| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/types" |
| "cmd/internal/gcprog" |
| "cmd/internal/obj" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| "fmt" |
| "os" |
| "sort" |
| "strings" |
| "sync" |
| ) |
| |
| type itabEntry struct { |
| t, itype *types.Type |
| lsym *obj.LSym // symbol of the itab itself |
| |
| // symbols of each method in |
| // the itab, sorted by byte offset; |
| // filled in by peekitabs |
| entries []*obj.LSym |
| } |
| |
| type ptabEntry struct { |
| s *types.Sym |
| t *types.Type |
| } |
| |
| // runtime interface and reflection data structures |
| var ( |
| signatmu sync.Mutex // protects signatset and signatslice |
| signatset = make(map[*types.Type]struct{}) |
| signatslice []*types.Type |
| |
| itabs []itabEntry |
| ptabs []ptabEntry |
| ) |
| |
| type Sig struct { |
| name *types.Sym |
| isym *types.Sym |
| tsym *types.Sym |
| type_ *types.Type |
| mtype *types.Type |
| } |
| |
| // Builds a type representing a Bucket structure for |
| // the given map type. This type is not visible to users - |
| // we include only enough information to generate a correct GC |
| // program for it. |
| // Make sure this stays in sync with runtime/map.go. |
| const ( |
| BUCKETSIZE = 8 |
| MAXKEYSIZE = 128 |
| MAXELEMSIZE = 128 |
| ) |
| |
| func structfieldSize() int { return 3 * Widthptr } // Sizeof(runtime.structfield{}) |
| func imethodSize() int { return 4 + 4 } // Sizeof(runtime.imethod{}) |
| |
| func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{}) |
| if t.Sym == nil && len(methods(t)) == 0 { |
| return 0 |
| } |
| return 4 + 2 + 2 + 4 + 4 |
| } |
| |
| func makefield(name string, t *types.Type) *types.Field { |
| f := types.NewField() |
| f.Type = t |
| f.Sym = (*types.Pkg)(nil).Lookup(name) |
| return f |
| } |
| |
| // bmap makes the map bucket type given the type of the map. |
| func bmap(t *types.Type) *types.Type { |
| if t.MapType().Bucket != nil { |
| return t.MapType().Bucket |
| } |
| |
| bucket := types.New(TSTRUCT) |
| keytype := t.Key() |
| elemtype := t.Elem() |
| dowidth(keytype) |
| dowidth(elemtype) |
| if keytype.Width > MAXKEYSIZE { |
| keytype = types.NewPtr(keytype) |
| } |
| if elemtype.Width > MAXELEMSIZE { |
| elemtype = types.NewPtr(elemtype) |
| } |
| |
| field := make([]*types.Field, 0, 5) |
| |
| // The first field is: uint8 topbits[BUCKETSIZE]. |
| arr := types.NewArray(types.Types[TUINT8], BUCKETSIZE) |
| field = append(field, makefield("topbits", arr)) |
| |
| arr = types.NewArray(keytype, BUCKETSIZE) |
| arr.SetNoalg(true) |
| keys := makefield("keys", arr) |
| field = append(field, keys) |
| |
| arr = types.NewArray(elemtype, BUCKETSIZE) |
| arr.SetNoalg(true) |
| elems := makefield("elems", arr) |
| field = append(field, elems) |
| |
| // Make sure the overflow pointer is the last memory in the struct, |
| // because the runtime assumes it can use size-ptrSize as the |
| // offset of the overflow pointer. We double-check that property |
| // below once the offsets and size are computed. |
| // |
| // BUCKETSIZE is 8, so the struct is aligned to 64 bits to this point. |
| // On 32-bit systems, the max alignment is 32-bit, and the |
| // overflow pointer will add another 32-bit field, and the struct |
| // will end with no padding. |
| // On 64-bit systems, the max alignment is 64-bit, and the |
| // overflow pointer will add another 64-bit field, and the struct |
| // will end with no padding. |
| // On nacl/amd64p32, however, the max alignment is 64-bit, |
| // but the overflow pointer will add only a 32-bit field, |
| // so if the struct needs 64-bit padding (because a key or elem does) |
| // then it would end with an extra 32-bit padding field. |
| // Preempt that by emitting the padding here. |
| if int(elemtype.Align) > Widthptr || int(keytype.Align) > Widthptr { |
| field = append(field, makefield("pad", types.Types[TUINTPTR])) |
| } |
| |
| // If keys and elems have no pointers, the map implementation |
| // can keep a list of overflow pointers on the side so that |
| // buckets can be marked as having no pointers. |
| // Arrange for the bucket to have no pointers by changing |
| // the type of the overflow field to uintptr in this case. |
| // See comment on hmap.overflow in runtime/map.go. |
| otyp := types.NewPtr(bucket) |
| if !types.Haspointers(elemtype) && !types.Haspointers(keytype) { |
| otyp = types.Types[TUINTPTR] |
| } |
| overflow := makefield("overflow", otyp) |
| field = append(field, overflow) |
| |
| // link up fields |
| bucket.SetNoalg(true) |
| bucket.SetFields(field[:]) |
| dowidth(bucket) |
| |
| // Check invariants that map code depends on. |
| if !IsComparable(t.Key()) { |
| Fatalf("unsupported map key type for %v", t) |
| } |
| if BUCKETSIZE < 8 { |
| Fatalf("bucket size too small for proper alignment") |
| } |
| if keytype.Align > BUCKETSIZE { |
| Fatalf("key align too big for %v", t) |
| } |
| if elemtype.Align > BUCKETSIZE { |
| Fatalf("elem align too big for %v", t) |
| } |
| if keytype.Width > MAXKEYSIZE { |
| Fatalf("key size to large for %v", t) |
| } |
| if elemtype.Width > MAXELEMSIZE { |
| Fatalf("elem size to large for %v", t) |
| } |
| if t.Key().Width > MAXKEYSIZE && !keytype.IsPtr() { |
| Fatalf("key indirect incorrect for %v", t) |
| } |
| if t.Elem().Width > MAXELEMSIZE && !elemtype.IsPtr() { |
| Fatalf("elem indirect incorrect for %v", t) |
| } |
| if keytype.Width%int64(keytype.Align) != 0 { |
| Fatalf("key size not a multiple of key align for %v", t) |
| } |
| if elemtype.Width%int64(elemtype.Align) != 0 { |
| Fatalf("elem size not a multiple of elem align for %v", t) |
| } |
| if bucket.Align%keytype.Align != 0 { |
| Fatalf("bucket align not multiple of key align %v", t) |
| } |
| if bucket.Align%elemtype.Align != 0 { |
| Fatalf("bucket align not multiple of elem align %v", t) |
| } |
| if keys.Offset%int64(keytype.Align) != 0 { |
| Fatalf("bad alignment of keys in bmap for %v", t) |
| } |
| if elems.Offset%int64(elemtype.Align) != 0 { |
| Fatalf("bad alignment of elems in bmap for %v", t) |
| } |
| |
| // Double-check that overflow field is final memory in struct, |
| // with no padding at end. See comment above. |
| if overflow.Offset != bucket.Width-int64(Widthptr) { |
| Fatalf("bad offset of overflow in bmap for %v", t) |
| } |
| |
| t.MapType().Bucket = bucket |
| |
| bucket.StructType().Map = t |
| return bucket |
| } |
| |
| // hmap builds a type representing a Hmap structure for the given map type. |
| // Make sure this stays in sync with runtime/map.go. |
| func hmap(t *types.Type) *types.Type { |
| if t.MapType().Hmap != nil { |
| return t.MapType().Hmap |
| } |
| |
| bmap := bmap(t) |
| |
| // build a struct: |
| // type hmap struct { |
| // count int |
| // flags uint8 |
| // B uint8 |
| // noverflow uint16 |
| // hash0 uint32 |
| // buckets *bmap |
| // oldbuckets *bmap |
| // nevacuate uintptr |
| // extra unsafe.Pointer // *mapextra |
| // } |
| // must match runtime/map.go:hmap. |
| fields := []*types.Field{ |
| makefield("count", types.Types[TINT]), |
| makefield("flags", types.Types[TUINT8]), |
| makefield("B", types.Types[TUINT8]), |
| makefield("noverflow", types.Types[TUINT16]), |
| makefield("hash0", types.Types[TUINT32]), // Used in walk.go for OMAKEMAP. |
| makefield("buckets", types.NewPtr(bmap)), // Used in walk.go for OMAKEMAP. |
| makefield("oldbuckets", types.NewPtr(bmap)), |
| makefield("nevacuate", types.Types[TUINTPTR]), |
| makefield("extra", types.Types[TUNSAFEPTR]), |
| } |
| |
| hmap := types.New(TSTRUCT) |
| hmap.SetNoalg(true) |
| hmap.SetFields(fields) |
| dowidth(hmap) |
| |
| // The size of hmap should be 48 bytes on 64 bit |
| // and 28 bytes on 32 bit platforms. |
| if size := int64(8 + 5*Widthptr); hmap.Width != size { |
| Fatalf("hmap size not correct: got %d, want %d", hmap.Width, size) |
| } |
| |
| t.MapType().Hmap = hmap |
| hmap.StructType().Map = t |
| return hmap |
| } |
| |
| // hiter builds a type representing an Hiter structure for the given map type. |
| // Make sure this stays in sync with runtime/map.go. |
| func hiter(t *types.Type) *types.Type { |
| if t.MapType().Hiter != nil { |
| return t.MapType().Hiter |
| } |
| |
| hmap := hmap(t) |
| bmap := bmap(t) |
| |
| // build a struct: |
| // type hiter struct { |
| // key *Key |
| // elem *Elem |
| // t unsafe.Pointer // *MapType |
| // h *hmap |
| // buckets *bmap |
| // bptr *bmap |
| // overflow unsafe.Pointer // *[]*bmap |
| // oldoverflow unsafe.Pointer // *[]*bmap |
| // startBucket uintptr |
| // offset uint8 |
| // wrapped bool |
| // B uint8 |
| // i uint8 |
| // bucket uintptr |
| // checkBucket uintptr |
| // } |
| // must match runtime/map.go:hiter. |
| fields := []*types.Field{ |
| makefield("key", types.NewPtr(t.Key())), // Used in range.go for TMAP. |
| makefield("elem", types.NewPtr(t.Elem())), // Used in range.go for TMAP. |
| makefield("t", types.Types[TUNSAFEPTR]), |
| makefield("h", types.NewPtr(hmap)), |
| makefield("buckets", types.NewPtr(bmap)), |
| makefield("bptr", types.NewPtr(bmap)), |
| makefield("overflow", types.Types[TUNSAFEPTR]), |
| makefield("oldoverflow", types.Types[TUNSAFEPTR]), |
| makefield("startBucket", types.Types[TUINTPTR]), |
| makefield("offset", types.Types[TUINT8]), |
| makefield("wrapped", types.Types[TBOOL]), |
| makefield("B", types.Types[TUINT8]), |
| makefield("i", types.Types[TUINT8]), |
| makefield("bucket", types.Types[TUINTPTR]), |
| makefield("checkBucket", types.Types[TUINTPTR]), |
| } |
| |
| // build iterator struct holding the above fields |
| hiter := types.New(TSTRUCT) |
| hiter.SetNoalg(true) |
| hiter.SetFields(fields) |
| dowidth(hiter) |
| if hiter.Width != int64(12*Widthptr) { |
| Fatalf("hash_iter size not correct %d %d", hiter.Width, 12*Widthptr) |
| } |
| t.MapType().Hiter = hiter |
| hiter.StructType().Map = t |
| return hiter |
| } |
| |
| // deferstruct makes a runtime._defer structure, with additional space for |
| // stksize bytes of args. |
| func deferstruct(stksize int64) *types.Type { |
| makefield := func(name string, typ *types.Type) *types.Field { |
| f := types.NewField() |
| f.Type = typ |
| // Unlike the global makefield function, this one needs to set Pkg |
| // because these types might be compared (in SSA CSE sorting). |
| // TODO: unify this makefield and the global one above. |
| f.Sym = &types.Sym{Name: name, Pkg: localpkg} |
| return f |
| } |
| argtype := types.NewArray(types.Types[TUINT8], stksize) |
| argtype.Width = stksize |
| argtype.Align = 1 |
| // These fields must match the ones in runtime/runtime2.go:_defer and |
| // cmd/compile/internal/gc/ssa.go:(*state).call. |
| fields := []*types.Field{ |
| makefield("siz", types.Types[TUINT32]), |
| makefield("started", types.Types[TBOOL]), |
| makefield("heap", types.Types[TBOOL]), |
| makefield("sp", types.Types[TUINTPTR]), |
| makefield("pc", types.Types[TUINTPTR]), |
| // Note: the types here don't really matter. Defer structures |
| // are always scanned explicitly during stack copying and GC, |
| // so we make them uintptr type even though they are real pointers. |
| makefield("fn", types.Types[TUINTPTR]), |
| makefield("_panic", types.Types[TUINTPTR]), |
| makefield("link", types.Types[TUINTPTR]), |
| makefield("args", argtype), |
| } |
| |
| // build struct holding the above fields |
| s := types.New(TSTRUCT) |
| s.SetNoalg(true) |
| s.SetFields(fields) |
| s.Width = widstruct(s, s, 0, 1) |
| s.Align = uint8(Widthptr) |
| return s |
| } |
| |
| // f is method type, with receiver. |
| // return function type, receiver as first argument (or not). |
| func methodfunc(f *types.Type, receiver *types.Type) *types.Type { |
| inLen := f.Params().Fields().Len() |
| if receiver != nil { |
| inLen++ |
| } |
| in := make([]*Node, 0, inLen) |
| |
| if receiver != nil { |
| d := anonfield(receiver) |
| in = append(in, d) |
| } |
| |
| for _, t := range f.Params().Fields().Slice() { |
| d := anonfield(t.Type) |
| d.SetIsDDD(t.IsDDD()) |
| in = append(in, d) |
| } |
| |
| outLen := f.Results().Fields().Len() |
| out := make([]*Node, 0, outLen) |
| for _, t := range f.Results().Fields().Slice() { |
| d := anonfield(t.Type) |
| out = append(out, d) |
| } |
| |
| t := functype(nil, in, out) |
| if f.Nname() != nil { |
| // Link to name of original method function. |
| t.SetNname(f.Nname()) |
| } |
| |
| return t |
| } |
| |
| // methods returns the methods of the non-interface type t, sorted by name. |
| // Generates stub functions as needed. |
| func methods(t *types.Type) []*Sig { |
| // method type |
| mt := methtype(t) |
| |
| if mt == nil { |
| return nil |
| } |
| expandmeth(mt) |
| |
| // type stored in interface word |
| it := t |
| |
| if !isdirectiface(it) { |
| it = types.NewPtr(t) |
| } |
| |
| // make list of methods for t, |
| // generating code if necessary. |
| var ms []*Sig |
| for _, f := range mt.AllMethods().Slice() { |
| if !f.IsMethod() { |
| Fatalf("non-method on %v method %v %v\n", mt, f.Sym, f) |
| } |
| if f.Type.Recv() == nil { |
| Fatalf("receiver with no type on %v method %v %v\n", mt, f.Sym, f) |
| } |
| if f.Nointerface() { |
| continue |
| } |
| |
| method := f.Sym |
| if method == nil { |
| break |
| } |
| |
| // get receiver type for this particular method. |
| // if pointer receiver but non-pointer t and |
| // this is not an embedded pointer inside a struct, |
| // method does not apply. |
| if !isMethodApplicable(t, f) { |
| continue |
| } |
| |
| sig := &Sig{ |
| name: method, |
| isym: methodSym(it, method), |
| tsym: methodSym(t, method), |
| type_: methodfunc(f.Type, t), |
| mtype: methodfunc(f.Type, nil), |
| } |
| ms = append(ms, sig) |
| |
| this := f.Type.Recv().Type |
| |
| if !sig.isym.Siggen() { |
| sig.isym.SetSiggen(true) |
| if !types.Identical(this, it) { |
| genwrapper(it, f, sig.isym) |
| } |
| } |
| |
| if !sig.tsym.Siggen() { |
| sig.tsym.SetSiggen(true) |
| if !types.Identical(this, t) { |
| genwrapper(t, f, sig.tsym) |
| } |
| } |
| } |
| |
| return ms |
| } |
| |
| // imethods returns the methods of the interface type t, sorted by name. |
| func imethods(t *types.Type) []*Sig { |
| var methods []*Sig |
| for _, f := range t.Fields().Slice() { |
| if f.Type.Etype != TFUNC || f.Sym == nil { |
| continue |
| } |
| if f.Sym.IsBlank() { |
| Fatalf("unexpected blank symbol in interface method set") |
| } |
| if n := len(methods); n > 0 { |
| last := methods[n-1] |
| if !last.name.Less(f.Sym) { |
| Fatalf("sigcmp vs sortinter %v %v", last.name, f.Sym) |
| } |
| } |
| |
| sig := &Sig{ |
| name: f.Sym, |
| mtype: f.Type, |
| type_: methodfunc(f.Type, nil), |
| } |
| methods = append(methods, sig) |
| |
| // NOTE(rsc): Perhaps an oversight that |
| // IfaceType.Method is not in the reflect data. |
| // Generate the method body, so that compiled |
| // code can refer to it. |
| isym := methodSym(t, f.Sym) |
| if !isym.Siggen() { |
| isym.SetSiggen(true) |
| genwrapper(t, f, isym) |
| } |
| } |
| |
| return methods |
| } |
| |
| func dimportpath(p *types.Pkg) { |
| if p.Pathsym != nil { |
| return |
| } |
| |
| // If we are compiling the runtime package, there are two runtime packages around |
| // -- localpkg and Runtimepkg. We don't want to produce import path symbols for |
| // both of them, so just produce one for localpkg. |
| if myimportpath == "runtime" && p == Runtimepkg { |
| return |
| } |
| |
| str := p.Path |
| if p == localpkg { |
| // Note: myimportpath != "", or else dgopkgpath won't call dimportpath. |
| str = myimportpath |
| } |
| |
| s := Ctxt.Lookup("type..importpath." + p.Prefix + ".") |
| ot := dnameData(s, 0, str, "", nil, false) |
| ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA) |
| p.Pathsym = s |
| } |
| |
| func dgopkgpath(s *obj.LSym, ot int, pkg *types.Pkg) int { |
| if pkg == nil { |
| return duintptr(s, ot, 0) |
| } |
| |
| if pkg == localpkg && myimportpath == "" { |
| // If we don't know the full import path of the package being compiled |
| // (i.e. -p was not passed on the compiler command line), emit a reference to |
| // type..importpath.""., which the linker will rewrite using the correct import path. |
| // Every package that imports this one directly defines the symbol. |
| // See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ. |
| ns := Ctxt.Lookup(`type..importpath."".`) |
| return dsymptr(s, ot, ns, 0) |
| } |
| |
| dimportpath(pkg) |
| return dsymptr(s, ot, pkg.Pathsym, 0) |
| } |
| |
| // dgopkgpathOff writes an offset relocation in s at offset ot to the pkg path symbol. |
| func dgopkgpathOff(s *obj.LSym, ot int, pkg *types.Pkg) int { |
| if pkg == nil { |
| return duint32(s, ot, 0) |
| } |
| if pkg == localpkg && myimportpath == "" { |
| // If we don't know the full import path of the package being compiled |
| // (i.e. -p was not passed on the compiler command line), emit a reference to |
| // type..importpath.""., which the linker will rewrite using the correct import path. |
| // Every package that imports this one directly defines the symbol. |
| // See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ. |
| ns := Ctxt.Lookup(`type..importpath."".`) |
| return dsymptrOff(s, ot, ns) |
| } |
| |
| dimportpath(pkg) |
| return dsymptrOff(s, ot, pkg.Pathsym) |
| } |
| |
| // dnameField dumps a reflect.name for a struct field. |
| func dnameField(lsym *obj.LSym, ot int, spkg *types.Pkg, ft *types.Field) int { |
| if !types.IsExported(ft.Sym.Name) && ft.Sym.Pkg != spkg { |
| Fatalf("package mismatch for %v", ft.Sym) |
| } |
| nsym := dname(ft.Sym.Name, ft.Note, nil, types.IsExported(ft.Sym.Name)) |
| return dsymptr(lsym, ot, nsym, 0) |
| } |
| |
| // dnameData writes the contents of a reflect.name into s at offset ot. |
| func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported bool) int { |
| if len(name) > 1<<16-1 { |
| Fatalf("name too long: %s", name) |
| } |
| if len(tag) > 1<<16-1 { |
| Fatalf("tag too long: %s", tag) |
| } |
| |
| // Encode name and tag. See reflect/type.go for details. |
| var bits byte |
| l := 1 + 2 + len(name) |
| if exported { |
| bits |= 1 << 0 |
| } |
| if len(tag) > 0 { |
| l += 2 + len(tag) |
| bits |= 1 << 1 |
| } |
| if pkg != nil { |
| bits |= 1 << 2 |
| } |
| b := make([]byte, l) |
| b[0] = bits |
| b[1] = uint8(len(name) >> 8) |
| b[2] = uint8(len(name)) |
| copy(b[3:], name) |
| if len(tag) > 0 { |
| tb := b[3+len(name):] |
| tb[0] = uint8(len(tag) >> 8) |
| tb[1] = uint8(len(tag)) |
| copy(tb[2:], tag) |
| } |
| |
| ot = int(s.WriteBytes(Ctxt, int64(ot), b)) |
| |
| if pkg != nil { |
| ot = dgopkgpathOff(s, ot, pkg) |
| } |
| |
| return ot |
| } |
| |
| var dnameCount int |
| |
| // dname creates a reflect.name for a struct field or method. |
| func dname(name, tag string, pkg *types.Pkg, exported bool) *obj.LSym { |
| // Write out data as "type.." to signal two things to the |
| // linker, first that when dynamically linking, the symbol |
| // should be moved to a relro section, and second that the |
| // contents should not be decoded as a type. |
| sname := "type..namedata." |
| if pkg == nil { |
| // In the common case, share data with other packages. |
| if name == "" { |
| if exported { |
| sname += "-noname-exported." + tag |
| } else { |
| sname += "-noname-unexported." + tag |
| } |
| } else { |
| if exported { |
| sname += name + "." + tag |
| } else { |
| sname += name + "-" + tag |
| } |
| } |
| } else { |
| sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount) |
| dnameCount++ |
| } |
| s := Ctxt.Lookup(sname) |
| if len(s.P) > 0 { |
| return s |
| } |
| ot := dnameData(s, 0, name, tag, pkg, exported) |
| ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA) |
| return s |
| } |
| |
| // dextratype dumps the fields of a runtime.uncommontype. |
| // dataAdd is the offset in bytes after the header where the |
| // backing array of the []method field is written (by dextratypeData). |
| func dextratype(lsym *obj.LSym, ot int, t *types.Type, dataAdd int) int { |
| m := methods(t) |
| if t.Sym == nil && len(m) == 0 { |
| return ot |
| } |
| noff := int(Rnd(int64(ot), int64(Widthptr))) |
| if noff != ot { |
| Fatalf("unexpected alignment in dextratype for %v", t) |
| } |
| |
| for _, a := range m { |
| dtypesym(a.type_) |
| } |
| |
| ot = dgopkgpathOff(lsym, ot, typePkg(t)) |
| |
| dataAdd += uncommonSize(t) |
| mcount := len(m) |
| if mcount != int(uint16(mcount)) { |
| Fatalf("too many methods on %v: %d", t, mcount) |
| } |
| xcount := sort.Search(mcount, func(i int) bool { return !types.IsExported(m[i].name.Name) }) |
| if dataAdd != int(uint32(dataAdd)) { |
| Fatalf("methods are too far away on %v: %d", t, dataAdd) |
| } |
| |
| ot = duint16(lsym, ot, uint16(mcount)) |
| ot = duint16(lsym, ot, uint16(xcount)) |
| ot = duint32(lsym, ot, uint32(dataAdd)) |
| ot = duint32(lsym, ot, 0) |
| return ot |
| } |
| |
| func typePkg(t *types.Type) *types.Pkg { |
| tsym := t.Sym |
| if tsym == nil { |
| switch t.Etype { |
| case TARRAY, TSLICE, TPTR, TCHAN: |
| if t.Elem() != nil { |
| tsym = t.Elem().Sym |
| } |
| } |
| } |
| if tsym != nil && t != types.Types[t.Etype] && t != types.Errortype { |
| return tsym.Pkg |
| } |
| return nil |
| } |
| |
| // dextratypeData dumps the backing array for the []method field of |
| // runtime.uncommontype. |
| func dextratypeData(lsym *obj.LSym, ot int, t *types.Type) int { |
| for _, a := range methods(t) { |
| // ../../../../runtime/type.go:/method |
| exported := types.IsExported(a.name.Name) |
| var pkg *types.Pkg |
| if !exported && a.name.Pkg != typePkg(t) { |
| pkg = a.name.Pkg |
| } |
| nsym := dname(a.name.Name, "", pkg, exported) |
| |
| ot = dsymptrOff(lsym, ot, nsym) |
| ot = dmethodptrOff(lsym, ot, dtypesym(a.mtype)) |
| ot = dmethodptrOff(lsym, ot, a.isym.Linksym()) |
| ot = dmethodptrOff(lsym, ot, a.tsym.Linksym()) |
| } |
| return ot |
| } |
| |
| func dmethodptrOff(s *obj.LSym, ot int, x *obj.LSym) int { |
| duint32(s, ot, 0) |
| r := obj.Addrel(s) |
| r.Off = int32(ot) |
| r.Siz = 4 |
| r.Sym = x |
| r.Type = objabi.R_METHODOFF |
| return ot + 4 |
| } |
| |
| var kinds = []int{ |
| TINT: objabi.KindInt, |
| TUINT: objabi.KindUint, |
| TINT8: objabi.KindInt8, |
| TUINT8: objabi.KindUint8, |
| TINT16: objabi.KindInt16, |
| TUINT16: objabi.KindUint16, |
| TINT32: objabi.KindInt32, |
| TUINT32: objabi.KindUint32, |
| TINT64: objabi.KindInt64, |
| TUINT64: objabi.KindUint64, |
| TUINTPTR: objabi.KindUintptr, |
| TFLOAT32: objabi.KindFloat32, |
| TFLOAT64: objabi.KindFloat64, |
| TBOOL: objabi.KindBool, |
| TSTRING: objabi.KindString, |
| TPTR: objabi.KindPtr, |
| TSTRUCT: objabi.KindStruct, |
| TINTER: objabi.KindInterface, |
| TCHAN: objabi.KindChan, |
| TMAP: objabi.KindMap, |
| TARRAY: objabi.KindArray, |
| TSLICE: objabi.KindSlice, |
| TFUNC: objabi.KindFunc, |
| TCOMPLEX64: objabi.KindComplex64, |
| TCOMPLEX128: objabi.KindComplex128, |
| TUNSAFEPTR: objabi.KindUnsafePointer, |
| } |
| |
| // typeptrdata returns the length in bytes of the prefix of t |
| // containing pointer data. Anything after this offset is scalar data. |
| func typeptrdata(t *types.Type) int64 { |
| if !types.Haspointers(t) { |
| return 0 |
| } |
| |
| switch t.Etype { |
| case TPTR, |
| TUNSAFEPTR, |
| TFUNC, |
| TCHAN, |
| TMAP: |
| return int64(Widthptr) |
| |
| case TSTRING: |
| // struct { byte *str; intgo len; } |
| return int64(Widthptr) |
| |
| case TINTER: |
| // struct { Itab *tab; void *data; } or |
| // struct { Type *type; void *data; } |
| // Note: see comment in plive.go:onebitwalktype1. |
| return 2 * int64(Widthptr) |
| |
| case TSLICE: |
| // struct { byte *array; uintgo len; uintgo cap; } |
| return int64(Widthptr) |
| |
| case TARRAY: |
| // haspointers already eliminated t.NumElem() == 0. |
| return (t.NumElem()-1)*t.Elem().Width + typeptrdata(t.Elem()) |
| |
| case TSTRUCT: |
| // Find the last field that has pointers. |
| var lastPtrField *types.Field |
| for _, t1 := range t.Fields().Slice() { |
| if types.Haspointers(t1.Type) { |
| lastPtrField = t1 |
| } |
| } |
| return lastPtrField.Offset + typeptrdata(lastPtrField.Type) |
| |
| default: |
| Fatalf("typeptrdata: unexpected type, %v", t) |
| return 0 |
| } |
| } |
| |
| // tflag is documented in reflect/type.go. |
| // |
| // tflag values must be kept in sync with copies in: |
| // cmd/compile/internal/gc/reflect.go |
| // cmd/link/internal/ld/decodesym.go |
| // reflect/type.go |
| // runtime/type.go |
| const ( |
| tflagUncommon = 1 << 0 |
| tflagExtraStar = 1 << 1 |
| tflagNamed = 1 << 2 |
| ) |
| |
| var ( |
| algarray *obj.LSym |
| memhashvarlen *obj.LSym |
| memequalvarlen *obj.LSym |
| ) |
| |
| // dcommontype dumps the contents of a reflect.rtype (runtime._type). |
| func dcommontype(lsym *obj.LSym, t *types.Type) int { |
| sizeofAlg := 2 * Widthptr |
| if algarray == nil { |
| algarray = sysvar("algarray") |
| } |
| dowidth(t) |
| alg := algtype(t) |
| var algsym *obj.LSym |
| if alg == ASPECIAL || alg == AMEM { |
| algsym = dalgsym(t) |
| } |
| |
| sptrWeak := true |
| var sptr *obj.LSym |
| if !t.IsPtr() || t.IsPtrElem() { |
| tptr := types.NewPtr(t) |
| if t.Sym != nil || methods(tptr) != nil { |
| sptrWeak = false |
| } |
| sptr = dtypesym(tptr) |
| } |
| |
| gcsym, useGCProg, ptrdata := dgcsym(t) |
| |
| // ../../../../reflect/type.go:/^type.rtype |
| // actual type structure |
| // type rtype struct { |
| // size uintptr |
| // ptrdata uintptr |
| // hash uint32 |
| // tflag tflag |
| // align uint8 |
| // fieldAlign uint8 |
| // kind uint8 |
| // alg *typeAlg |
| // gcdata *byte |
| // str nameOff |
| // ptrToThis typeOff |
| // } |
| ot := 0 |
| ot = duintptr(lsym, ot, uint64(t.Width)) |
| ot = duintptr(lsym, ot, uint64(ptrdata)) |
| ot = duint32(lsym, ot, typehash(t)) |
| |
| var tflag uint8 |
| if uncommonSize(t) != 0 { |
| tflag |= tflagUncommon |
| } |
| if t.Sym != nil && t.Sym.Name != "" { |
| tflag |= tflagNamed |
| } |
| |
| exported := false |
| p := t.LongString() |
| // If we're writing out type T, |
| // we are very likely to write out type *T as well. |
| // Use the string "*T"[1:] for "T", so that the two |
| // share storage. This is a cheap way to reduce the |
| // amount of space taken up by reflect strings. |
| if !strings.HasPrefix(p, "*") { |
| p = "*" + p |
| tflag |= tflagExtraStar |
| if t.Sym != nil { |
| exported = types.IsExported(t.Sym.Name) |
| } |
| } else { |
| if t.Elem() != nil && t.Elem().Sym != nil { |
| exported = types.IsExported(t.Elem().Sym.Name) |
| } |
| } |
| |
| ot = duint8(lsym, ot, tflag) |
| |
| // runtime (and common sense) expects alignment to be a power of two. |
| i := int(t.Align) |
| |
| if i == 0 { |
| i = 1 |
| } |
| if i&(i-1) != 0 { |
| Fatalf("invalid alignment %d for %v", t.Align, t) |
| } |
| ot = duint8(lsym, ot, t.Align) // align |
| ot = duint8(lsym, ot, t.Align) // fieldAlign |
| |
| i = kinds[t.Etype] |
| if isdirectiface(t) { |
| i |= objabi.KindDirectIface |
| } |
| if useGCProg { |
| i |= objabi.KindGCProg |
| } |
| ot = duint8(lsym, ot, uint8(i)) // kind |
| if algsym == nil { |
| ot = dsymptr(lsym, ot, algarray, int(alg)*sizeofAlg) |
| } else { |
| ot = dsymptr(lsym, ot, algsym, 0) |
| } |
| ot = dsymptr(lsym, ot, gcsym, 0) // gcdata |
| |
| nsym := dname(p, "", nil, exported) |
| ot = dsymptrOff(lsym, ot, nsym) // str |
| // ptrToThis |
| if sptr == nil { |
| ot = duint32(lsym, ot, 0) |
| } else if sptrWeak { |
| ot = dsymptrWeakOff(lsym, ot, sptr) |
| } else { |
| ot = dsymptrOff(lsym, ot, sptr) |
| } |
| |
| return ot |
| } |
| |
| // typeHasNoAlg reports whether t does not have any associated hash/eq |
| // algorithms because t, or some component of t, is marked Noalg. |
| func typeHasNoAlg(t *types.Type) bool { |
| a, bad := algtype1(t) |
| return a == ANOEQ && bad.Noalg() |
| } |
| |
| func typesymname(t *types.Type) string { |
| name := t.ShortString() |
| // Use a separate symbol name for Noalg types for #17752. |
| if typeHasNoAlg(t) { |
| name = "noalg." + name |
| } |
| return name |
| } |
| |
| // Fake package for runtime type info (headers) |
| // Don't access directly, use typeLookup below. |
| var ( |
| typepkgmu sync.Mutex // protects typepkg lookups |
| typepkg = types.NewPkg("type", "type") |
| ) |
| |
| func typeLookup(name string) *types.Sym { |
| typepkgmu.Lock() |
| s := typepkg.Lookup(name) |
| typepkgmu.Unlock() |
| return s |
| } |
| |
| func typesym(t *types.Type) *types.Sym { |
| return typeLookup(typesymname(t)) |
| } |
| |
| // tracksym returns the symbol for tracking use of field/method f, assumed |
| // to be a member of struct/interface type t. |
| func tracksym(t *types.Type, f *types.Field) *types.Sym { |
| return trackpkg.Lookup(t.ShortString() + "." + f.Sym.Name) |
| } |
| |
| func typesymprefix(prefix string, t *types.Type) *types.Sym { |
| p := prefix + "." + t.ShortString() |
| s := typeLookup(p) |
| |
| // This function is for looking up type-related generated functions |
| // (e.g. eq and hash). Make sure they are indeed generated. |
| signatmu.Lock() |
| addsignat(t) |
| signatmu.Unlock() |
| |
| //print("algsym: %s -> %+S\n", p, s); |
| |
| return s |
| } |
| |
| func typenamesym(t *types.Type) *types.Sym { |
| if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() { |
| Fatalf("typenamesym %v", t) |
| } |
| s := typesym(t) |
| signatmu.Lock() |
| addsignat(t) |
| signatmu.Unlock() |
| return s |
| } |
| |
| func typename(t *types.Type) *Node { |
| s := typenamesym(t) |
| if s.Def == nil { |
| n := newnamel(src.NoXPos, s) |
| n.Type = types.Types[TUINT8] |
| n.SetClass(PEXTERN) |
| n.SetTypecheck(1) |
| s.Def = asTypesNode(n) |
| } |
| |
| n := nod(OADDR, asNode(s.Def), nil) |
| n.Type = types.NewPtr(asNode(s.Def).Type) |
| n.SetAddable(true) |
| n.SetTypecheck(1) |
| return n |
| } |
| |
| func itabname(t, itype *types.Type) *Node { |
| if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() || !itype.IsInterface() || itype.IsEmptyInterface() { |
| Fatalf("itabname(%v, %v)", t, itype) |
| } |
| s := itabpkg.Lookup(t.ShortString() + "," + itype.ShortString()) |
| if s.Def == nil { |
| n := newname(s) |
| n.Type = types.Types[TUINT8] |
| n.SetClass(PEXTERN) |
| n.SetTypecheck(1) |
| s.Def = asTypesNode(n) |
| itabs = append(itabs, itabEntry{t: t, itype: itype, lsym: s.Linksym()}) |
| } |
| |
| n := nod(OADDR, asNode(s.Def), nil) |
| n.Type = types.NewPtr(asNode(s.Def).Type) |
| n.SetAddable(true) |
| n.SetTypecheck(1) |
| return n |
| } |
| |
| // isreflexive reports whether t has a reflexive equality operator. |
| // That is, if x==x for all x of type t. |
| func isreflexive(t *types.Type) bool { |
| switch t.Etype { |
| case TBOOL, |
| TINT, |
| TUINT, |
| TINT8, |
| TUINT8, |
| TINT16, |
| TUINT16, |
| TINT32, |
| TUINT32, |
| TINT64, |
| TUINT64, |
| TUINTPTR, |
| TPTR, |
| TUNSAFEPTR, |
| TSTRING, |
| TCHAN: |
| return true |
| |
| case TFLOAT32, |
| TFLOAT64, |
| TCOMPLEX64, |
| TCOMPLEX128, |
| TINTER: |
| return false |
| |
| case TARRAY: |
| return isreflexive(t.Elem()) |
| |
| case TSTRUCT: |
| for _, t1 := range t.Fields().Slice() { |
| if !isreflexive(t1.Type) { |
| return false |
| } |
| } |
| return true |
| |
| default: |
| Fatalf("bad type for map key: %v", t) |
| return false |
| } |
| } |
| |
| // needkeyupdate reports whether map updates with t as a key |
| // need the key to be updated. |
| func needkeyupdate(t *types.Type) bool { |
| switch t.Etype { |
| case TBOOL, TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, |
| TINT64, TUINT64, TUINTPTR, TPTR, TUNSAFEPTR, TCHAN: |
| return false |
| |
| case TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, // floats and complex can be +0/-0 |
| TINTER, |
| TSTRING: // strings might have smaller backing stores |
| return true |
| |
| case TARRAY: |
| return needkeyupdate(t.Elem()) |
| |
| case TSTRUCT: |
| for _, t1 := range t.Fields().Slice() { |
| if needkeyupdate(t1.Type) { |
| return true |
| } |
| } |
| return false |
| |
| default: |
| Fatalf("bad type for map key: %v", t) |
| return true |
| } |
| } |
| |
| // hashMightPanic reports whether the hash of a map key of type t might panic. |
| func hashMightPanic(t *types.Type) bool { |
| switch t.Etype { |
| case TINTER: |
| return true |
| |
| case TARRAY: |
| return hashMightPanic(t.Elem()) |
| |
| case TSTRUCT: |
| for _, t1 := range t.Fields().Slice() { |
| if hashMightPanic(t1.Type) { |
| return true |
| } |
| } |
| return false |
| |
| default: |
| return false |
| } |
| } |
| |
| // formalType replaces byte and rune aliases with real types. |
| // They've been separate internally to make error messages |
| // better, but we have to merge them in the reflect tables. |
| func formalType(t *types.Type) *types.Type { |
| if t == types.Bytetype || t == types.Runetype { |
| return types.Types[t.Etype] |
| } |
| return t |
| } |
| |
| func dtypesym(t *types.Type) *obj.LSym { |
| t = formalType(t) |
| if t.IsUntyped() { |
| Fatalf("dtypesym %v", t) |
| } |
| |
| s := typesym(t) |
| lsym := s.Linksym() |
| if s.Siggen() { |
| return lsym |
| } |
| s.SetSiggen(true) |
| |
| // special case (look for runtime below): |
| // when compiling package runtime, |
| // emit the type structures for int, float, etc. |
| tbase := t |
| |
| if t.IsPtr() && t.Sym == nil && t.Elem().Sym != nil { |
| tbase = t.Elem() |
| } |
| dupok := 0 |
| if tbase.Sym == nil { |
| dupok = obj.DUPOK |
| } |
| |
| if myimportpath != "runtime" || (tbase != types.Types[tbase.Etype] && tbase != types.Bytetype && tbase != types.Runetype && tbase != types.Errortype) { // int, float, etc |
| // named types from other files are defined only by those files |
| if tbase.Sym != nil && tbase.Sym.Pkg != localpkg { |
| return lsym |
| } |
| // TODO(mdempsky): Investigate whether this can happen. |
| if tbase.Etype == TFORW { |
| return lsym |
| } |
| } |
| |
| ot := 0 |
| switch t.Etype { |
| default: |
| ot = dcommontype(lsym, t) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| case TARRAY: |
| // ../../../../runtime/type.go:/arrayType |
| s1 := dtypesym(t.Elem()) |
| t2 := types.NewSlice(t.Elem()) |
| s2 := dtypesym(t2) |
| ot = dcommontype(lsym, t) |
| ot = dsymptr(lsym, ot, s1, 0) |
| ot = dsymptr(lsym, ot, s2, 0) |
| ot = duintptr(lsym, ot, uint64(t.NumElem())) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| case TSLICE: |
| // ../../../../runtime/type.go:/sliceType |
| s1 := dtypesym(t.Elem()) |
| ot = dcommontype(lsym, t) |
| ot = dsymptr(lsym, ot, s1, 0) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| case TCHAN: |
| // ../../../../runtime/type.go:/chanType |
| s1 := dtypesym(t.Elem()) |
| ot = dcommontype(lsym, t) |
| ot = dsymptr(lsym, ot, s1, 0) |
| ot = duintptr(lsym, ot, uint64(t.ChanDir())) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| case TFUNC: |
| for _, t1 := range t.Recvs().Fields().Slice() { |
| dtypesym(t1.Type) |
| } |
| isddd := false |
| for _, t1 := range t.Params().Fields().Slice() { |
| isddd = t1.IsDDD() |
| dtypesym(t1.Type) |
| } |
| for _, t1 := range t.Results().Fields().Slice() { |
| dtypesym(t1.Type) |
| } |
| |
| ot = dcommontype(lsym, t) |
| inCount := t.NumRecvs() + t.NumParams() |
| outCount := t.NumResults() |
| if isddd { |
| outCount |= 1 << 15 |
| } |
| ot = duint16(lsym, ot, uint16(inCount)) |
| ot = duint16(lsym, ot, uint16(outCount)) |
| if Widthptr == 8 { |
| ot += 4 // align for *rtype |
| } |
| |
| dataAdd := (inCount + t.NumResults()) * Widthptr |
| ot = dextratype(lsym, ot, t, dataAdd) |
| |
| // Array of rtype pointers follows funcType. |
| for _, t1 := range t.Recvs().Fields().Slice() { |
| ot = dsymptr(lsym, ot, dtypesym(t1.Type), 0) |
| } |
| for _, t1 := range t.Params().Fields().Slice() { |
| ot = dsymptr(lsym, ot, dtypesym(t1.Type), 0) |
| } |
| for _, t1 := range t.Results().Fields().Slice() { |
| ot = dsymptr(lsym, ot, dtypesym(t1.Type), 0) |
| } |
| |
| case TINTER: |
| m := imethods(t) |
| n := len(m) |
| for _, a := range m { |
| dtypesym(a.type_) |
| } |
| |
| // ../../../../runtime/type.go:/interfaceType |
| ot = dcommontype(lsym, t) |
| |
| var tpkg *types.Pkg |
| if t.Sym != nil && t != types.Types[t.Etype] && t != types.Errortype { |
| tpkg = t.Sym.Pkg |
| } |
| ot = dgopkgpath(lsym, ot, tpkg) |
| |
| ot = dsymptr(lsym, ot, lsym, ot+3*Widthptr+uncommonSize(t)) |
| ot = duintptr(lsym, ot, uint64(n)) |
| ot = duintptr(lsym, ot, uint64(n)) |
| dataAdd := imethodSize() * n |
| ot = dextratype(lsym, ot, t, dataAdd) |
| |
| for _, a := range m { |
| // ../../../../runtime/type.go:/imethod |
| exported := types.IsExported(a.name.Name) |
| var pkg *types.Pkg |
| if !exported && a.name.Pkg != tpkg { |
| pkg = a.name.Pkg |
| } |
| nsym := dname(a.name.Name, "", pkg, exported) |
| |
| ot = dsymptrOff(lsym, ot, nsym) |
| ot = dsymptrOff(lsym, ot, dtypesym(a.type_)) |
| } |
| |
| // ../../../../runtime/type.go:/mapType |
| case TMAP: |
| s1 := dtypesym(t.Key()) |
| s2 := dtypesym(t.Elem()) |
| s3 := dtypesym(bmap(t)) |
| ot = dcommontype(lsym, t) |
| ot = dsymptr(lsym, ot, s1, 0) |
| ot = dsymptr(lsym, ot, s2, 0) |
| ot = dsymptr(lsym, ot, s3, 0) |
| var flags uint32 |
| // Note: flags must match maptype accessors in ../../../../runtime/type.go |
| // and maptype builder in ../../../../reflect/type.go:MapOf. |
| if t.Key().Width > MAXKEYSIZE { |
| ot = duint8(lsym, ot, uint8(Widthptr)) |
| flags |= 1 // indirect key |
| } else { |
| ot = duint8(lsym, ot, uint8(t.Key().Width)) |
| } |
| |
| if t.Elem().Width > MAXELEMSIZE { |
| ot = duint8(lsym, ot, uint8(Widthptr)) |
| flags |= 2 // indirect value |
| } else { |
| ot = duint8(lsym, ot, uint8(t.Elem().Width)) |
| } |
| ot = duint16(lsym, ot, uint16(bmap(t).Width)) |
| if isreflexive(t.Key()) { |
| flags |= 4 // reflexive key |
| } |
| if needkeyupdate(t.Key()) { |
| flags |= 8 // need key update |
| } |
| if hashMightPanic(t.Key()) { |
| flags |= 16 // hash might panic |
| } |
| ot = duint32(lsym, ot, flags) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| case TPTR: |
| if t.Elem().Etype == TANY { |
| // ../../../../runtime/type.go:/UnsafePointerType |
| ot = dcommontype(lsym, t) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| break |
| } |
| |
| // ../../../../runtime/type.go:/ptrType |
| s1 := dtypesym(t.Elem()) |
| |
| ot = dcommontype(lsym, t) |
| ot = dsymptr(lsym, ot, s1, 0) |
| ot = dextratype(lsym, ot, t, 0) |
| |
| // ../../../../runtime/type.go:/structType |
| // for security, only the exported fields. |
| case TSTRUCT: |
| fields := t.Fields().Slice() |
| for _, t1 := range fields { |
| dtypesym(t1.Type) |
| } |
| |
| // All non-exported struct field names within a struct |
| // type must originate from a single package. By |
| // identifying and recording that package within the |
| // struct type descriptor, we can omit that |
| // information from the field descriptors. |
| var spkg *types.Pkg |
| for _, f := range fields { |
| if !types.IsExported(f.Sym.Name) { |
| spkg = f.Sym.Pkg |
| break |
| } |
| } |
| |
| ot = dcommontype(lsym, t) |
| ot = dgopkgpath(lsym, ot, spkg) |
| ot = dsymptr(lsym, ot, lsym, ot+3*Widthptr+uncommonSize(t)) |
| ot = duintptr(lsym, ot, uint64(len(fields))) |
| ot = duintptr(lsym, ot, uint64(len(fields))) |
| |
| dataAdd := len(fields) * structfieldSize() |
| ot = dextratype(lsym, ot, t, dataAdd) |
| |
| for _, f := range fields { |
| // ../../../../runtime/type.go:/structField |
| ot = dnameField(lsym, ot, spkg, f) |
| ot = dsymptr(lsym, ot, dtypesym(f.Type), 0) |
| offsetAnon := uint64(f.Offset) << 1 |
| if offsetAnon>>1 != uint64(f.Offset) { |
| Fatalf("%v: bad field offset for %s", t, f.Sym.Name) |
| } |
| if f.Embedded != 0 { |
| offsetAnon |= 1 |
| } |
| ot = duintptr(lsym, ot, offsetAnon) |
| } |
| } |
| |
| ot = dextratypeData(lsym, ot, t) |
| ggloblsym(lsym, int32(ot), int16(dupok|obj.RODATA)) |
| |
| // The linker will leave a table of all the typelinks for |
| // types in the binary, so the runtime can find them. |
| // |
| // When buildmode=shared, all types are in typelinks so the |
| // runtime can deduplicate type pointers. |
| keep := Ctxt.Flag_dynlink |
| if !keep && t.Sym == nil { |
| // For an unnamed type, we only need the link if the type can |
| // be created at run time by reflect.PtrTo and similar |
| // functions. If the type exists in the program, those |
| // functions must return the existing type structure rather |
| // than creating a new one. |
| switch t.Etype { |
| case TPTR, TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRUCT: |
| keep = true |
| } |
| } |
| // Do not put Noalg types in typelinks. See issue #22605. |
| if typeHasNoAlg(t) { |
| keep = false |
| } |
| lsym.Set(obj.AttrMakeTypelink, keep) |
| |
| return lsym |
| } |
| |
| // for each itabEntry, gather the methods on |
| // the concrete type that implement the interface |
| func peekitabs() { |
| for i := range itabs { |
| tab := &itabs[i] |
| methods := genfun(tab.t, tab.itype) |
| if len(methods) == 0 { |
| continue |
| } |
| tab.entries = methods |
| } |
| } |
| |
| // for the given concrete type and interface |
| // type, return the (sorted) set of methods |
| // on the concrete type that implement the interface |
| func genfun(t, it *types.Type) []*obj.LSym { |
| if t == nil || it == nil { |
| return nil |
| } |
| sigs := imethods(it) |
| methods := methods(t) |
| out := make([]*obj.LSym, 0, len(sigs)) |
| // TODO(mdempsky): Short circuit before calling methods(t)? |
| // See discussion on CL 105039. |
| if len(sigs) == 0 { |
| return nil |
| } |
| |
| // both sigs and methods are sorted by name, |
| // so we can find the intersect in a single pass |
| for _, m := range methods { |
| if m.name == sigs[0].name { |
| out = append(out, m.isym.Linksym()) |
| sigs = sigs[1:] |
| if len(sigs) == 0 { |
| break |
| } |
| } |
| } |
| |
| if len(sigs) != 0 { |
| Fatalf("incomplete itab") |
| } |
| |
| return out |
| } |
| |
| // itabsym uses the information gathered in |
| // peekitabs to de-virtualize interface methods. |
| // Since this is called by the SSA backend, it shouldn't |
| // generate additional Nodes, Syms, etc. |
| func itabsym(it *obj.LSym, offset int64) *obj.LSym { |
| var syms []*obj.LSym |
| if it == nil { |
| return nil |
| } |
| |
| for i := range itabs { |
| e := &itabs[i] |
| if e.lsym == it { |
| syms = e.entries |
| break |
| } |
| } |
| if syms == nil { |
| return nil |
| } |
| |
| // keep this arithmetic in sync with *itab layout |
| methodnum := int((offset - 2*int64(Widthptr) - 8) / int64(Widthptr)) |
| if methodnum >= len(syms) { |
| return nil |
| } |
| return syms[methodnum] |
| } |
| |
| // addsignat ensures that a runtime type descriptor is emitted for t. |
| func addsignat(t *types.Type) { |
| if _, ok := signatset[t]; !ok { |
| signatset[t] = struct{}{} |
| signatslice = append(signatslice, t) |
| } |
| } |
| |
| func addsignats(dcls []*Node) { |
| // copy types from dcl list to signatset |
| for _, n := range dcls { |
| if n.Op == OTYPE { |
| addsignat(n.Type) |
| } |
| } |
| } |
| |
| func dumpsignats() { |
| // Process signatset. Use a loop, as dtypesym adds |
| // entries to signatset while it is being processed. |
| signats := make([]typeAndStr, len(signatslice)) |
| for len(signatslice) > 0 { |
| signats = signats[:0] |
| // Transfer entries to a slice and sort, for reproducible builds. |
| for _, t := range signatslice { |
| signats = append(signats, typeAndStr{t: t, short: typesymname(t), regular: t.String()}) |
| delete(signatset, t) |
| } |
| signatslice = signatslice[:0] |
| sort.Sort(typesByString(signats)) |
| for _, ts := range signats { |
| t := ts.t |
| dtypesym(t) |
| if t.Sym != nil { |
| dtypesym(types.NewPtr(t)) |
| } |
| } |
| } |
| } |
| |
| func dumptabs() { |
| // process itabs |
| for _, i := range itabs { |
| // dump empty itab symbol into i.sym |
| // type itab struct { |
| // inter *interfacetype |
| // _type *_type |
| // hash uint32 |
| // _ [4]byte |
| // fun [1]uintptr // variable sized |
| // } |
| o := dsymptr(i.lsym, 0, dtypesym(i.itype), 0) |
| o = dsymptr(i.lsym, o, dtypesym(i.t), 0) |
| o = duint32(i.lsym, o, typehash(i.t)) // copy of type hash |
| o += 4 // skip unused field |
| for _, fn := range genfun(i.t, i.itype) { |
| o = dsymptr(i.lsym, o, fn, 0) // method pointer for each method |
| } |
| // Nothing writes static itabs, so they are read only. |
| ggloblsym(i.lsym, int32(o), int16(obj.DUPOK|obj.RODATA)) |
| ilink := itablinkpkg.Lookup(i.t.ShortString() + "," + i.itype.ShortString()).Linksym() |
| dsymptr(ilink, 0, i.lsym, 0) |
| ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA)) |
| } |
| |
| // process ptabs |
| if localpkg.Name == "main" && len(ptabs) > 0 { |
| ot := 0 |
| s := Ctxt.Lookup("go.plugin.tabs") |
| for _, p := range ptabs { |
| // Dump ptab symbol into go.pluginsym package. |
| // |
| // type ptab struct { |
| // name nameOff |
| // typ typeOff // pointer to symbol |
| // } |
| nsym := dname(p.s.Name, "", nil, true) |
| ot = dsymptrOff(s, ot, nsym) |
| ot = dsymptrOff(s, ot, dtypesym(p.t)) |
| } |
| ggloblsym(s, int32(ot), int16(obj.RODATA)) |
| |
| ot = 0 |
| s = Ctxt.Lookup("go.plugin.exports") |
| for _, p := range ptabs { |
| ot = dsymptr(s, ot, p.s.Linksym(), 0) |
| } |
| ggloblsym(s, int32(ot), int16(obj.RODATA)) |
| } |
| } |
| |
| func dumpimportstrings() { |
| // generate import strings for imported packages |
| for _, p := range types.ImportedPkgList() { |
| dimportpath(p) |
| } |
| } |
| |
| func dumpbasictypes() { |
| // do basic types if compiling package runtime. |
| // they have to be in at least one package, |
| // and runtime is always loaded implicitly, |
| // so this is as good as any. |
| // another possible choice would be package main, |
| // but using runtime means fewer copies in object files. |
| if myimportpath == "runtime" { |
| for i := types.EType(1); i <= TBOOL; i++ { |
| dtypesym(types.NewPtr(types.Types[i])) |
| } |
| dtypesym(types.NewPtr(types.Types[TSTRING])) |
| dtypesym(types.NewPtr(types.Types[TUNSAFEPTR])) |
| |
| // emit type structs for error and func(error) string. |
| // The latter is the type of an auto-generated wrapper. |
| dtypesym(types.NewPtr(types.Errortype)) |
| |
| dtypesym(functype(nil, []*Node{anonfield(types.Errortype)}, []*Node{anonfield(types.Types[TSTRING])})) |
| |
| // add paths for runtime and main, which 6l imports implicitly. |
| dimportpath(Runtimepkg) |
| |
| if flag_race { |
| dimportpath(racepkg) |
| } |
| if flag_msan { |
| dimportpath(msanpkg) |
| } |
| dimportpath(types.NewPkg("main", "")) |
| } |
| } |
| |
| type typeAndStr struct { |
| t *types.Type |
| short string |
| regular string |
| } |
| |
| type typesByString []typeAndStr |
| |
| func (a typesByString) Len() int { return len(a) } |
| func (a typesByString) Less(i, j int) bool { |
| if a[i].short != a[j].short { |
| return a[i].short < a[j].short |
| } |
| // When the only difference between the types is whether |
| // they refer to byte or uint8, such as **byte vs **uint8, |
| // the types' ShortStrings can be identical. |
| // To preserve deterministic sort ordering, sort these by String(). |
| if a[i].regular != a[j].regular { |
| return a[i].regular < a[j].regular |
| } |
| // Identical anonymous interfaces defined in different locations |
| // will be equal for the above checks, but different in DWARF output. |
| // Sort by source position to ensure deterministic order. |
| // See issues 27013 and 30202. |
| if a[i].t.Etype == types.TINTER && a[i].t.Methods().Len() > 0 { |
| return a[i].t.Methods().Index(0).Pos.Before(a[j].t.Methods().Index(0).Pos) |
| } |
| return false |
| } |
| func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |
| |
| func dalgsym(t *types.Type) *obj.LSym { |
| var lsym *obj.LSym |
| var hashfunc *obj.LSym |
| var eqfunc *obj.LSym |
| |
| // dalgsym is only called for a type that needs an algorithm table, |
| // which implies that the type is comparable (or else it would use ANOEQ). |
| |
| if algtype(t) == AMEM { |
| // we use one algorithm table for all AMEM types of a given size |
| p := fmt.Sprintf(".alg%d", t.Width) |
| |
| s := typeLookup(p) |
| lsym = s.Linksym() |
| if s.AlgGen() { |
| return lsym |
| } |
| s.SetAlgGen(true) |
| |
| if memhashvarlen == nil { |
| memhashvarlen = sysfunc("memhash_varlen") |
| memequalvarlen = sysvar("memequal_varlen") // asm func |
| } |
| |
| // make hash closure |
| p = fmt.Sprintf(".hashfunc%d", t.Width) |
| |
| hashfunc = typeLookup(p).Linksym() |
| |
| ot := 0 |
| ot = dsymptr(hashfunc, ot, memhashvarlen, 0) |
| ot = duintptr(hashfunc, ot, uint64(t.Width)) // size encoded in closure |
| ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA) |
| |
| // make equality closure |
| p = fmt.Sprintf(".eqfunc%d", t.Width) |
| |
| eqfunc = typeLookup(p).Linksym() |
| |
| ot = 0 |
| ot = dsymptr(eqfunc, ot, memequalvarlen, 0) |
| ot = duintptr(eqfunc, ot, uint64(t.Width)) |
| ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA) |
| } else { |
| // generate an alg table specific to this type |
| s := typesymprefix(".alg", t) |
| lsym = s.Linksym() |
| |
| hash := typesymprefix(".hash", t) |
| eq := typesymprefix(".eq", t) |
| hashfunc = typesymprefix(".hashfunc", t).Linksym() |
| eqfunc = typesymprefix(".eqfunc", t).Linksym() |
| |
| genhash(hash, t) |
| geneq(eq, t) |
| |
| // make Go funcs (closures) for calling hash and equal from Go |
| dsymptr(hashfunc, 0, hash.Linksym(), 0) |
| ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA) |
| dsymptr(eqfunc, 0, eq.Linksym(), 0) |
| ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA) |
| } |
| |
| // ../../../../runtime/alg.go:/typeAlg |
| ot := 0 |
| |
| ot = dsymptr(lsym, ot, hashfunc, 0) |
| ot = dsymptr(lsym, ot, eqfunc, 0) |
| ggloblsym(lsym, int32(ot), obj.DUPOK|obj.RODATA) |
| return lsym |
| } |
| |
| // maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap, |
| // which holds 1-bit entries describing where pointers are in a given type. |
| // Above this length, the GC information is recorded as a GC program, |
| // which can express repetition compactly. In either form, the |
| // information is used by the runtime to initialize the heap bitmap, |
| // and for large types (like 128 or more words), they are roughly the |
| // same speed. GC programs are never much larger and often more |
| // compact. (If large arrays are involved, they can be arbitrarily |
| // more compact.) |
| // |
| // The cutoff must be large enough that any allocation large enough to |
| // use a GC program is large enough that it does not share heap bitmap |
| // bytes with any other objects, allowing the GC program execution to |
| // assume an aligned start and not use atomic operations. In the current |
| // runtime, this means all malloc size classes larger than the cutoff must |
| // be multiples of four words. On 32-bit systems that's 16 bytes, and |
| // all size classes >= 16 bytes are 16-byte aligned, so no real constraint. |
| // On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed |
| // for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated |
| // is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes |
| // must be >= 4. |
| // |
| // We used to use 16 because the GC programs do have some constant overhead |
| // to get started, and processing 128 pointers seems to be enough to |
| // amortize that overhead well. |
| // |
| // To make sure that the runtime's chansend can call typeBitsBulkBarrier, |
| // we raised the limit to 2048, so that even 32-bit systems are guaranteed to |
| // use bitmaps for objects up to 64 kB in size. |
| // |
| // Also known to reflect/type.go. |
| // |
| const maxPtrmaskBytes = 2048 |
| |
| // dgcsym emits and returns a data symbol containing GC information for type t, |
| // along with a boolean reporting whether the UseGCProg bit should be set in |
| // the type kind, and the ptrdata field to record in the reflect type information. |
| func dgcsym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) { |
| ptrdata = typeptrdata(t) |
| if ptrdata/int64(Widthptr) <= maxPtrmaskBytes*8 { |
| lsym = dgcptrmask(t) |
| return |
| } |
| |
| useGCProg = true |
| lsym, ptrdata = dgcprog(t) |
| return |
| } |
| |
| // dgcptrmask emits and returns the symbol containing a pointer mask for type t. |
| func dgcptrmask(t *types.Type) *obj.LSym { |
| ptrmask := make([]byte, (typeptrdata(t)/int64(Widthptr)+7)/8) |
| fillptrmask(t, ptrmask) |
| p := fmt.Sprintf("gcbits.%x", ptrmask) |
| |
| sym := Runtimepkg.Lookup(p) |
| lsym := sym.Linksym() |
| if !sym.Uniq() { |
| sym.SetUniq(true) |
| for i, x := range ptrmask { |
| duint8(lsym, i, x) |
| } |
| ggloblsym(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL) |
| } |
| return lsym |
| } |
| |
| // fillptrmask fills in ptrmask with 1s corresponding to the |
| // word offsets in t that hold pointers. |
| // ptrmask is assumed to fit at least typeptrdata(t)/Widthptr bits. |
| func fillptrmask(t *types.Type, ptrmask []byte) { |
| for i := range ptrmask { |
| ptrmask[i] = 0 |
| } |
| if !types.Haspointers(t) { |
| return |
| } |
| |
| vec := bvalloc(8 * int32(len(ptrmask))) |
| onebitwalktype1(t, 0, vec) |
| |
| nptr := typeptrdata(t) / int64(Widthptr) |
| for i := int64(0); i < nptr; i++ { |
| if vec.Get(int32(i)) { |
| ptrmask[i/8] |= 1 << (uint(i) % 8) |
| } |
| } |
| } |
| |
| // dgcprog emits and returns the symbol containing a GC program for type t |
| // along with the size of the data described by the program (in the range [typeptrdata(t), t.Width]). |
| // In practice, the size is typeptrdata(t) except for non-trivial arrays. |
| // For non-trivial arrays, the program describes the full t.Width size. |
| func dgcprog(t *types.Type) (*obj.LSym, int64) { |
| dowidth(t) |
| if t.Width == BADWIDTH { |
| Fatalf("dgcprog: %v badwidth", t) |
| } |
| lsym := typesymprefix(".gcprog", t).Linksym() |
| var p GCProg |
| p.init(lsym) |
| p.emit(t, 0) |
| offset := p.w.BitIndex() * int64(Widthptr) |
| p.end() |
| if ptrdata := typeptrdata(t); offset < ptrdata || offset > t.Width { |
| Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Width) |
| } |
| return lsym, offset |
| } |
| |
| type GCProg struct { |
| lsym *obj.LSym |
| symoff int |
| w gcprog.Writer |
| } |
| |
| var Debug_gcprog int // set by -d gcprog |
| |
| func (p *GCProg) init(lsym *obj.LSym) { |
| p.lsym = lsym |
| p.symoff = 4 // first 4 bytes hold program length |
| p.w.Init(p.writeByte) |
| if Debug_gcprog > 0 { |
| fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym) |
| p.w.Debug(os.Stderr) |
| } |
| } |
| |
| func (p *GCProg) writeByte(x byte) { |
| p.symoff = duint8(p.lsym, p.symoff, x) |
| } |
| |
| func (p *GCProg) end() { |
| p.w.End() |
| duint32(p.lsym, 0, uint32(p.symoff-4)) |
| ggloblsym(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL) |
| if Debug_gcprog > 0 { |
| fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym) |
| } |
| } |
| |
| func (p *GCProg) emit(t *types.Type, offset int64) { |
| dowidth(t) |
| if !types.Haspointers(t) { |
| return |
| } |
| if t.Width == int64(Widthptr) { |
| p.w.Ptr(offset / int64(Widthptr)) |
| return |
| } |
| switch t.Etype { |
| default: |
| Fatalf("GCProg.emit: unexpected type %v", t) |
| |
| case TSTRING: |
| p.w.Ptr(offset / int64(Widthptr)) |
| |
| case TINTER: |
| // Note: the first word isn't a pointer. See comment in plive.go:onebitwalktype1. |
| p.w.Ptr(offset/int64(Widthptr) + 1) |
| |
| case TSLICE: |
| p.w.Ptr(offset / int64(Widthptr)) |
| |
| case TARRAY: |
| if t.NumElem() == 0 { |
| // should have been handled by haspointers check above |
| Fatalf("GCProg.emit: empty array") |
| } |
| |
| // Flatten array-of-array-of-array to just a big array by multiplying counts. |
| count := t.NumElem() |
| elem := t.Elem() |
| for elem.IsArray() { |
| count *= elem.NumElem() |
| elem = elem.Elem() |
| } |
| |
| if !p.w.ShouldRepeat(elem.Width/int64(Widthptr), count) { |
| // Cheaper to just emit the bits. |
| for i := int64(0); i < count; i++ { |
| p.emit(elem, offset+i*elem.Width) |
| } |
| return |
| } |
| p.emit(elem, offset) |
| p.w.ZeroUntil((offset + elem.Width) / int64(Widthptr)) |
| p.w.Repeat(elem.Width/int64(Widthptr), count-1) |
| |
| case TSTRUCT: |
| for _, t1 := range t.Fields().Slice() { |
| p.emit(t1.Type, offset+t1.Offset) |
| } |
| } |
| } |
| |
| // zeroaddr returns the address of a symbol with at least |
| // size bytes of zeros. |
| func zeroaddr(size int64) *Node { |
| if size >= 1<<31 { |
| Fatalf("map elem too big %d", size) |
| } |
| if zerosize < size { |
| zerosize = size |
| } |
| s := mappkg.Lookup("zero") |
| if s.Def == nil { |
| x := newname(s) |
| x.Type = types.Types[TUINT8] |
| x.SetClass(PEXTERN) |
| x.SetTypecheck(1) |
| s.Def = asTypesNode(x) |
| } |
| z := nod(OADDR, asNode(s.Def), nil) |
| z.Type = types.NewPtr(types.Types[TUINT8]) |
| z.SetAddable(true) |
| z.SetTypecheck(1) |
| return z |
| } |