| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| import ( |
| "math/bits" |
| ) |
| |
| // reduceThreshold is the maximum value of x where the reduction using Pi/4 |
| // in 3 float64 parts still gives accurate results. This threshold |
| // is set by y*C being representable as a float64 without error |
| // where y is given by y = floor(x * (4 / Pi)) and C is the leading partial |
| // terms of 4/Pi. Since the leading terms (PI4A and PI4B in sin.go) have 30 |
| // and 32 trailing zero bits, y should have less than 30 significant bits. |
| // |
| // y < 1<<30 -> floor(x*4/Pi) < 1<<30 -> x < (1<<30 - 1) * Pi/4 |
| // |
| // So, conservatively we can take x < 1<<29. |
| // Above this threshold Payne-Hanek range reduction must be used. |
| const reduceThreshold = 1 << 29 |
| |
| // trigReduce implements Payne-Hanek range reduction by Pi/4 |
| // for x > 0. It returns the integer part mod 8 (j) and |
| // the fractional part (z) of x / (Pi/4). |
| // The implementation is based on: |
| // "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit" |
| // K. C. Ng et al, March 24, 1992 |
| // The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic. |
| func trigReduce(x float64) (j uint64, z float64) { |
| const PI4 = Pi / 4 |
| if x < PI4 { |
| return 0, x |
| } |
| // Extract out the integer and exponent such that, |
| // x = ix * 2 ** exp. |
| ix := Float64bits(x) |
| exp := int(ix>>shift&mask) - bias - shift |
| ix &^= mask << shift |
| ix |= 1 << shift |
| // Use the exponent to extract the 3 appropriate uint64 digits from mPi4, |
| // B ~ (z0, z1, z2), such that the product leading digit has the exponent -61. |
| // Note, exp >= -53 since x >= PI4 and exp < 971 for maximum float64. |
| digit, bitshift := uint(exp+61)/64, uint(exp+61)%64 |
| z0 := (mPi4[digit] << bitshift) | (mPi4[digit+1] >> (64 - bitshift)) |
| z1 := (mPi4[digit+1] << bitshift) | (mPi4[digit+2] >> (64 - bitshift)) |
| z2 := (mPi4[digit+2] << bitshift) | (mPi4[digit+3] >> (64 - bitshift)) |
| // Multiply mantissa by the digits and extract the upper two digits (hi, lo). |
| z2hi, _ := bits.Mul64(z2, ix) |
| z1hi, z1lo := bits.Mul64(z1, ix) |
| z0lo := z0 * ix |
| lo, c := bits.Add64(z1lo, z2hi, 0) |
| hi, _ := bits.Add64(z0lo, z1hi, c) |
| // The top 3 bits are j. |
| j = hi >> 61 |
| // Extract the fraction and find its magnitude. |
| hi = hi<<3 | lo>>61 |
| lz := uint(bits.LeadingZeros64(hi)) |
| e := uint64(bias - (lz + 1)) |
| // Clear implicit mantissa bit and shift into place. |
| hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1))) |
| hi >>= 64 - shift |
| // Include the exponent and convert to a float. |
| hi |= e << shift |
| z = Float64frombits(hi) |
| // Map zeros to origin. |
| if j&1 == 1 { |
| j++ |
| j &= 7 |
| z-- |
| } |
| // Multiply the fractional part by pi/4. |
| return j, z * PI4 |
| } |
| |
| // mPi4 is the binary digits of 4/pi as a uint64 array, |
| // that is, 4/pi = Sum mPi4[i]*2^(-64*i) |
| // 19 64-bit digits and the leading one bit give 1217 bits |
| // of precision to handle the largest possible float64 exponent. |
| var mPi4 = [...]uint64{ |
| 0x0000000000000001, |
| 0x45f306dc9c882a53, |
| 0xf84eafa3ea69bb81, |
| 0xb6c52b3278872083, |
| 0xfca2c757bd778ac3, |
| 0x6e48dc74849ba5c0, |
| 0x0c925dd413a32439, |
| 0xfc3bd63962534e7d, |
| 0xd1046bea5d768909, |
| 0xd338e04d68befc82, |
| 0x7323ac7306a673e9, |
| 0x3908bf177bf25076, |
| 0x3ff12fffbc0b301f, |
| 0xde5e2316b414da3e, |
| 0xda6cfd9e4f96136e, |
| 0x9e8c7ecd3cbfd45a, |
| 0xea4f758fd7cbe2f6, |
| 0x7a0e73ef14a525d4, |
| 0xd7f6bf623f1aba10, |
| 0xac06608df8f6d757, |
| } |