| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| /* |
| Floating-point error function and complementary error function. |
| */ |
| |
| // The original C code and the long comment below are |
| // from FreeBSD's /usr/src/lib/msun/src/s_erf.c and |
| // came with this notice. The go code is a simplified |
| // version of the original C. |
| // |
| // ==================================================== |
| // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| // |
| // Developed at SunPro, a Sun Microsystems, Inc. business. |
| // Permission to use, copy, modify, and distribute this |
| // software is freely granted, provided that this notice |
| // is preserved. |
| // ==================================================== |
| // |
| // |
| // double erf(double x) |
| // double erfc(double x) |
| // x |
| // 2 |\ |
| // erf(x) = --------- | exp(-t*t)dt |
| // sqrt(pi) \| |
| // 0 |
| // |
| // erfc(x) = 1-erf(x) |
| // Note that |
| // erf(-x) = -erf(x) |
| // erfc(-x) = 2 - erfc(x) |
| // |
| // Method: |
| // 1. For |x| in [0, 0.84375] |
| // erf(x) = x + x*R(x**2) |
| // erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
| // = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
| // where R = P/Q where P is an odd poly of degree 8 and |
| // Q is an odd poly of degree 10. |
| // -57.90 |
| // | R - (erf(x)-x)/x | <= 2 |
| // |
| // |
| // Remark. The formula is derived by noting |
| // erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....) |
| // and that |
| // 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
| // is close to one. The interval is chosen because the fix |
| // point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
| // near 0.6174), and by some experiment, 0.84375 is chosen to |
| // guarantee the error is less than one ulp for erf. |
| // |
| // 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
| // c = 0.84506291151 rounded to single (24 bits) |
| // erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
| // erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
| // 1+(c+P1(s)/Q1(s)) if x < 0 |
| // |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 |
| // Remark: here we use the taylor series expansion at x=1. |
| // erf(1+s) = erf(1) + s*Poly(s) |
| // = 0.845.. + P1(s)/Q1(s) |
| // That is, we use rational approximation to approximate |
| // erf(1+s) - (c = (single)0.84506291151) |
| // Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
| // where |
| // P1(s) = degree 6 poly in s |
| // Q1(s) = degree 6 poly in s |
| // |
| // 3. For x in [1.25,1/0.35(~2.857143)], |
| // erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) |
| // erf(x) = 1 - erfc(x) |
| // where |
| // R1(z) = degree 7 poly in z, (z=1/x**2) |
| // S1(z) = degree 8 poly in z |
| // |
| // 4. For x in [1/0.35,28] |
| // erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
| // = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 |
| // = 2.0 - tiny (if x <= -6) |
| // erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else |
| // erf(x) = sign(x)*(1.0 - tiny) |
| // where |
| // R2(z) = degree 6 poly in z, (z=1/x**2) |
| // S2(z) = degree 7 poly in z |
| // |
| // Note1: |
| // To compute exp(-x*x-0.5625+R/S), let s be a single |
| // precision number and s := x; then |
| // -x*x = -s*s + (s-x)*(s+x) |
| // exp(-x*x-0.5626+R/S) = |
| // exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
| // Note2: |
| // Here 4 and 5 make use of the asymptotic series |
| // exp(-x*x) |
| // erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) ) |
| // x*sqrt(pi) |
| // We use rational approximation to approximate |
| // g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625 |
| // Here is the error bound for R1/S1 and R2/S2 |
| // |R1/S1 - f(x)| < 2**(-62.57) |
| // |R2/S2 - f(x)| < 2**(-61.52) |
| // |
| // 5. For inf > x >= 28 |
| // erf(x) = sign(x) *(1 - tiny) (raise inexact) |
| // erfc(x) = tiny*tiny (raise underflow) if x > 0 |
| // = 2 - tiny if x<0 |
| // |
| // 7. Special case: |
| // erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
| // erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
| // erfc/erf(NaN) is NaN |
| |
| const ( |
| erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000 |
| // Coefficients for approximation to erf in [0, 0.84375] |
| efx = 1.28379167095512586316e-01 // 0x3FC06EBA8214DB69 |
| efx8 = 1.02703333676410069053e+00 // 0x3FF06EBA8214DB69 |
| pp0 = 1.28379167095512558561e-01 // 0x3FC06EBA8214DB68 |
| pp1 = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913 |
| pp2 = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F |
| pp3 = -5.77027029648944159157e-03 // 0xBF77A291236668E4 |
| pp4 = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC |
| qq1 = 3.97917223959155352819e-01 // 0x3FD97779CDDADC09 |
| qq2 = 6.50222499887672944485e-02 // 0x3FB0A54C5536CEBA |
| qq3 = 5.08130628187576562776e-03 // 0x3F74D022C4D36B0F |
| qq4 = 1.32494738004321644526e-04 // 0x3F215DC9221C1A10 |
| qq5 = -3.96022827877536812320e-06 // 0xBED09C4342A26120 |
| // Coefficients for approximation to erf in [0.84375, 1.25] |
| pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538 |
| pa1 = 4.14856118683748331666e-01 // 0x3FDA8D00AD92B34D |
| pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1 |
| pa3 = 3.18346619901161753674e-01 // 0x3FD45FCA805120E4 |
| pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC |
| pa5 = 3.54783043256182359371e-02 // 0x3FA22A36599795EB |
| pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F |
| qa1 = 1.06420880400844228286e-01 // 0x3FBB3E6618EEE323 |
| qa2 = 5.40397917702171048937e-01 // 0x3FE14AF092EB6F33 |
| qa3 = 7.18286544141962662868e-02 // 0x3FB2635CD99FE9A7 |
| qa4 = 1.26171219808761642112e-01 // 0x3FC02660E763351F |
| qa5 = 1.36370839120290507362e-02 // 0x3F8BEDC26B51DD1C |
| qa6 = 1.19844998467991074170e-02 // 0x3F888B545735151D |
| // Coefficients for approximation to erfc in [1.25, 1/0.35] |
| ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435 |
| ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360 |
| ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726 |
| ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D |
| ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266 |
| ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2 |
| ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2 |
| ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C |
| sa1 = 1.96512716674392571292e+01 // 0x4033A6B9BD707687 |
| sa2 = 1.37657754143519042600e+02 // 0x4061350C526AE721 |
| sa3 = 4.34565877475229228821e+02 // 0x407B290DD58A1A71 |
| sa4 = 6.45387271733267880336e+02 // 0x40842B1921EC2868 |
| sa5 = 4.29008140027567833386e+02 // 0x407AD02157700314 |
| sa6 = 1.08635005541779435134e+02 // 0x405B28A3EE48AE2C |
| sa7 = 6.57024977031928170135e+00 // 0x401A47EF8E484A93 |
| sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62 |
| // Coefficients for approximation to erfc in [1/.35, 28] |
| rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A |
| rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE |
| rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A |
| rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98 |
| rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228 |
| rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992 |
| rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F |
| sb1 = 3.03380607434824582924e+01 // 0x403E568B261D5190 |
| sb2 = 3.25792512996573918826e+02 // 0x40745CAE221B9F0A |
| sb3 = 1.53672958608443695994e+03 // 0x409802EB189D5118 |
| sb4 = 3.19985821950859553908e+03 // 0x40A8FFB7688C246A |
| sb5 = 2.55305040643316442583e+03 // 0x40A3F219CEDF3BE6 |
| sb6 = 4.74528541206955367215e+02 // 0x407DA874E79FE763 |
| sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62 |
| ) |
| |
| // Erf returns the error function of x. |
| // |
| // Special cases are: |
| // |
| // Erf(+Inf) = 1 |
| // Erf(-Inf) = -1 |
| // Erf(NaN) = NaN |
| func Erf(x float64) float64 { |
| if haveArchErf { |
| return archErf(x) |
| } |
| return erf(x) |
| } |
| |
| func erf(x float64) float64 { |
| const ( |
| VeryTiny = 2.848094538889218e-306 // 0x0080000000000000 |
| Small = 1.0 / (1 << 28) // 2**-28 |
| ) |
| // special cases |
| switch { |
| case IsNaN(x): |
| return NaN() |
| case IsInf(x, 1): |
| return 1 |
| case IsInf(x, -1): |
| return -1 |
| } |
| sign := false |
| if x < 0 { |
| x = -x |
| sign = true |
| } |
| if x < 0.84375 { // |x| < 0.84375 |
| var temp float64 |
| if x < Small { // |x| < 2**-28 |
| if x < VeryTiny { |
| temp = 0.125 * (8.0*x + efx8*x) // avoid underflow |
| } else { |
| temp = x + efx*x |
| } |
| } else { |
| z := x * x |
| r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4))) |
| s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))) |
| y := r / s |
| temp = x + x*y |
| } |
| if sign { |
| return -temp |
| } |
| return temp |
| } |
| if x < 1.25 { // 0.84375 <= |x| < 1.25 |
| s := x - 1 |
| P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))) |
| Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))) |
| if sign { |
| return -erx - P/Q |
| } |
| return erx + P/Q |
| } |
| if x >= 6 { // inf > |x| >= 6 |
| if sign { |
| return -1 |
| } |
| return 1 |
| } |
| s := 1 / (x * x) |
| var R, S float64 |
| if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143 |
| R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7)))))) |
| S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8))))))) |
| } else { // |x| >= 1 / 0.35 ~ 2.857143 |
| R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6))))) |
| S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7)))))) |
| } |
| z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x |
| r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S) |
| if sign { |
| return r/x - 1 |
| } |
| return 1 - r/x |
| } |
| |
| // Erfc returns the complementary error function of x. |
| // |
| // Special cases are: |
| // |
| // Erfc(+Inf) = 0 |
| // Erfc(-Inf) = 2 |
| // Erfc(NaN) = NaN |
| func Erfc(x float64) float64 { |
| if haveArchErfc { |
| return archErfc(x) |
| } |
| return erfc(x) |
| } |
| |
| func erfc(x float64) float64 { |
| const Tiny = 1.0 / (1 << 56) // 2**-56 |
| // special cases |
| switch { |
| case IsNaN(x): |
| return NaN() |
| case IsInf(x, 1): |
| return 0 |
| case IsInf(x, -1): |
| return 2 |
| } |
| sign := false |
| if x < 0 { |
| x = -x |
| sign = true |
| } |
| if x < 0.84375 { // |x| < 0.84375 |
| var temp float64 |
| if x < Tiny { // |x| < 2**-56 |
| temp = x |
| } else { |
| z := x * x |
| r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4))) |
| s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))) |
| y := r / s |
| if x < 0.25 { // |x| < 1/4 |
| temp = x + x*y |
| } else { |
| temp = 0.5 + (x*y + (x - 0.5)) |
| } |
| } |
| if sign { |
| return 1 + temp |
| } |
| return 1 - temp |
| } |
| if x < 1.25 { // 0.84375 <= |x| < 1.25 |
| s := x - 1 |
| P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))) |
| Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))) |
| if sign { |
| return 1 + erx + P/Q |
| } |
| return 1 - erx - P/Q |
| |
| } |
| if x < 28 { // |x| < 28 |
| s := 1 / (x * x) |
| var R, S float64 |
| if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143 |
| R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7)))))) |
| S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8))))))) |
| } else { // |x| >= 1 / 0.35 ~ 2.857143 |
| if sign && x > 6 { |
| return 2 // x < -6 |
| } |
| R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6))))) |
| S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7)))))) |
| } |
| z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x |
| r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S) |
| if sign { |
| return 2 - r/x |
| } |
| return r / x |
| } |
| if sign { |
| return 2 |
| } |
| return 0 |
| } |