3 == sizeof(t3) |
| && n == sizeof(t2) + sizeof(t3) + sizeof(t4) |
| -> (Store {t2} (OffPtr <t2.(*types.Type)> [o2] dst) d1 |
| (Store {t3} (OffPtr <t3.(*types.Type)> [o3] dst) d2 |
| (Store {t4} (OffPtr <t4.(*types.Type)> [0] dst) d3 mem))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr [o2] p2) d1 |
| (Store {t3} op3:(OffPtr [o3] p3) d2 |
| (Store {t4} op4:(OffPtr [o4] p4) d3 |
| (Store {t5} op5:(OffPtr [0] p5) d4 _)))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && alignof(t5) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && o4 == sizeof(t5) |
| && o3-o4 == sizeof(t4) |
| && o2-o3 == sizeof(t3) |
| && n == sizeof(t2) + sizeof(t3) + sizeof(t4) + sizeof(t5) |
| -> (Store {t2} (OffPtr <t2.(*types.Type)> [o2] dst) d1 |
| (Store {t3} (OffPtr <t3.(*types.Type)> [o3] dst) d2 |
| (Store {t4} (OffPtr <t4.(*types.Type)> [o4] dst) d3 |
| (Store {t5} (OffPtr <t5.(*types.Type)> [0] dst) d4 mem)))) |
| |
| // Prefer to Zero and Store than to Move. |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Zero {t3} [n] p3 _))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && registerizable(b, t2) |
| && n >= o2 + sizeof(t2) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Zero {t1} [n] dst mem)) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Zero {t4} [n] p4 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && n >= o2 + sizeof(t2) |
| && n >= o3 + sizeof(t3) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Zero {t1} [n] dst mem))) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Zero {t5} [n] p5 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && alignof(t5) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && n >= o2 + sizeof(t2) |
| && n >= o3 + sizeof(t3) |
| && n >= o4 + sizeof(t4) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Zero {t1} [n] dst mem)))) |
| (Move {t1} [n] dst p1 |
| mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Store {t5} (OffPtr <tt5> [o5] p5) d4 |
| (Zero {t6} [n] p6 _)))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && alignof(t5) <= alignof(t1) |
| && alignof(t6) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && n >= o2 + sizeof(t2) |
| && n >= o3 + sizeof(t3) |
| && n >= o4 + sizeof(t4) |
| && n >= o5 + sizeof(t5) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Store {t5} (OffPtr <tt5> [o5] dst) d4 |
| (Zero {t1} [n] dst mem))))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 |
| (Zero {t3} [n] p3 _)))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && registerizable(b, t2) |
| && n >= o2 + sizeof(t2) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Zero {t1} [n] dst mem)) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Zero {t4} [n] p4 _))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && n >= o2 + sizeof(t2) |
| && n >= o3 + sizeof(t3) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Zero {t1} [n] dst mem))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Zero {t5} [n] p5 _)))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && alignof(t5) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && n >= o2 + sizeof(t2) |
| && n >= o3 + sizeof(t3) |
| && n >= o4 + sizeof(t4) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Zero {t1} [n] dst mem)))) |
| (Move {t1} [n] dst p1 |
| mem:(VarDef |
| (Store {t2} (OffPtr <tt2> [o2] p2) d1 |
| (Store {t3} (OffPtr <tt3> [o3] p3) d2 |
| (Store {t4} (OffPtr <tt4> [o4] p4) d3 |
| (Store {t5} (OffPtr <tt5> [o5] p5) d4 |
| (Zero {t6} [n] p6 _))))))) |
| && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) |
| && alignof(t2) <= alignof(t1) |
| && alignof(t3) <= alignof(t1) |
| && alignof(t4) <= alignof(t1) |
| && alignof(t5) <= alignof(t1) |
| && alignof(t6) <= alignof(t1) |
| && registerizable(b, t2) |
| && registerizable(b, t3) |
| && registerizable(b, t4) |
| && registerizable(b, t5) |
| && n >= o2 + sizeof(t2) |
| && n >= o3 + sizeof(t3) |
| && n >= o4 + sizeof(t4) |
| && n >= o5 + sizeof(t5) |
| -> (Store {t2} (OffPtr <tt2> [o2] dst) d1 |
| (Store {t3} (OffPtr <tt3> [o3] dst) d2 |
| (Store {t4} (OffPtr <tt4> [o4] dst) d3 |
| (Store {t5} (OffPtr <tt5> [o5] dst) d4 |
| (Zero {t1} [n] dst mem))))) |