| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package regexp implements a simple regular expression library. |
| // |
| // The syntax of the regular expressions accepted is: |
| // |
| // regexp: |
| // concatenation { '|' concatenation } |
| // concatenation: |
| // { closure } |
| // closure: |
| // term [ '*' | '+' | '?' ] |
| // term: |
| // '^' |
| // '$' |
| // '.' |
| // character |
| // '[' [ '^' ] { character-range } ']' |
| // '(' regexp ')' |
| // character-range: |
| // character [ '-' character ] |
| // |
| // All characters are UTF-8-encoded code points. Backslashes escape special |
| // characters, including inside character classes. The standard Go character |
| // escapes are also recognized: \a \b \f \n \r \t \v. |
| // |
| // There are 16 methods of Regexp that match a regular expression and identify |
| // the matched text. Their names are matched by this regular expression: |
| // |
| // Find(All)?(String)?(Submatch)?(Index)? |
| // |
| // If 'All' is present, the routine matches successive non-overlapping |
| // matches of the entire expression. Empty matches abutting a preceding |
| // match are ignored. The return value is a slice containing the successive |
| // return values of the corresponding non-'All' routine. These routines take |
| // an extra integer argument, n; if n >= 0, the function returns at most n |
| // matches/submatches. |
| // |
| // If 'String' is present, the argument is a string; otherwise it is a slice |
| // of bytes; return values are adjusted as appropriate. |
| // |
| // If 'Submatch' is present, the return value is a slice identifying the |
| // successive submatches of the expression. Submatches are matches of |
| // parenthesized subexpressions within the regular expression, numbered from |
| // left to right in order of opening parenthesis. Submatch 0 is the match of |
| // the entire expression, submatch 1 the match of the first parenthesized |
| // subexpression, and so on. |
| // |
| // If 'Index' is present, matches and submatches are identified by byte index |
| // pairs within the input string: result[2*n:2*n+1] identifies the indexes of |
| // the nth submatch. The pair for n==0 identifies the match of the entire |
| // expression. If 'Index' is not present, the match is identified by the |
| // text of the match/submatch. If an index is negative, it means that |
| // subexpression did not match any string in the input. |
| // |
| // There is also a subset of the methods that can be applied to text read |
| // from a RuneReader: |
| // |
| // MatchReader, FindReaderIndex, FindReaderSubmatchIndex |
| // |
| // This set may grow. Note that regular expression matches may need to |
| // examine text beyond the text returned by a match, so the methods that |
| // match text from a RuneReader may read arbitrarily far into the input |
| // before returning. |
| // |
| // (There are a few other methods that do not match this pattern.) |
| // |
| package regexp |
| |
| import ( |
| "bytes" |
| "io" |
| "strings" |
| "unicode/utf8" |
| ) |
| |
| var debug = false |
| |
| // Error is the local type for a parsing error. |
| type Error string |
| |
| func (e Error) Error() string { |
| return string(e) |
| } |
| |
| // Error codes returned by failures to parse an expression. |
| var ( |
| ErrInternal = Error("regexp: internal error") |
| ErrUnmatchedLpar = Error("regexp: unmatched '('") |
| ErrUnmatchedRpar = Error("regexp: unmatched ')'") |
| ErrUnmatchedLbkt = Error("regexp: unmatched '['") |
| ErrUnmatchedRbkt = Error("regexp: unmatched ']'") |
| ErrBadRange = Error("regexp: bad range in character class") |
| ErrExtraneousBackslash = Error("regexp: extraneous backslash") |
| ErrBadClosure = Error("regexp: repeated closure (**, ++, etc.)") |
| ErrBareClosure = Error("regexp: closure applies to nothing") |
| ErrBadBackslash = Error("regexp: illegal backslash escape") |
| ) |
| |
| const ( |
| iStart = iota // beginning of program |
| iEnd // end of program: success |
| iBOT // '^' beginning of text |
| iEOT // '$' end of text |
| iChar // 'a' regular character |
| iCharClass // [a-z] character class |
| iAny // '.' any character including newline |
| iNotNL // [^\n] special case: any character but newline |
| iBra // '(' parenthesized expression: 2*braNum for left, 2*braNum+1 for right |
| iAlt // '|' alternation |
| iNop // do nothing; makes it easy to link without patching |
| ) |
| |
| // An instruction executed by the NFA |
| type instr struct { |
| kind int // the type of this instruction: iChar, iAny, etc. |
| index int // used only in debugging; could be eliminated |
| next *instr // the instruction to execute after this one |
| // Special fields valid only for some items. |
| char rune // iChar |
| braNum int // iBra, iEbra |
| cclass *charClass // iCharClass |
| left *instr // iAlt, other branch |
| } |
| |
| func (i *instr) print() { |
| switch i.kind { |
| case iStart: |
| print("start") |
| case iEnd: |
| print("end") |
| case iBOT: |
| print("bot") |
| case iEOT: |
| print("eot") |
| case iChar: |
| print("char ", string(i.char)) |
| case iCharClass: |
| i.cclass.print() |
| case iAny: |
| print("any") |
| case iNotNL: |
| print("notnl") |
| case iBra: |
| if i.braNum&1 == 0 { |
| print("bra", i.braNum/2) |
| } else { |
| print("ebra", i.braNum/2) |
| } |
| case iAlt: |
| print("alt(", i.left.index, ")") |
| case iNop: |
| print("nop") |
| } |
| } |
| |
| // Regexp is the representation of a compiled regular expression. |
| // The public interface is entirely through methods. |
| // A Regexp is safe for concurrent use by multiple goroutines. |
| type Regexp struct { |
| expr string // the original expression |
| prefix string // initial plain text string |
| prefixBytes []byte // initial plain text bytes |
| inst []*instr |
| start *instr // first instruction of machine |
| prefixStart *instr // where to start if there is a prefix |
| nbra int // number of brackets in expression, for subexpressions |
| } |
| |
| type charClass struct { |
| negate bool // is character class negated? ([^a-z]) |
| // slice of int, stored pairwise: [a-z] is (a,z); x is (x,x): |
| ranges []rune |
| cmin, cmax rune |
| } |
| |
| func (cclass *charClass) print() { |
| print("charclass") |
| if cclass.negate { |
| print(" (negated)") |
| } |
| for i := 0; i < len(cclass.ranges); i += 2 { |
| l := cclass.ranges[i] |
| r := cclass.ranges[i+1] |
| if l == r { |
| print(" [", string(l), "]") |
| } else { |
| print(" [", string(l), "-", string(r), "]") |
| } |
| } |
| } |
| |
| func (cclass *charClass) addRange(a, b rune) { |
| // range is a through b inclusive |
| cclass.ranges = append(cclass.ranges, a, b) |
| if a < cclass.cmin { |
| cclass.cmin = a |
| } |
| if b > cclass.cmax { |
| cclass.cmax = b |
| } |
| } |
| |
| func (cclass *charClass) matches(c rune) bool { |
| if c < cclass.cmin || c > cclass.cmax { |
| return cclass.negate |
| } |
| ranges := cclass.ranges |
| for i := 0; i < len(ranges); i = i + 2 { |
| if ranges[i] <= c && c <= ranges[i+1] { |
| return !cclass.negate |
| } |
| } |
| return cclass.negate |
| } |
| |
| func newCharClass() *instr { |
| i := &instr{kind: iCharClass} |
| i.cclass = new(charClass) |
| i.cclass.ranges = make([]rune, 0, 4) |
| i.cclass.cmin = 0x10FFFF + 1 // MaxRune + 1 |
| i.cclass.cmax = -1 |
| return i |
| } |
| |
| func (re *Regexp) add(i *instr) *instr { |
| i.index = len(re.inst) |
| re.inst = append(re.inst, i) |
| return i |
| } |
| |
| type parser struct { |
| re *Regexp |
| nlpar int // number of unclosed lpars |
| pos int |
| ch rune |
| } |
| |
| func (p *parser) error(err Error) { |
| panic(err) |
| } |
| |
| const endOfText = -1 |
| |
| func (p *parser) c() rune { return p.ch } |
| |
| func (p *parser) nextc() rune { |
| if p.pos >= len(p.re.expr) { |
| p.ch = endOfText |
| } else { |
| c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:]) |
| p.ch = c |
| p.pos += w |
| } |
| return p.ch |
| } |
| |
| func newParser(re *Regexp) *parser { |
| p := new(parser) |
| p.re = re |
| p.nextc() // load p.ch |
| return p |
| } |
| |
| func special(c rune) bool { |
| for _, r := range `\.+*?()|[]^$` { |
| if c == r { |
| return true |
| } |
| } |
| return false |
| } |
| |
| func ispunct(c rune) bool { |
| for _, r := range "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" { |
| if c == r { |
| return true |
| } |
| } |
| return false |
| } |
| |
| var escapes = []byte("abfnrtv") |
| var escaped = []byte("\a\b\f\n\r\t\v") |
| |
| func escape(c rune) int { |
| for i, b := range escapes { |
| if rune(b) == c { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| func (p *parser) checkBackslash() rune { |
| c := p.c() |
| if c == '\\' { |
| c = p.nextc() |
| switch { |
| case c == endOfText: |
| p.error(ErrExtraneousBackslash) |
| case ispunct(c): |
| // c is as delivered |
| case escape(c) >= 0: |
| c = rune(escaped[escape(c)]) |
| default: |
| p.error(ErrBadBackslash) |
| } |
| } |
| return c |
| } |
| |
| func (p *parser) charClass() *instr { |
| i := newCharClass() |
| cc := i.cclass |
| if p.c() == '^' { |
| cc.negate = true |
| p.nextc() |
| } |
| left := rune(-1) |
| for { |
| switch c := p.c(); c { |
| case ']', endOfText: |
| if left >= 0 { |
| p.error(ErrBadRange) |
| } |
| // Is it [^\n]? |
| if cc.negate && len(cc.ranges) == 2 && |
| cc.ranges[0] == '\n' && cc.ranges[1] == '\n' { |
| nl := &instr{kind: iNotNL} |
| p.re.add(nl) |
| return nl |
| } |
| // Special common case: "[a]" -> "a" |
| if !cc.negate && len(cc.ranges) == 2 && cc.ranges[0] == cc.ranges[1] { |
| c := &instr{kind: iChar, char: cc.ranges[0]} |
| p.re.add(c) |
| return c |
| } |
| p.re.add(i) |
| return i |
| case '-': // do this before backslash processing |
| p.error(ErrBadRange) |
| default: |
| c = p.checkBackslash() |
| p.nextc() |
| switch { |
| case left < 0: // first of pair |
| if p.c() == '-' { // range |
| p.nextc() |
| left = c |
| } else { // single char |
| cc.addRange(c, c) |
| } |
| case left <= c: // second of pair |
| cc.addRange(left, c) |
| left = -1 |
| default: |
| p.error(ErrBadRange) |
| } |
| } |
| } |
| panic("unreachable") |
| } |
| |
| func (p *parser) term() (start, end *instr) { |
| switch c := p.c(); c { |
| case '|', endOfText: |
| return nil, nil |
| case '*', '+', '?': |
| p.error(ErrBareClosure) |
| case ')': |
| if p.nlpar == 0 { |
| p.error(ErrUnmatchedRpar) |
| } |
| return nil, nil |
| case ']': |
| p.error(ErrUnmatchedRbkt) |
| case '^': |
| p.nextc() |
| start = p.re.add(&instr{kind: iBOT}) |
| return start, start |
| case '$': |
| p.nextc() |
| start = p.re.add(&instr{kind: iEOT}) |
| return start, start |
| case '.': |
| p.nextc() |
| start = p.re.add(&instr{kind: iAny}) |
| return start, start |
| case '[': |
| p.nextc() |
| start = p.charClass() |
| if p.c() != ']' { |
| p.error(ErrUnmatchedLbkt) |
| } |
| p.nextc() |
| return start, start |
| case '(': |
| p.nextc() |
| p.nlpar++ |
| p.re.nbra++ // increment first so first subexpr is \1 |
| nbra := p.re.nbra |
| start, end = p.regexp() |
| if p.c() != ')' { |
| p.error(ErrUnmatchedLpar) |
| } |
| p.nlpar-- |
| p.nextc() |
| bra := &instr{kind: iBra, braNum: 2 * nbra} |
| p.re.add(bra) |
| ebra := &instr{kind: iBra, braNum: 2*nbra + 1} |
| p.re.add(ebra) |
| if start == nil { |
| if end == nil { |
| p.error(ErrInternal) |
| return |
| } |
| start = ebra |
| } else { |
| end.next = ebra |
| } |
| bra.next = start |
| return bra, ebra |
| default: |
| c = p.checkBackslash() |
| p.nextc() |
| start = &instr{kind: iChar, char: c} |
| p.re.add(start) |
| return start, start |
| } |
| panic("unreachable") |
| } |
| |
| func (p *parser) closure() (start, end *instr) { |
| start, end = p.term() |
| if start == nil { |
| return |
| } |
| switch p.c() { |
| case '*': |
| // (start,end)*: |
| alt := &instr{kind: iAlt} |
| p.re.add(alt) |
| end.next = alt // after end, do alt |
| alt.left = start // alternate brach: return to start |
| start = alt // alt becomes new (start, end) |
| end = alt |
| case '+': |
| // (start,end)+: |
| alt := &instr{kind: iAlt} |
| p.re.add(alt) |
| end.next = alt // after end, do alt |
| alt.left = start // alternate brach: return to start |
| end = alt // start is unchanged; end is alt |
| case '?': |
| // (start,end)?: |
| alt := &instr{kind: iAlt} |
| p.re.add(alt) |
| nop := &instr{kind: iNop} |
| p.re.add(nop) |
| alt.left = start // alternate branch is start |
| alt.next = nop // follow on to nop |
| end.next = nop // after end, go to nop |
| start = alt // start is now alt |
| end = nop // end is nop pointed to by both branches |
| default: |
| return |
| } |
| switch p.nextc() { |
| case '*', '+', '?': |
| p.error(ErrBadClosure) |
| } |
| return |
| } |
| |
| func (p *parser) concatenation() (start, end *instr) { |
| for { |
| nstart, nend := p.closure() |
| switch { |
| case nstart == nil: // end of this concatenation |
| if start == nil { // this is the empty string |
| nop := p.re.add(&instr{kind: iNop}) |
| return nop, nop |
| } |
| return |
| case start == nil: // this is first element of concatenation |
| start, end = nstart, nend |
| default: |
| end.next = nstart |
| end = nend |
| } |
| } |
| panic("unreachable") |
| } |
| |
| func (p *parser) regexp() (start, end *instr) { |
| start, end = p.concatenation() |
| for { |
| switch p.c() { |
| default: |
| return |
| case '|': |
| p.nextc() |
| nstart, nend := p.concatenation() |
| alt := &instr{kind: iAlt} |
| p.re.add(alt) |
| alt.left = start |
| alt.next = nstart |
| nop := &instr{kind: iNop} |
| p.re.add(nop) |
| end.next = nop |
| nend.next = nop |
| start, end = alt, nop |
| } |
| } |
| panic("unreachable") |
| } |
| |
| func unNop(i *instr) *instr { |
| for i.kind == iNop { |
| i = i.next |
| } |
| return i |
| } |
| |
| func (re *Regexp) eliminateNops() { |
| for _, inst := range re.inst { |
| if inst.kind == iEnd { |
| continue |
| } |
| inst.next = unNop(inst.next) |
| if inst.kind == iAlt { |
| inst.left = unNop(inst.left) |
| } |
| } |
| } |
| |
| func (re *Regexp) dump() { |
| print("prefix <", re.prefix, ">\n") |
| for _, inst := range re.inst { |
| print(inst.index, ": ") |
| inst.print() |
| if inst.kind != iEnd { |
| print(" -> ", inst.next.index) |
| } |
| print("\n") |
| } |
| } |
| |
| func (re *Regexp) doParse() { |
| p := newParser(re) |
| start := &instr{kind: iStart} |
| re.add(start) |
| s, e := p.regexp() |
| start.next = s |
| re.start = start |
| e.next = re.add(&instr{kind: iEnd}) |
| |
| if debug { |
| re.dump() |
| println() |
| } |
| |
| re.eliminateNops() |
| if debug { |
| re.dump() |
| println() |
| } |
| re.setPrefix() |
| if debug { |
| re.dump() |
| println() |
| } |
| } |
| |
| // Extract regular text from the beginning of the pattern, |
| // possibly after a leading iBOT. |
| // That text can be used by doExecute to speed up matching. |
| func (re *Regexp) setPrefix() { |
| var b []byte |
| var utf = make([]byte, utf8.UTFMax) |
| var inst *instr |
| // First instruction is start; skip that. Also skip any initial iBOT. |
| inst = re.inst[0].next |
| for inst.kind == iBOT { |
| inst = inst.next |
| } |
| Loop: |
| for ; inst.kind != iEnd; inst = inst.next { |
| // stop if this is not a char |
| if inst.kind != iChar { |
| break |
| } |
| // stop if this char can be followed by a match for an empty string, |
| // which includes closures, ^, and $. |
| switch inst.next.kind { |
| case iBOT, iEOT, iAlt: |
| break Loop |
| } |
| n := utf8.EncodeRune(utf, inst.char) |
| b = append(b, utf[0:n]...) |
| } |
| // point prefixStart instruction to first non-CHAR after prefix |
| re.prefixStart = inst |
| re.prefixBytes = b |
| re.prefix = string(b) |
| } |
| |
| // String returns the source text used to compile the regular expression. |
| func (re *Regexp) String() string { |
| return re.expr |
| } |
| |
| // Compile parses a regular expression and returns, if successful, a Regexp |
| // object that can be used to match against text. |
| func Compile(str string) (regexp *Regexp, error error) { |
| regexp = new(Regexp) |
| // doParse will panic if there is a parse error. |
| defer func() { |
| if e := recover(); e != nil { |
| regexp = nil |
| error = e.(Error) // Will re-panic if error was not an Error, e.g. nil-pointer exception |
| } |
| }() |
| regexp.expr = str |
| regexp.inst = make([]*instr, 0, 10) |
| regexp.doParse() |
| return |
| } |
| |
| // MustCompile is like Compile but panics if the expression cannot be parsed. |
| // It simplifies safe initialization of global variables holding compiled regular |
| // expressions. |
| func MustCompile(str string) *Regexp { |
| regexp, error := Compile(str) |
| if error != nil { |
| panic(`regexp: compiling "` + str + `": ` + error.Error()) |
| } |
| return regexp |
| } |
| |
| // NumSubexp returns the number of parenthesized subexpressions in this Regexp. |
| func (re *Regexp) NumSubexp() int { return re.nbra } |
| |
| // The match arena allows us to reduce the garbage generated by tossing |
| // match vectors away as we execute. Matches are ref counted and returned |
| // to a free list when no longer active. Increases a simple benchmark by 22X. |
| type matchArena struct { |
| head *matchVec |
| len int // length of match vector |
| pos int |
| atBOT bool // whether we're at beginning of text |
| atEOT bool // whether we're at end of text |
| } |
| |
| type matchVec struct { |
| m []int // pairs of bracketing submatches. 0th is start,end |
| ref int |
| next *matchVec |
| } |
| |
| func (a *matchArena) new() *matchVec { |
| if a.head == nil { |
| const N = 10 |
| block := make([]matchVec, N) |
| for i := 0; i < N; i++ { |
| b := &block[i] |
| b.next = a.head |
| a.head = b |
| } |
| } |
| m := a.head |
| a.head = m.next |
| m.ref = 0 |
| if m.m == nil { |
| m.m = make([]int, a.len) |
| } |
| return m |
| } |
| |
| func (a *matchArena) free(m *matchVec) { |
| m.ref-- |
| if m.ref == 0 { |
| m.next = a.head |
| a.head = m |
| } |
| } |
| |
| func (a *matchArena) copy(m *matchVec) *matchVec { |
| m1 := a.new() |
| copy(m1.m, m.m) |
| return m1 |
| } |
| |
| func (a *matchArena) noMatch() *matchVec { |
| m := a.new() |
| for i := range m.m { |
| m.m[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac" |
| } |
| m.ref = 1 |
| return m |
| } |
| |
| type state struct { |
| inst *instr // next instruction to execute |
| prefixed bool // this match began with a fixed prefix |
| match *matchVec |
| } |
| |
| // Append new state to to-do list. Leftmost-longest wins so avoid |
| // adding a state that's already active. The matchVec will be inc-ref'ed |
| // if it is assigned to a state. |
| func (a *matchArena) addState(s []state, inst *instr, prefixed bool, match *matchVec) []state { |
| switch inst.kind { |
| case iBOT: |
| if a.atBOT { |
| s = a.addState(s, inst.next, prefixed, match) |
| } |
| return s |
| case iEOT: |
| if a.atEOT { |
| s = a.addState(s, inst.next, prefixed, match) |
| } |
| return s |
| case iBra: |
| match.m[inst.braNum] = a.pos |
| s = a.addState(s, inst.next, prefixed, match) |
| return s |
| } |
| l := len(s) |
| // States are inserted in order so it's sufficient to see if we have the same |
| // instruction; no need to see if existing match is earlier (it is). |
| for i := 0; i < l; i++ { |
| if s[i].inst == inst { |
| return s |
| } |
| } |
| s = append(s, state{inst, prefixed, match}) |
| match.ref++ |
| if inst.kind == iAlt { |
| s = a.addState(s, inst.left, prefixed, a.copy(match)) |
| // give other branch a copy of this match vector |
| s = a.addState(s, inst.next, prefixed, a.copy(match)) |
| } |
| return s |
| } |
| |
| // input abstracts different representations of the input text. It provides |
| // one-character lookahead. |
| type input interface { |
| step(pos int) (r rune, width int) // advance one rune |
| canCheckPrefix() bool // can we look ahead without losing info? |
| hasPrefix(re *Regexp) bool |
| index(re *Regexp, pos int) int |
| } |
| |
| // inputString scans a string. |
| type inputString struct { |
| str string |
| } |
| |
| func newInputString(str string) *inputString { |
| return &inputString{str: str} |
| } |
| |
| func (i *inputString) step(pos int) (rune, int) { |
| if pos < len(i.str) { |
| return utf8.DecodeRuneInString(i.str[pos:len(i.str)]) |
| } |
| return endOfText, 0 |
| } |
| |
| func (i *inputString) canCheckPrefix() bool { |
| return true |
| } |
| |
| func (i *inputString) hasPrefix(re *Regexp) bool { |
| return strings.HasPrefix(i.str, re.prefix) |
| } |
| |
| func (i *inputString) index(re *Regexp, pos int) int { |
| return strings.Index(i.str[pos:], re.prefix) |
| } |
| |
| // inputBytes scans a byte slice. |
| type inputBytes struct { |
| str []byte |
| } |
| |
| func newInputBytes(str []byte) *inputBytes { |
| return &inputBytes{str: str} |
| } |
| |
| func (i *inputBytes) step(pos int) (rune, int) { |
| if pos < len(i.str) { |
| return utf8.DecodeRune(i.str[pos:len(i.str)]) |
| } |
| return endOfText, 0 |
| } |
| |
| func (i *inputBytes) canCheckPrefix() bool { |
| return true |
| } |
| |
| func (i *inputBytes) hasPrefix(re *Regexp) bool { |
| return bytes.HasPrefix(i.str, re.prefixBytes) |
| } |
| |
| func (i *inputBytes) index(re *Regexp, pos int) int { |
| return bytes.Index(i.str[pos:], re.prefixBytes) |
| } |
| |
| // inputReader scans a RuneReader. |
| type inputReader struct { |
| r io.RuneReader |
| atEOT bool |
| pos int |
| } |
| |
| func newInputReader(r io.RuneReader) *inputReader { |
| return &inputReader{r: r} |
| } |
| |
| func (i *inputReader) step(pos int) (rune, int) { |
| if !i.atEOT && pos != i.pos { |
| return endOfText, 0 |
| |
| } |
| r, w, err := i.r.ReadRune() |
| if err != nil { |
| i.atEOT = true |
| return endOfText, 0 |
| } |
| i.pos += w |
| return r, w |
| } |
| |
| func (i *inputReader) canCheckPrefix() bool { |
| return false |
| } |
| |
| func (i *inputReader) hasPrefix(re *Regexp) bool { |
| return false |
| } |
| |
| func (i *inputReader) index(re *Regexp, pos int) int { |
| return -1 |
| } |
| |
| // Search match starting from pos bytes into the input. |
| func (re *Regexp) doExecute(i input, pos int) []int { |
| var s [2][]state |
| s[0] = make([]state, 0, 10) |
| s[1] = make([]state, 0, 10) |
| in, out := 0, 1 |
| var final state |
| found := false |
| anchored := re.inst[0].next.kind == iBOT |
| if anchored && pos > 0 { |
| return nil |
| } |
| // fast check for initial plain substring |
| if i.canCheckPrefix() && re.prefix != "" { |
| advance := 0 |
| if anchored { |
| if !i.hasPrefix(re) { |
| return nil |
| } |
| } else { |
| advance = i.index(re, pos) |
| if advance == -1 { |
| return nil |
| } |
| } |
| pos += advance |
| } |
| // We look one character ahead so we can match $, which checks whether |
| // we are at EOT. |
| nextChar, nextWidth := i.step(pos) |
| arena := &matchArena{ |
| len: 2 * (re.nbra + 1), |
| pos: pos, |
| atBOT: pos == 0, |
| atEOT: nextChar == endOfText, |
| } |
| for c, startPos := rune(0), pos; c != endOfText; { |
| if !found && (pos == startPos || !anchored) { |
| // prime the pump if we haven't seen a match yet |
| match := arena.noMatch() |
| match.m[0] = pos |
| s[out] = arena.addState(s[out], re.start.next, false, match) |
| arena.free(match) // if addState saved it, ref was incremented |
| } else if len(s[out]) == 0 { |
| // machine has completed |
| break |
| } |
| in, out = out, in // old out state is new in state |
| // clear out old state |
| old := s[out] |
| for _, state := range old { |
| arena.free(state.match) |
| } |
| s[out] = old[0:0] // truncate state vector |
| c = nextChar |
| thisPos := pos |
| pos += nextWidth |
| nextChar, nextWidth = i.step(pos) |
| arena.atEOT = nextChar == endOfText |
| arena.atBOT = false |
| arena.pos = pos |
| for _, st := range s[in] { |
| switch st.inst.kind { |
| case iBOT: |
| case iEOT: |
| case iChar: |
| if c == st.inst.char { |
| s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) |
| } |
| case iCharClass: |
| if st.inst.cclass.matches(c) { |
| s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) |
| } |
| case iAny: |
| if c != endOfText { |
| s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) |
| } |
| case iNotNL: |
| if c != endOfText && c != '\n' { |
| s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) |
| } |
| case iBra: |
| case iAlt: |
| case iEnd: |
| // choose leftmost longest |
| if !found || // first |
| st.match.m[0] < final.match.m[0] || // leftmost |
| (st.match.m[0] == final.match.m[0] && thisPos > final.match.m[1]) { // longest |
| if final.match != nil { |
| arena.free(final.match) |
| } |
| final = st |
| final.match.ref++ |
| final.match.m[1] = thisPos |
| } |
| found = true |
| default: |
| st.inst.print() |
| panic("unknown instruction in execute") |
| } |
| } |
| } |
| if final.match == nil { |
| return nil |
| } |
| // if match found, back up start of match by width of prefix. |
| if final.prefixed && len(final.match.m) > 0 { |
| final.match.m[0] -= len(re.prefix) |
| } |
| return final.match.m |
| } |
| |
| // LiteralPrefix returns a literal string that must begin any match |
| // of the regular expression re. It returns the boolean true if the |
| // literal string comprises the entire regular expression. |
| func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { |
| c := make([]rune, len(re.inst)-2) // minus start and end. |
| // First instruction is start; skip that. |
| i := 0 |
| for inst := re.inst[0].next; inst.kind != iEnd; inst = inst.next { |
| // stop if this is not a char |
| if inst.kind != iChar { |
| return string(c[:i]), false |
| } |
| c[i] = inst.char |
| i++ |
| } |
| return string(c[:i]), true |
| } |
| |
| // MatchReader returns whether the Regexp matches the text read by the |
| // RuneReader. The return value is a boolean: true for match, false for no |
| // match. |
| func (re *Regexp) MatchReader(r io.RuneReader) bool { |
| return len(re.doExecute(newInputReader(r), 0)) > 0 |
| } |
| |
| // MatchString returns whether the Regexp matches the string s. |
| // The return value is a boolean: true for match, false for no match. |
| func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(newInputString(s), 0)) > 0 } |
| |
| // Match returns whether the Regexp matches the byte slice b. |
| // The return value is a boolean: true for match, false for no match. |
| func (re *Regexp) Match(b []byte) bool { return len(re.doExecute(newInputBytes(b), 0)) > 0 } |
| |
| // MatchReader checks whether a textual regular expression matches the text |
| // read by the RuneReader. More complicated queries need to use Compile and |
| // the full Regexp interface. |
| func MatchReader(pattern string, r io.RuneReader) (matched bool, error error) { |
| re, err := Compile(pattern) |
| if err != nil { |
| return false, err |
| } |
| return re.MatchReader(r), nil |
| } |
| |
| // MatchString checks whether a textual regular expression |
| // matches a string. More complicated queries need |
| // to use Compile and the full Regexp interface. |
| func MatchString(pattern string, s string) (matched bool, error error) { |
| re, err := Compile(pattern) |
| if err != nil { |
| return false, err |
| } |
| return re.MatchString(s), nil |
| } |
| |
| // Match checks whether a textual regular expression |
| // matches a byte slice. More complicated queries need |
| // to use Compile and the full Regexp interface. |
| func Match(pattern string, b []byte) (matched bool, error error) { |
| re, err := Compile(pattern) |
| if err != nil { |
| return false, err |
| } |
| return re.Match(b), nil |
| } |
| |
| // ReplaceAllString returns a copy of src in which all matches for the Regexp |
| // have been replaced by repl. No support is provided for expressions |
| // (e.g. \1 or $1) in the replacement string. |
| func (re *Regexp) ReplaceAllString(src, repl string) string { |
| return re.ReplaceAllStringFunc(src, func(string) string { return repl }) |
| } |
| |
| // ReplaceAllStringFunc returns a copy of src in which all matches for the |
| // Regexp have been replaced by the return value of of function repl (whose |
| // first argument is the matched string). No support is provided for |
| // expressions (e.g. \1 or $1) in the replacement string. |
| func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { |
| lastMatchEnd := 0 // end position of the most recent match |
| searchPos := 0 // position where we next look for a match |
| buf := new(bytes.Buffer) |
| for searchPos <= len(src) { |
| a := re.doExecute(newInputString(src), searchPos) |
| if len(a) == 0 { |
| break // no more matches |
| } |
| |
| // Copy the unmatched characters before this match. |
| io.WriteString(buf, src[lastMatchEnd:a[0]]) |
| |
| // Now insert a copy of the replacement string, but not for a |
| // match of the empty string immediately after another match. |
| // (Otherwise, we get double replacement for patterns that |
| // match both empty and nonempty strings.) |
| if a[1] > lastMatchEnd || a[0] == 0 { |
| io.WriteString(buf, repl(src[a[0]:a[1]])) |
| } |
| lastMatchEnd = a[1] |
| |
| // Advance past this match; always advance at least one character. |
| _, width := utf8.DecodeRuneInString(src[searchPos:]) |
| if searchPos+width > a[1] { |
| searchPos += width |
| } else if searchPos+1 > a[1] { |
| // This clause is only needed at the end of the input |
| // string. In that case, DecodeRuneInString returns width=0. |
| searchPos++ |
| } else { |
| searchPos = a[1] |
| } |
| } |
| |
| // Copy the unmatched characters after the last match. |
| io.WriteString(buf, src[lastMatchEnd:]) |
| |
| return buf.String() |
| } |
| |
| // ReplaceAll returns a copy of src in which all matches for the Regexp |
| // have been replaced by repl. No support is provided for expressions |
| // (e.g. \1 or $1) in the replacement text. |
| func (re *Regexp) ReplaceAll(src, repl []byte) []byte { |
| return re.ReplaceAllFunc(src, func([]byte) []byte { return repl }) |
| } |
| |
| // ReplaceAllFunc returns a copy of src in which all matches for the |
| // Regexp have been replaced by the return value of of function repl (whose |
| // first argument is the matched []byte). No support is provided for |
| // expressions (e.g. \1 or $1) in the replacement string. |
| func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { |
| lastMatchEnd := 0 // end position of the most recent match |
| searchPos := 0 // position where we next look for a match |
| buf := new(bytes.Buffer) |
| for searchPos <= len(src) { |
| a := re.doExecute(newInputBytes(src), searchPos) |
| if len(a) == 0 { |
| break // no more matches |
| } |
| |
| // Copy the unmatched characters before this match. |
| buf.Write(src[lastMatchEnd:a[0]]) |
| |
| // Now insert a copy of the replacement string, but not for a |
| // match of the empty string immediately after another match. |
| // (Otherwise, we get double replacement for patterns that |
| // match both empty and nonempty strings.) |
| if a[1] > lastMatchEnd || a[0] == 0 { |
| buf.Write(repl(src[a[0]:a[1]])) |
| } |
| lastMatchEnd = a[1] |
| |
| // Advance past this match; always advance at least one character. |
| _, width := utf8.DecodeRune(src[searchPos:]) |
| if searchPos+width > a[1] { |
| searchPos += width |
| } else if searchPos+1 > a[1] { |
| // This clause is only needed at the end of the input |
| // string. In that case, DecodeRuneInString returns width=0. |
| searchPos++ |
| } else { |
| searchPos = a[1] |
| } |
| } |
| |
| // Copy the unmatched characters after the last match. |
| buf.Write(src[lastMatchEnd:]) |
| |
| return buf.Bytes() |
| } |
| |
| // QuoteMeta returns a string that quotes all regular expression metacharacters |
| // inside the argument text; the returned string is a regular expression matching |
| // the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`. |
| func QuoteMeta(s string) string { |
| b := make([]byte, 2*len(s)) |
| |
| // A byte loop is correct because all metacharacters are ASCII. |
| j := 0 |
| for i := 0; i < len(s); i++ { |
| if special(rune(s[i])) { |
| b[j] = '\\' |
| j++ |
| } |
| b[j] = s[i] |
| j++ |
| } |
| return string(b[0:j]) |
| } |
| |
| // Find matches in slice b if b is non-nil, otherwise find matches in string s. |
| func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { |
| var end int |
| if b == nil { |
| end = len(s) |
| } else { |
| end = len(b) |
| } |
| |
| for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { |
| var in input |
| if b == nil { |
| in = newInputString(s) |
| } else { |
| in = newInputBytes(b) |
| } |
| matches := re.doExecute(in, pos) |
| if len(matches) == 0 { |
| break |
| } |
| |
| accept := true |
| if matches[1] == pos { |
| // We've found an empty match. |
| if matches[0] == prevMatchEnd { |
| // We don't allow an empty match right |
| // after a previous match, so ignore it. |
| accept = false |
| } |
| var width int |
| // TODO: use step() |
| if b == nil { |
| _, width = utf8.DecodeRuneInString(s[pos:end]) |
| } else { |
| _, width = utf8.DecodeRune(b[pos:end]) |
| } |
| if width > 0 { |
| pos += width |
| } else { |
| pos = end + 1 |
| } |
| } else { |
| pos = matches[1] |
| } |
| prevMatchEnd = matches[1] |
| |
| if accept { |
| deliver(matches) |
| i++ |
| } |
| } |
| } |
| |
| // Find returns a slice holding the text of the leftmost match in b of the regular expression. |
| // A return value of nil indicates no match. |
| func (re *Regexp) Find(b []byte) []byte { |
| a := re.doExecute(newInputBytes(b), 0) |
| if a == nil { |
| return nil |
| } |
| return b[a[0]:a[1]] |
| } |
| |
| // FindIndex returns a two-element slice of integers defining the location of |
| // the leftmost match in b of the regular expression. The match itself is at |
| // b[loc[0]:loc[1]]. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindIndex(b []byte) (loc []int) { |
| a := re.doExecute(newInputBytes(b), 0) |
| if a == nil { |
| return nil |
| } |
| return a[0:2] |
| } |
| |
| // FindString returns a string holding the text of the leftmost match in s of the regular |
| // expression. If there is no match, the return value is an empty string, |
| // but it will also be empty if the regular expression successfully matches |
| // an empty string. Use FindStringIndex or FindStringSubmatch if it is |
| // necessary to distinguish these cases. |
| func (re *Regexp) FindString(s string) string { |
| a := re.doExecute(newInputString(s), 0) |
| if a == nil { |
| return "" |
| } |
| return s[a[0]:a[1]] |
| } |
| |
| // FindStringIndex returns a two-element slice of integers defining the |
| // location of the leftmost match in s of the regular expression. The match |
| // itself is at s[loc[0]:loc[1]]. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindStringIndex(s string) []int { |
| a := re.doExecute(newInputString(s), 0) |
| if a == nil { |
| return nil |
| } |
| return a[0:2] |
| } |
| |
| // FindReaderIndex returns a two-element slice of integers defining the |
| // location of the leftmost match of the regular expression in text read from |
| // the RuneReader. The match itself is at s[loc[0]:loc[1]]. A return |
| // value of nil indicates no match. |
| func (re *Regexp) FindReaderIndex(r io.RuneReader) []int { |
| a := re.doExecute(newInputReader(r), 0) |
| if a == nil { |
| return nil |
| } |
| return a[0:2] |
| } |
| |
| // FindSubmatch returns a slice of slices holding the text of the leftmost |
| // match of the regular expression in b and the matches, if any, of its |
| // subexpressions, as defined by the 'Submatch' descriptions in the package |
| // comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindSubmatch(b []byte) [][]byte { |
| a := re.doExecute(newInputBytes(b), 0) |
| if a == nil { |
| return nil |
| } |
| ret := make([][]byte, len(a)/2) |
| for i := range ret { |
| if a[2*i] >= 0 { |
| ret[i] = b[a[2*i]:a[2*i+1]] |
| } |
| } |
| return ret |
| } |
| |
| // FindSubmatchIndex returns a slice holding the index pairs identifying the |
| // leftmost match of the regular expression in b and the matches, if any, of |
| // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions |
| // in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindSubmatchIndex(b []byte) []int { |
| return re.doExecute(newInputBytes(b), 0) |
| } |
| |
| // FindStringSubmatch returns a slice of strings holding the text of the |
| // leftmost match of the regular expression in s and the matches, if any, of |
| // its subexpressions, as defined by the 'Submatch' description in the |
| // package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindStringSubmatch(s string) []string { |
| a := re.doExecute(newInputString(s), 0) |
| if a == nil { |
| return nil |
| } |
| ret := make([]string, len(a)/2) |
| for i := range ret { |
| if a[2*i] >= 0 { |
| ret[i] = s[a[2*i]:a[2*i+1]] |
| } |
| } |
| return ret |
| } |
| |
| // FindStringSubmatchIndex returns a slice holding the index pairs |
| // identifying the leftmost match of the regular expression in s and the |
| // matches, if any, of its subexpressions, as defined by the 'Submatch' and |
| // 'Index' descriptions in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindStringSubmatchIndex(s string) []int { |
| return re.doExecute(newInputString(s), 0) |
| } |
| |
| // FindReaderSubmatchIndex returns a slice holding the index pairs |
| // identifying the leftmost match of the regular expression of text read by |
| // the RuneReader, and the matches, if any, of its subexpressions, as defined |
| // by the 'Submatch' and 'Index' descriptions in the package comment. A |
| // return value of nil indicates no match. |
| func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { |
| return re.doExecute(newInputReader(r), 0) |
| } |
| |
| const startSize = 10 // The size at which to start a slice in the 'All' routines. |
| |
| // FindAll is the 'All' version of Find; it returns a slice of all successive |
| // matches of the expression, as defined by the 'All' description in the |
| // package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAll(b []byte, n int) [][]byte { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| result := make([][]byte, 0, startSize) |
| re.allMatches("", b, n, func(match []int) { |
| result = append(result, b[match[0]:match[1]]) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all |
| // successive matches of the expression, as defined by the 'All' description |
| // in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| result := make([][]int, 0, startSize) |
| re.allMatches("", b, n, func(match []int) { |
| result = append(result, match[0:2]) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllString is the 'All' version of FindString; it returns a slice of all |
| // successive matches of the expression, as defined by the 'All' description |
| // in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllString(s string, n int) []string { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| result := make([]string, 0, startSize) |
| re.allMatches(s, nil, n, func(match []int) { |
| result = append(result, s[match[0]:match[1]]) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a |
| // slice of all successive matches of the expression, as defined by the 'All' |
| // description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| result := make([][]int, 0, startSize) |
| re.allMatches(s, nil, n, func(match []int) { |
| result = append(result, match[0:2]) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice |
| // of all successive matches of the expression, as defined by the 'All' |
| // description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| result := make([][][]byte, 0, startSize) |
| re.allMatches("", b, n, func(match []int) { |
| slice := make([][]byte, len(match)/2) |
| for j := range slice { |
| if match[2*j] >= 0 { |
| slice[j] = b[match[2*j]:match[2*j+1]] |
| } |
| } |
| result = append(result, slice) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns |
| // a slice of all successive matches of the expression, as defined by the |
| // 'All' description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { |
| if n < 0 { |
| n = len(b) + 1 |
| } |
| result := make([][]int, 0, startSize) |
| re.allMatches("", b, n, func(match []int) { |
| result = append(result, match) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it |
| // returns a slice of all successive matches of the expression, as defined by |
| // the 'All' description in the package comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| result := make([][]string, 0, startSize) |
| re.allMatches(s, nil, n, func(match []int) { |
| slice := make([]string, len(match)/2) |
| for j := range slice { |
| if match[2*j] >= 0 { |
| slice[j] = s[match[2*j]:match[2*j+1]] |
| } |
| } |
| result = append(result, slice) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |
| |
| // FindAllStringSubmatchIndex is the 'All' version of |
| // FindStringSubmatchIndex; it returns a slice of all successive matches of |
| // the expression, as defined by the 'All' description in the package |
| // comment. |
| // A return value of nil indicates no match. |
| func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { |
| if n < 0 { |
| n = len(s) + 1 |
| } |
| result := make([][]int, 0, startSize) |
| re.allMatches(s, nil, n, func(match []int) { |
| result = append(result, match) |
| }) |
| if len(result) == 0 { |
| return nil |
| } |
| return result |
| } |