| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package template |
| |
| import ( |
| "fmt" |
| "io" |
| "reflect" |
| "runtime" |
| "strings" |
| "text/template/parse" |
| ) |
| |
| // state represents the state of an execution. It's not part of the |
| // template so that multiple executions of the same template |
| // can execute in parallel. |
| type state struct { |
| tmpl *Template |
| wr io.Writer |
| line int // line number for errors |
| vars []variable // push-down stack of variable values. |
| } |
| |
| // variable holds the dynamic value of a variable such as $, $x etc. |
| type variable struct { |
| name string |
| value reflect.Value |
| } |
| |
| // push pushes a new variable on the stack. |
| func (s *state) push(name string, value reflect.Value) { |
| s.vars = append(s.vars, variable{name, value}) |
| } |
| |
| // mark returns the length of the variable stack. |
| func (s *state) mark() int { |
| return len(s.vars) |
| } |
| |
| // pop pops the variable stack up to the mark. |
| func (s *state) pop(mark int) { |
| s.vars = s.vars[0:mark] |
| } |
| |
| // setVar overwrites the top-nth variable on the stack. Used by range iterations. |
| func (s *state) setVar(n int, value reflect.Value) { |
| s.vars[len(s.vars)-n].value = value |
| } |
| |
| // varValue returns the value of the named variable. |
| func (s *state) varValue(name string) reflect.Value { |
| for i := s.mark() - 1; i >= 0; i-- { |
| if s.vars[i].name == name { |
| return s.vars[i].value |
| } |
| } |
| s.errorf("undefined variable: %s", name) |
| return zero |
| } |
| |
| var zero reflect.Value |
| |
| // errorf formats the error and terminates processing. |
| func (s *state) errorf(format string, args ...interface{}) { |
| format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.Name(), s.line, format) |
| panic(fmt.Errorf(format, args...)) |
| } |
| |
| // error terminates processing. |
| func (s *state) error(err error) { |
| s.errorf("%s", err) |
| } |
| |
| // errRecover is the handler that turns panics into returns from the top |
| // level of Parse. |
| func errRecover(errp *error) { |
| e := recover() |
| if e != nil { |
| if _, ok := e.(runtime.Error); ok { |
| panic(e) |
| } |
| *errp = e.(error) |
| } |
| } |
| |
| // Execute applies a parsed template to the specified data object, |
| // writing the output to wr. |
| func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { |
| defer errRecover(&err) |
| value := reflect.ValueOf(data) |
| state := &state{ |
| tmpl: t, |
| wr: wr, |
| line: 1, |
| vars: []variable{{"$", value}}, |
| } |
| if t.Tree == nil || t.Root == nil { |
| state.errorf("must be parsed before execution") |
| } |
| state.walk(value, t.Root) |
| return |
| } |
| |
| // Walk functions step through the major pieces of the template structure, |
| // generating output as they go. |
| func (s *state) walk(dot reflect.Value, n parse.Node) { |
| switch n := n.(type) { |
| case *parse.ActionNode: |
| s.line = n.Line |
| // Do not pop variables so they persist until next end. |
| // Also, if the action declares variables, don't print the result. |
| val := s.evalPipeline(dot, n.Pipe) |
| if len(n.Pipe.Decl) == 0 { |
| s.printValue(n, val) |
| } |
| case *parse.IfNode: |
| s.line = n.Line |
| s.walkIfOrWith(parse.NodeIf, dot, n.Pipe, n.List, n.ElseList) |
| case *parse.ListNode: |
| for _, node := range n.Nodes { |
| s.walk(dot, node) |
| } |
| case *parse.RangeNode: |
| s.line = n.Line |
| s.walkRange(dot, n) |
| case *parse.TemplateNode: |
| s.line = n.Line |
| s.walkTemplate(dot, n) |
| case *parse.TextNode: |
| if _, err := s.wr.Write(n.Text); err != nil { |
| s.error(err) |
| } |
| case *parse.WithNode: |
| s.line = n.Line |
| s.walkIfOrWith(parse.NodeWith, dot, n.Pipe, n.List, n.ElseList) |
| default: |
| s.errorf("unknown node: %s", n) |
| } |
| } |
| |
| // walkIfOrWith walks an 'if' or 'with' node. The two control structures |
| // are identical in behavior except that 'with' sets dot. |
| func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { |
| defer s.pop(s.mark()) |
| val := s.evalPipeline(dot, pipe) |
| truth, ok := isTrue(val) |
| if !ok { |
| s.errorf("if/with can't use %v", val) |
| } |
| if truth { |
| if typ == parse.NodeWith { |
| s.walk(val, list) |
| } else { |
| s.walk(dot, list) |
| } |
| } else if elseList != nil { |
| s.walk(dot, elseList) |
| } |
| } |
| |
| // isTrue returns whether the value is 'true', in the sense of not the zero of its type, |
| // and whether the value has a meaningful truth value. |
| func isTrue(val reflect.Value) (truth, ok bool) { |
| if !val.IsValid() { |
| // Something like var x interface{}, never set. It's a form of nil. |
| return false, true |
| } |
| switch val.Kind() { |
| case reflect.Array, reflect.Map, reflect.Slice, reflect.String: |
| truth = val.Len() > 0 |
| case reflect.Bool: |
| truth = val.Bool() |
| case reflect.Complex64, reflect.Complex128: |
| truth = val.Complex() != 0 |
| case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: |
| truth = !val.IsNil() |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| truth = val.Int() != 0 |
| case reflect.Float32, reflect.Float64: |
| truth = val.Float() != 0 |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| truth = val.Uint() != 0 |
| case reflect.Struct: |
| truth = true // Struct values are always true. |
| default: |
| return |
| } |
| return truth, true |
| } |
| |
| func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { |
| defer s.pop(s.mark()) |
| val, _ := indirect(s.evalPipeline(dot, r.Pipe)) |
| // mark top of stack before any variables in the body are pushed. |
| mark := s.mark() |
| oneIteration := func(index, elem reflect.Value) { |
| // Set top var (lexically the second if there are two) to the element. |
| if len(r.Pipe.Decl) > 0 { |
| s.setVar(1, elem) |
| } |
| // Set next var (lexically the first if there are two) to the index. |
| if len(r.Pipe.Decl) > 1 { |
| s.setVar(2, index) |
| } |
| s.walk(elem, r.List) |
| s.pop(mark) |
| } |
| switch val.Kind() { |
| case reflect.Array, reflect.Slice: |
| if val.Len() == 0 { |
| break |
| } |
| for i := 0; i < val.Len(); i++ { |
| oneIteration(reflect.ValueOf(i), val.Index(i)) |
| } |
| return |
| case reflect.Map: |
| if val.Len() == 0 { |
| break |
| } |
| for _, key := range val.MapKeys() { |
| oneIteration(key, val.MapIndex(key)) |
| } |
| return |
| case reflect.Chan: |
| if val.IsNil() { |
| break |
| } |
| i := 0 |
| for ; ; i++ { |
| elem, ok := val.Recv() |
| if !ok { |
| break |
| } |
| oneIteration(reflect.ValueOf(i), elem) |
| } |
| if i == 0 { |
| break |
| } |
| return |
| case reflect.Invalid: |
| break // An invalid value is likely a nil map, etc. and acts like an empty map. |
| default: |
| s.errorf("range can't iterate over %v", val) |
| } |
| if r.ElseList != nil { |
| s.walk(dot, r.ElseList) |
| } |
| } |
| |
| func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { |
| set := s.tmpl.set |
| if set == nil { |
| s.errorf("no set defined in which to invoke template named %q", t.Name) |
| } |
| tmpl := set.tmpl[t.Name] |
| if tmpl == nil { |
| s.errorf("template %q not in set", t.Name) |
| } |
| // Variables declared by the pipeline persist. |
| dot = s.evalPipeline(dot, t.Pipe) |
| newState := *s |
| newState.tmpl = tmpl |
| // No dynamic scoping: template invocations inherit no variables. |
| newState.vars = []variable{{"$", dot}} |
| newState.walk(dot, tmpl.Root) |
| } |
| |
| // Eval functions evaluate pipelines, commands, and their elements and extract |
| // values from the data structure by examining fields, calling methods, and so on. |
| // The printing of those values happens only through walk functions. |
| |
| // evalPipeline returns the value acquired by evaluating a pipeline. If the |
| // pipeline has a variable declaration, the variable will be pushed on the |
| // stack. Callers should therefore pop the stack after they are finished |
| // executing commands depending on the pipeline value. |
| func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { |
| if pipe == nil { |
| return |
| } |
| for _, cmd := range pipe.Cmds { |
| value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. |
| // If the object has type interface{}, dig down one level to the thing inside. |
| if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { |
| value = reflect.ValueOf(value.Interface()) // lovely! |
| } |
| } |
| for _, variable := range pipe.Decl { |
| s.push(variable.Ident[0], value) |
| } |
| return value |
| } |
| |
| func (s *state) notAFunction(args []parse.Node, final reflect.Value) { |
| if len(args) > 1 || final.IsValid() { |
| s.errorf("can't give argument to non-function %s", args[0]) |
| } |
| } |
| |
| func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { |
| firstWord := cmd.Args[0] |
| switch n := firstWord.(type) { |
| case *parse.FieldNode: |
| return s.evalFieldNode(dot, n, cmd.Args, final) |
| case *parse.IdentifierNode: |
| // Must be a function. |
| return s.evalFunction(dot, n.Ident, cmd.Args, final) |
| case *parse.VariableNode: |
| return s.evalVariableNode(dot, n, cmd.Args, final) |
| } |
| s.notAFunction(cmd.Args, final) |
| switch word := firstWord.(type) { |
| case *parse.BoolNode: |
| return reflect.ValueOf(word.True) |
| case *parse.DotNode: |
| return dot |
| case *parse.NumberNode: |
| return s.idealConstant(word) |
| case *parse.StringNode: |
| return reflect.ValueOf(word.Text) |
| } |
| s.errorf("can't evaluate command %q", firstWord) |
| panic("not reached") |
| } |
| |
| // idealConstant is called to return the value of a number in a context where |
| // we don't know the type. In that case, the syntax of the number tells us |
| // its type, and we use Go rules to resolve. Note there is no such thing as |
| // a uint ideal constant in this situation - the value must be of int type. |
| func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { |
| // These are ideal constants but we don't know the type |
| // and we have no context. (If it was a method argument, |
| // we'd know what we need.) The syntax guides us to some extent. |
| switch { |
| case constant.IsComplex: |
| return reflect.ValueOf(constant.Complex128) // incontrovertible. |
| case constant.IsFloat && strings.IndexAny(constant.Text, ".eE") >= 0: |
| return reflect.ValueOf(constant.Float64) |
| case constant.IsInt: |
| n := int(constant.Int64) |
| if int64(n) != constant.Int64 { |
| s.errorf("%s overflows int", constant.Text) |
| } |
| return reflect.ValueOf(n) |
| case constant.IsUint: |
| s.errorf("%s overflows int", constant.Text) |
| } |
| return zero |
| } |
| |
| func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { |
| return s.evalFieldChain(dot, dot, field.Ident, args, final) |
| } |
| |
| func (s *state) evalVariableNode(dot reflect.Value, v *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { |
| // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. |
| value := s.varValue(v.Ident[0]) |
| if len(v.Ident) == 1 { |
| return value |
| } |
| return s.evalFieldChain(dot, value, v.Ident[1:], args, final) |
| } |
| |
| // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. |
| // dot is the environment in which to evaluate arguments, while |
| // receiver is the value being walked along the chain. |
| func (s *state) evalFieldChain(dot, receiver reflect.Value, ident []string, args []parse.Node, final reflect.Value) reflect.Value { |
| n := len(ident) |
| for i := 0; i < n-1; i++ { |
| receiver = s.evalField(dot, ident[i], nil, zero, receiver) |
| } |
| // Now if it's a method, it gets the arguments. |
| return s.evalField(dot, ident[n-1], args, final, receiver) |
| } |
| |
| func (s *state) evalFunction(dot reflect.Value, name string, args []parse.Node, final reflect.Value) reflect.Value { |
| function, ok := findFunction(name, s.tmpl, s.tmpl.set) |
| if !ok { |
| s.errorf("%q is not a defined function", name) |
| } |
| return s.evalCall(dot, function, name, args, final) |
| } |
| |
| // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). |
| // The 'final' argument represents the return value from the preceding |
| // value of the pipeline, if any. |
| func (s *state) evalField(dot reflect.Value, fieldName string, args []parse.Node, final, receiver reflect.Value) reflect.Value { |
| if !receiver.IsValid() { |
| return zero |
| } |
| typ := receiver.Type() |
| receiver, _ = indirect(receiver) |
| // Unless it's an interface, need to get to a value of type *T to guarantee |
| // we see all methods of T and *T. |
| ptr := receiver |
| if ptr.Kind() != reflect.Interface && ptr.CanAddr() { |
| ptr = ptr.Addr() |
| } |
| if method, ok := methodByName(ptr, fieldName); ok { |
| return s.evalCall(dot, method, fieldName, args, final) |
| } |
| hasArgs := len(args) > 1 || final.IsValid() |
| // It's not a method; is it a field of a struct? |
| receiver, isNil := indirect(receiver) |
| if receiver.Kind() == reflect.Struct { |
| tField, ok := receiver.Type().FieldByName(fieldName) |
| if ok { |
| field := receiver.FieldByIndex(tField.Index) |
| if hasArgs { |
| s.errorf("%s is not a method but has arguments", fieldName) |
| } |
| if tField.PkgPath == "" { // field is exported |
| return field |
| } |
| } |
| } |
| // If it's a map, attempt to use the field name as a key. |
| if receiver.Kind() == reflect.Map { |
| nameVal := reflect.ValueOf(fieldName) |
| if nameVal.Type().AssignableTo(receiver.Type().Key()) { |
| if hasArgs { |
| s.errorf("%s is not a method but has arguments", fieldName) |
| } |
| return receiver.MapIndex(nameVal) |
| } |
| } |
| if isNil { |
| s.errorf("nil pointer evaluating %s.%s", typ, fieldName) |
| } |
| s.errorf("can't evaluate field %s in type %s", fieldName, typ) |
| panic("not reached") |
| } |
| |
| // TODO: delete when reflect's own MethodByName is released. |
| func methodByName(receiver reflect.Value, name string) (reflect.Value, bool) { |
| typ := receiver.Type() |
| for i := 0; i < typ.NumMethod(); i++ { |
| if typ.Method(i).Name == name { |
| return receiver.Method(i), true // This value includes the receiver. |
| } |
| } |
| return zero, false |
| } |
| |
| var ( |
| errorType = reflect.TypeOf((*error)(nil)).Elem() |
| fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() |
| ) |
| |
| // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so |
| // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] |
| // as the function itself. |
| func (s *state) evalCall(dot, fun reflect.Value, name string, args []parse.Node, final reflect.Value) reflect.Value { |
| if args != nil { |
| args = args[1:] // Zeroth arg is function name/node; not passed to function. |
| } |
| typ := fun.Type() |
| numIn := len(args) |
| if final.IsValid() { |
| numIn++ |
| } |
| numFixed := len(args) |
| if typ.IsVariadic() { |
| numFixed = typ.NumIn() - 1 // last arg is the variadic one. |
| if numIn < numFixed { |
| s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) |
| } |
| } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { |
| s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) |
| } |
| if !goodFunc(typ) { |
| s.errorf("can't handle multiple results from method/function %q", name) |
| } |
| // Build the arg list. |
| argv := make([]reflect.Value, numIn) |
| // Args must be evaluated. Fixed args first. |
| i := 0 |
| for ; i < numFixed; i++ { |
| argv[i] = s.evalArg(dot, typ.In(i), args[i]) |
| } |
| // Now the ... args. |
| if typ.IsVariadic() { |
| argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. |
| for ; i < len(args); i++ { |
| argv[i] = s.evalArg(dot, argType, args[i]) |
| } |
| } |
| // Add final value if necessary. |
| if final.IsValid() { |
| argv[i] = final |
| } |
| result := fun.Call(argv) |
| // If we have an error that is not nil, stop execution and return that error to the caller. |
| if len(result) == 2 && !result[1].IsNil() { |
| s.errorf("error calling %s: %s", name, result[1].Interface().(error)) |
| } |
| return result[0] |
| } |
| |
| // validateType guarantees that the value is valid and assignable to the type. |
| func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { |
| if !value.IsValid() { |
| s.errorf("invalid value; expected %s", typ) |
| } |
| if !value.Type().AssignableTo(typ) { |
| // Does one dereference or indirection work? We could do more, as we |
| // do with method receivers, but that gets messy and method receivers |
| // are much more constrained, so it makes more sense there than here. |
| // Besides, one is almost always all you need. |
| switch { |
| case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): |
| value = value.Elem() |
| case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): |
| value = value.Addr() |
| default: |
| s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) |
| } |
| } |
| return value |
| } |
| |
| func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { |
| switch arg := n.(type) { |
| case *parse.DotNode: |
| return s.validateType(dot, typ) |
| case *parse.FieldNode: |
| return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) |
| case *parse.VariableNode: |
| return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) |
| } |
| switch typ.Kind() { |
| case reflect.Bool: |
| return s.evalBool(typ, n) |
| case reflect.Complex64, reflect.Complex128: |
| return s.evalComplex(typ, n) |
| case reflect.Float32, reflect.Float64: |
| return s.evalFloat(typ, n) |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return s.evalInteger(typ, n) |
| case reflect.Interface: |
| if typ.NumMethod() == 0 { |
| return s.evalEmptyInterface(dot, n) |
| } |
| case reflect.String: |
| return s.evalString(typ, n) |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return s.evalUnsignedInteger(typ, n) |
| } |
| s.errorf("can't handle %s for arg of type %s", n, typ) |
| panic("not reached") |
| } |
| |
| func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.BoolNode); ok { |
| value := reflect.New(typ).Elem() |
| value.SetBool(n.True) |
| return value |
| } |
| s.errorf("expected bool; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.StringNode); ok { |
| value := reflect.New(typ).Elem() |
| value.SetString(n.Text) |
| return value |
| } |
| s.errorf("expected string; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.NumberNode); ok && n.IsInt { |
| value := reflect.New(typ).Elem() |
| value.SetInt(n.Int64) |
| return value |
| } |
| s.errorf("expected integer; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.NumberNode); ok && n.IsUint { |
| value := reflect.New(typ).Elem() |
| value.SetUint(n.Uint64) |
| return value |
| } |
| s.errorf("expected unsigned integer; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { |
| value := reflect.New(typ).Elem() |
| value.SetFloat(n.Float64) |
| return value |
| } |
| s.errorf("expected float; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { |
| if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { |
| value := reflect.New(typ).Elem() |
| value.SetComplex(n.Complex128) |
| return value |
| } |
| s.errorf("expected complex; found %s", n) |
| panic("not reached") |
| } |
| |
| func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { |
| switch n := n.(type) { |
| case *parse.BoolNode: |
| return reflect.ValueOf(n.True) |
| case *parse.DotNode: |
| return dot |
| case *parse.FieldNode: |
| return s.evalFieldNode(dot, n, nil, zero) |
| case *parse.IdentifierNode: |
| return s.evalFunction(dot, n.Ident, nil, zero) |
| case *parse.NumberNode: |
| return s.idealConstant(n) |
| case *parse.StringNode: |
| return reflect.ValueOf(n.Text) |
| case *parse.VariableNode: |
| return s.evalVariableNode(dot, n, nil, zero) |
| } |
| s.errorf("can't handle assignment of %s to empty interface argument", n) |
| panic("not reached") |
| } |
| |
| // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. |
| // We indirect through pointers and empty interfaces (only) because |
| // non-empty interfaces have methods we might need. |
| func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { |
| for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { |
| if v.IsNil() { |
| return v, true |
| } |
| if v.Kind() == reflect.Interface && v.NumMethod() > 0 { |
| break |
| } |
| } |
| return v, false |
| } |
| |
| // printValue writes the textual representation of the value to the output of |
| // the template. |
| func (s *state) printValue(n parse.Node, v reflect.Value) { |
| if v.Kind() == reflect.Ptr { |
| v, _ = indirect(v) // fmt.Fprint handles nil. |
| } |
| if !v.IsValid() { |
| fmt.Fprint(s.wr, "<no value>") |
| return |
| } |
| |
| if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { |
| if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { |
| v = v.Addr() |
| } else { |
| switch v.Kind() { |
| case reflect.Chan, reflect.Func: |
| s.errorf("can't print %s of type %s", n, v.Type()) |
| } |
| } |
| } |
| fmt.Fprint(s.wr, v.Interface()) |
| } |