blob: d8f1f2453645c8e69be2cd9d6def382d127359ae [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first caninl determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then inlcalls walks each function body to
// expand calls to inlinable functions.
//
// The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. -ll and more is useful to flush out bugs.
// These additional levels (beyond -l) may be buggy and are not supported.
// 0: disabled
// 1: 40-nodes leaf functions, oneliners, lazy typechecking (default)
// 2: early typechecking of all imported bodies
// 3: allow variadic functions
// 4: allow non-leaf functions , (breaks runtime.Caller)
//
// At some point this may get another default and become switch-offable with -N.
//
// The debug['m'] flag enables diagnostic output. a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.
//
// TODO:
// - inline functions with ... args
// - handle T.meth(f()) with func f() (t T, arg, arg, )
package gc
import "fmt"
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
func fnpkg(fn *Node) *Pkg {
if fn.IsMethod() {
// method
rcvr := fn.Type.Recv().Type
if rcvr.IsPtr() {
rcvr = rcvr.Elem()
}
if rcvr.Sym == nil {
Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr)
}
return rcvr.Sym.Pkg
}
// non-method
return fn.Sym.Pkg
}
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
// because they're a copy of an already checked body.
func typecheckinl(fn *Node) {
lno := setlineno(fn)
// typecheckinl is only for imported functions;
// their bodies may refer to unsafe as long as the package
// was marked safe during import (which was checked then).
// the ->inl of a local function has been typechecked before caninl copied it.
pkg := fnpkg(fn)
if pkg == localpkg || pkg == nil {
return // typecheckinl on local function
}
if Debug['m'] > 2 || Debug_export != 0 {
fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl)
}
save_safemode := safemode
safemode = false
savefn := Curfn
Curfn = fn
typecheckslice(fn.Func.Inl.Slice(), Etop)
Curfn = savefn
safemode = save_safemode
lineno = lno
}
// Caninl determines whether fn is inlineable.
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
// fn and ->nbody will already have been typechecked.
func caninl(fn *Node) {
if fn.Op != ODCLFUNC {
Fatalf("caninl %v", fn)
}
if fn.Func.Nname == nil {
Fatalf("caninl no nname %+v", fn)
}
var reason string // reason, if any, that the function was not inlined
if Debug['m'] > 1 {
defer func() {
if reason != "" {
fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
}
}()
}
// If marked "go:noinline", don't inline
if fn.Func.Pragma&Noinline != 0 {
reason = "marked go:noinline"
return
}
// If fn has no body (is defined outside of Go), cannot inline it.
if fn.Nbody.Len() == 0 {
reason = "no function body"
return
}
if fn.Typecheck == 0 {
Fatalf("caninl on non-typechecked function %v", fn)
}
// can't handle ... args yet
if Debug['l'] < 3 {
f := fn.Type.Params().Fields()
if len := f.Len(); len > 0 {
if t := f.Index(len - 1); t.Isddd {
reason = "has ... args"
return
}
}
}
// Runtime package must not be instrumented.
// Instrument skips runtime package. However, some runtime code can be
// inlined into other packages and instrumented there. To avoid this,
// we disable inlining of runtime functions when instrumenting.
// The example that we observed is inlining of LockOSThread,
// which lead to false race reports on m contents.
if instrumenting && myimportpath == "runtime" {
reason = "instrumenting and is runtime function"
return
}
const maxBudget = 80
budget := int32(maxBudget) // allowed hairyness
if ishairylist(fn.Nbody, &budget, &reason) {
return
}
if budget < 0 {
reason = "function too complex"
return
}
savefn := Curfn
Curfn = fn
n := fn.Func.Nname
n.Func.Inl.Set(fn.Nbody.Slice())
fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice()))
inldcl := inlcopylist(n.Name.Defn.Func.Dcl)
n.Func.Inldcl.Set(inldcl)
n.Func.InlCost = maxBudget - budget
// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
// this is so export can find the body of a method
fn.Type.SetNname(n)
if Debug['m'] > 1 {
fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl)
} else if Debug['m'] != 0 {
fmt.Printf("%v: can inline %v\n", fn.Line(), n)
}
Curfn = savefn
}
// Look for anything we want to punt on.
func ishairylist(ll Nodes, budget *int32, reason *string) bool {
for _, n := range ll.Slice() {
if ishairy(n, budget, reason) {
return true
}
}
return false
}
func ishairy(n *Node, budget *int32, reason *string) bool {
if n == nil {
return false
}
switch n.Op {
// Call is okay if inlinable and we have the budget for the body.
case OCALLFUNC:
if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 {
*budget -= fn.InlCost
break
}
if n.isMethodCalledAsFunction() {
if d := n.Left.Sym.Def; d != nil && d.Func.Inl.Len() != 0 {
*budget -= d.Func.InlCost
break
}
}
if Debug['l'] < 4 {
*reason = "non-leaf function"
return true
}
// Call is okay if inlinable and we have the budget for the body.
case OCALLMETH:
t := n.Left.Type
if t == nil {
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
}
if t.Nname() == nil {
Fatalf("no function definition for [%p] %+v\n", t, t)
}
if inlfn := t.Nname().Func; inlfn.Inl.Len() != 0 {
*budget -= inlfn.InlCost
break
}
if Debug['l'] < 4 {
*reason = "non-leaf method"
return true
}
// Things that are too hairy, irrespective of the budget
case OCALL, OCALLINTER, OPANIC, ORECOVER:
if Debug['l'] < 4 {
*reason = "non-leaf op " + n.Op.String()
return true
}
case OCLOSURE,
OCALLPART,
ORANGE,
OFOR,
OSELECT,
OTYPESW,
OPROC,
ODEFER,
ODCLTYPE, // can't print yet
OBREAK,
ORETJMP:
*reason = "unhandled op " + n.Op.String()
return true
}
(*budget)--
// TODO(mdempsky/josharian): Hacks to appease toolstash; remove.
// See issue 17566 and CL 31674 for discussion.
switch n.Op {
case OSTRUCTKEY:
(*budget)--
case OSLICE, OSLICEARR, OSLICESTR:
(*budget)--
case OSLICE3, OSLICE3ARR:
*budget -= 2
}
return *budget < 0 || ishairy(n.Left, budget, reason) || ishairy(n.Right, budget, reason) ||
ishairylist(n.List, budget, reason) || ishairylist(n.Rlist, budget, reason) ||
ishairylist(n.Ninit, budget, reason) || ishairylist(n.Nbody, budget, reason)
}
// Inlcopy and inlcopylist recursively copy the body of a function.
// Any name-like node of non-local class is marked for re-export by adding it to
// the exportlist.
func inlcopylist(ll []*Node) []*Node {
s := make([]*Node, 0, len(ll))
for _, n := range ll {
s = append(s, inlcopy(n))
}
return s
}
func inlcopy(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME, OTYPE, OLITERAL:
return n
}
m := *n
if m.Func != nil {
m.Func.Inl.Set(nil)
}
m.Left = inlcopy(n.Left)
m.Right = inlcopy(n.Right)
m.List.Set(inlcopylist(n.List.Slice()))
m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
m.Nbody.Set(inlcopylist(n.Nbody.Slice()))
return &m
}
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
func inlcalls(fn *Node) {
savefn := Curfn
Curfn = fn
fn = inlnode(fn)
if fn != Curfn {
Fatalf("inlnode replaced curfn")
}
Curfn = savefn
}
// Turn an OINLCALL into a statement.
func inlconv2stmt(n *Node) {
n.Op = OBLOCK
// n->ninit stays
n.List.Set(n.Nbody.Slice())
n.Nbody.Set(nil)
n.Rlist.Set(nil)
}
// Turn an OINLCALL into a single valued expression.
// The result of inlconv2expr MUST be assigned back to n, e.g.
// n.Left = inlconv2expr(n.Left)
func inlconv2expr(n *Node) *Node {
r := n.Rlist.First()
return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
}
// Turn the rlist (with the return values) of the OINLCALL in
// n into an expression list lumping the ninit and body
// containing the inlined statements on the first list element so
// order will be preserved Used in return, oas2func and call
// statements.
func inlconv2list(n *Node) []*Node {
if n.Op != OINLCALL || n.Rlist.Len() == 0 {
Fatalf("inlconv2list %+v\n", n)
}
s := n.Rlist.Slice()
s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
return s
}
func inlnodelist(l Nodes) {
s := l.Slice()
for i := range s {
s[i] = inlnode(s[i])
}
}
// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here. so this is cleaner and
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
// n.Left = inlnode(n.Left)
func inlnode(n *Node) *Node {
if n == nil {
return n
}
switch n.Op {
// inhibit inlining of their argument
case ODEFER, OPROC:
switch n.Left.Op {
case OCALLFUNC, OCALLMETH:
n.Left.setNoInline(true)
}
fallthrough
// TODO do them here (or earlier),
// so escape analysis can avoid more heapmoves.
case OCLOSURE:
return n
}
lno := setlineno(n)
inlnodelist(n.Ninit)
for _, n1 := range n.Ninit.Slice() {
if n1.Op == OINLCALL {
inlconv2stmt(n1)
}
}
n.Left = inlnode(n.Left)
if n.Left != nil && n.Left.Op == OINLCALL {
n.Left = inlconv2expr(n.Left)
}
n.Right = inlnode(n.Right)
if n.Right != nil && n.Right.Op == OINLCALL {
if n.Op == OFOR {
inlconv2stmt(n.Right)
} else {
n.Right = inlconv2expr(n.Right)
}
}
inlnodelist(n.List)
switch n.Op {
case OBLOCK:
for _, n2 := range n.List.Slice() {
if n2.Op == OINLCALL {
inlconv2stmt(n2)
}
}
// if we just replaced arg in f(arg()) or return arg with an inlined call
// and arg returns multiple values, glue as list
case ORETURN,
OCALLFUNC,
OCALLMETH,
OCALLINTER,
OAPPEND,
OCOMPLEX:
if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 {
n.List.Set(inlconv2list(n.List.First()))
break
}
fallthrough
default:
s := n.List.Slice()
for i1, n1 := range s {
if n1 != nil && n1.Op == OINLCALL {
s[i1] = inlconv2expr(s[i1])
}
}
}
inlnodelist(n.Rlist)
switch n.Op {
case OAS2FUNC:
if n.Rlist.First().Op == OINLCALL {
n.Rlist.Set(inlconv2list(n.Rlist.First()))
n.Op = OAS2
n.Typecheck = 0
n = typecheck(n, Etop)
break
}
fallthrough
default:
s := n.Rlist.Slice()
for i1, n1 := range s {
if n1.Op == OINLCALL {
if n.Op == OIF {
inlconv2stmt(n1)
} else {
s[i1] = inlconv2expr(s[i1])
}
}
}
}
inlnodelist(n.Nbody)
for _, n := range n.Nbody.Slice() {
if n.Op == OINLCALL {
inlconv2stmt(n)
}
}
// with all the branches out of the way, it is now time to
// transmogrify this node itself unless inhibited by the
// switch at the top of this function.
switch n.Op {
case OCALLFUNC, OCALLMETH:
if n.noInline() {
return n
}
}
switch n.Op {
case OCALLFUNC:
if Debug['m'] > 3 {
fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
}
if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case
n = mkinlcall(n, n.Left, n.Isddd)
} else if n.isMethodCalledAsFunction() && n.Left.Sym.Def != nil {
n = mkinlcall(n, n.Left.Sym.Def, n.Isddd)
}
case OCALLMETH:
if Debug['m'] > 3 {
fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
}
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
if n.Left.Type == nil {
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
}
if n.Left.Type.Nname() == nil {
Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
}
n = mkinlcall(n, n.Left.Type.Nname(), n.Isddd)
}
lineno = lno
return n
}
// The result of mkinlcall MUST be assigned back to n, e.g.
// n.Left = mkinlcall(n.Left, fn, isddd)
func mkinlcall(n *Node, fn *Node, isddd bool) *Node {
save_safemode := safemode
// imported functions may refer to unsafe as long as the
// package was marked safe during import (already checked).
pkg := fnpkg(fn)
if pkg != localpkg && pkg != nil {
safemode = false
}
n = mkinlcall1(n, fn, isddd)
safemode = save_safemode
return n
}
func tinlvar(t *Field, inlvars map[*Node]*Node) *Node {
if t.Nname != nil && !isblank(t.Nname) {
inlvar := inlvars[t.Nname]
if inlvar == nil {
Fatalf("missing inlvar for %v\n", t.Nname)
}
return inlvar
}
return typecheck(nblank, Erv|Easgn)
}
var inlgen int
// if *np is a call, and fn is a function with an inlinable body, substitute *np with an OINLCALL.
// On return ninit has the parameter assignments, the nbody is the
// inlined function body and list, rlist contain the input, output
// parameters.
// The result of mkinlcall1 MUST be assigned back to n, e.g.
// n.Left = mkinlcall1(n.Left, fn, isddd)
func mkinlcall1(n *Node, fn *Node, isddd bool) *Node {
// For variadic fn.
if fn.Func.Inl.Len() == 0 {
return n
}
if fn == Curfn || fn.Name.Defn == Curfn {
return n
}
inlvars := make(map[*Node]*Node)
if Debug['l'] < 2 {
typecheckinl(fn)
}
// Bingo, we have a function node, and it has an inlineable body
if Debug['m'] > 1 {
fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl)
} else if Debug['m'] != 0 {
fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
}
if Debug['m'] > 2 {
fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
}
ninit := n.Ninit
//dumplist("ninit pre", ninit);
var dcl []*Node
if fn.Name.Defn != nil {
// local function
dcl = fn.Func.Inldcl.Slice()
} else {
// imported function
dcl = fn.Func.Dcl
}
var retvars []*Node
i := 0
// Make temp names to use instead of the originals
for _, ln := range dcl {
if ln.Class == PPARAMOUT { // return values handled below.
continue
}
if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
continue
}
if ln.Op == ONAME {
inlvars[ln] = typecheck(inlvar(ln), Erv)
if ln.Class == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class == PPARAM {
ninit.Append(nod(ODCL, inlvars[ln], nil))
}
}
}
// temporaries for return values.
var m *Node
for _, t := range fn.Type.Results().Fields().Slice() {
if t != nil && t.Nname != nil && !isblank(t.Nname) {
m = inlvar(t.Nname)
m = typecheck(m, Erv)
inlvars[t.Nname] = m
} else {
// anonymous return values, synthesize names for use in assignment that replaces return
m = retvar(t, i)
i++
}
ninit.Append(nod(ODCL, m, nil))
retvars = append(retvars, m)
}
// assign receiver.
if fn.IsMethod() && n.Left.Op == ODOTMETH {
// method call with a receiver.
t := fn.Type.Recv()
if t != nil && t.Nname != nil && !isblank(t.Nname) && inlvars[t.Nname] == nil {
Fatalf("missing inlvar for %v\n", t.Nname)
}
if n.Left.Left == nil {
Fatalf("method call without receiver: %+v", n)
}
if t == nil {
Fatalf("method call unknown receiver type: %+v", n)
}
as := nod(OAS, tinlvar(t, inlvars), n.Left.Left)
if as != nil {
as = typecheck(as, Etop)
ninit.Append(as)
}
}
// check if inlined function is variadic.
variadic := false
var varargtype *Type
varargcount := 0
for _, t := range fn.Type.Params().Fields().Slice() {
if t.Isddd {
variadic = true
varargtype = t.Type
}
}
// but if argument is dotted too forget about variadicity.
if variadic && isddd {
variadic = false
}
// check if argument is actually a returned tuple from call.
multiret := 0
if n.List.Len() == 1 {
switch n.List.First().Op {
case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH:
if n.List.First().Left.Type.Results().NumFields() > 1 {
multiret = n.List.First().Left.Type.Results().NumFields() - 1
}
}
}
if variadic {
varargcount = n.List.Len() + multiret
if n.Left.Op != ODOTMETH {
varargcount -= fn.Type.Recvs().NumFields()
}
varargcount -= fn.Type.Params().NumFields() - 1
}
// assign arguments to the parameters' temp names
as := nod(OAS2, nil, nil)
as.Rlist.Set(n.List.Slice())
li := 0
// TODO: if len(nlist) == 1 but multiple args, check that n->list->n is a call?
if fn.IsMethod() && n.Left.Op != ODOTMETH {
// non-method call to method
if n.List.Len() == 0 {
Fatalf("non-method call to method without first arg: %+v", n)
}
// append receiver inlvar to LHS.
t := fn.Type.Recv()
if t != nil && t.Nname != nil && !isblank(t.Nname) && inlvars[t.Nname] == nil {
Fatalf("missing inlvar for %v\n", t.Nname)
}
if t == nil {
Fatalf("method call unknown receiver type: %+v", n)
}
as.List.Append(tinlvar(t, inlvars))
li++
}
// append ordinary arguments to LHS.
chkargcount := n.List.Len() > 1
var vararg *Node // the slice argument to a variadic call
var varargs []*Node // the list of LHS names to put in vararg.
if !chkargcount {
// 0 or 1 expression on RHS.
var i int
for _, t := range fn.Type.Params().Fields().Slice() {
if variadic && t.Isddd {
vararg = tinlvar(t, inlvars)
for i = 0; i < varargcount && li < n.List.Len(); i++ {
m = argvar(varargtype, i)
varargs = append(varargs, m)
as.List.Append(m)
}
break
}
as.List.Append(tinlvar(t, inlvars))
}
} else {
// match arguments except final variadic (unless the call is dotted itself)
t, it := iterFields(fn.Type.Params())
for t != nil {
if li >= n.List.Len() {
break
}
if variadic && t.Isddd {
break
}
as.List.Append(tinlvar(t, inlvars))
t = it.Next()
li++
}
// match varargcount arguments with variadic parameters.
if variadic && t != nil && t.Isddd {
vararg = tinlvar(t, inlvars)
var i int
for i = 0; i < varargcount && li < n.List.Len(); i++ {
m = argvar(varargtype, i)
varargs = append(varargs, m)
as.List.Append(m)
li++
}
if i == varargcount {
t = it.Next()
}
}
if li < n.List.Len() || t != nil {
Fatalf("arg count mismatch: %#v vs %.v\n", fn.Type.Params(), n.List)
}
}
if as.Rlist.Len() != 0 {
as = typecheck(as, Etop)
ninit.Append(as)
}
// turn the variadic args into a slice.
if variadic {
as = nod(OAS, vararg, nil)
if varargcount == 0 {
as.Right = nodnil()
as.Right.Type = varargtype
} else {
varslicetype := typSlice(varargtype.Elem())
as.Right = nod(OCOMPLIT, nil, typenod(varslicetype))
as.Right.List.Set(varargs)
}
as = typecheck(as, Etop)
ninit.Append(as)
}
// zero the outparams
for _, n := range retvars {
as = nod(OAS, n, nil)
as = typecheck(as, Etop)
ninit.Append(as)
}
retlabel := autolabel(".i")
retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps)
inlgen++
subst := inlsubst{
retlabel: retlabel,
retvars: retvars,
inlvars: inlvars,
}
body := subst.list(fn.Func.Inl)
lab := nod(OLABEL, retlabel, nil)
lab.Used = true // avoid 'not used' when function doesn't have return
body = append(body, lab)
typecheckslice(body, Etop)
//dumplist("ninit post", ninit);
call := nod(OINLCALL, nil, nil)
call.Ninit.Set(ninit.Slice())
call.Nbody.Set(body)
call.Rlist.Set(retvars)
call.Type = n.Type
call.Typecheck = 1
// Hide the args from setlno -- the parameters to the inlined
// call already have good line numbers that should be preserved.
args := as.Rlist
as.Rlist.Set(nil)
setlno(call, n.Lineno)
as.Rlist.Set(args.Slice())
//dumplist("call body", body);
n = call
// transitive inlining
// might be nice to do this before exporting the body,
// but can't emit the body with inlining expanded.
// instead we emit the things that the body needs
// and each use must redo the inlining.
// luckily these are small.
body = fn.Func.Inl.Slice()
fn.Func.Inl.Set(nil) // prevent infinite recursion (shouldn't happen anyway)
inlnodelist(call.Nbody)
for _, n := range call.Nbody.Slice() {
if n.Op == OINLCALL {
inlconv2stmt(n)
}
}
fn.Func.Inl.Set(body)
if Debug['m'] > 2 {
fmt.Printf("%v: After inlining %+v\n\n", n.Line(), n)
}
return n
}
// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
func inlvar(var_ *Node) *Node {
if Debug['m'] > 3 {
fmt.Printf("inlvar %+v\n", var_)
}
n := newname(var_.Sym)
n.Type = var_.Type
n.Class = PAUTO
n.Used = true
n.Name.Curfn = Curfn // the calling function, not the called one
n.Addrtaken = var_.Addrtaken
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's results in.
func retvar(t *Field, i int) *Node {
n := newname(lookupN("~r", i))
n.Type = t.Type
n.Class = PAUTO
n.Used = true
n.Name.Curfn = Curfn // the calling function, not the called one
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// Synthesize a variable to store the inlined function's arguments
// when they come from a multiple return call.
func argvar(t *Type, i int) *Node {
n := newname(lookupN("~arg", i))
n.Type = t.Elem()
n.Class = PAUTO
n.Used = true
n.Name.Curfn = Curfn // the calling function, not the called one
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
return n
}
// The inlsubst type implements the actual inlining of a single
// function call.
type inlsubst struct {
// Target of the goto substituted in place of a return.
retlabel *Node
// Temporary result variables.
retvars []*Node
inlvars map[*Node]*Node
}
// list inlines a list of nodes.
func (subst *inlsubst) list(ll Nodes) []*Node {
s := make([]*Node, 0, ll.Len())
for _, n := range ll.Slice() {
s = append(s, subst.node(n))
}
return s
}
// node recursively copies a node from the saved pristine body of the
// inlined function, substituting references to input/output
// parameters with ones to the tmpnames, and substituting returns with
// assignments to the output.
func (subst *inlsubst) node(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME:
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
if Debug['m'] > 2 {
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
}
return inlvar
}
if Debug['m'] > 2 {
fmt.Printf("not substituting name %+v\n", n)
}
return n
case OLITERAL, OTYPE:
return n
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
// dump("Return before substitution", n);
case ORETURN:
m := nod(OGOTO, subst.retlabel, nil)
m.Ninit.Set(subst.list(n.Ninit))
if len(subst.retvars) != 0 && n.List.Len() != 0 {
as := nod(OAS2, nil, nil)
// Make a shallow copy of retvars.
// Otherwise OINLCALL.Rlist will be the same list,
// and later walk and typecheck may clobber it.
for _, n := range subst.retvars {
as.List.Append(n)
}
as.Rlist.Set(subst.list(n.List))
as = typecheck(as, Etop)
m.Ninit.Append(as)
}
typecheckslice(m.Ninit.Slice(), Etop)
m = typecheck(m, Etop)
// dump("Return after substitution", m);
return m
case OGOTO, OLABEL:
m := nod(OXXX, nil, nil)
*m = *n
m.Ninit.Set(nil)
p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen)
m.Left = newname(lookup(p))
return m
default:
m := nod(OXXX, nil, nil)
*m = *n
m.Ninit.Set(nil)
if n.Op == OCLOSURE {
Fatalf("cannot inline function containing closure: %+v", n)
}
m.Left = subst.node(n.Left)
m.Right = subst.node(n.Right)
m.List.Set(subst.list(n.List))
m.Rlist.Set(subst.list(n.Rlist))
m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
m.Nbody.Set(subst.list(n.Nbody))
return m
}
}
// Plaster over linenumbers
func setlnolist(ll Nodes, lno int32) {
for _, n := range ll.Slice() {
setlno(n, lno)
}
}
func setlno(n *Node, lno int32) {
if n == nil {
return
}
// don't clobber names, unless they're freshly synthesized
if n.Op != ONAME || n.Lineno == 0 {
n.Lineno = lno
}
setlno(n.Left, lno)
setlno(n.Right, lno)
setlnolist(n.List, lno)
setlnolist(n.Rlist, lno)
setlnolist(n.Ninit, lno)
setlnolist(n.Nbody, lno)
}
func (n *Node) isMethodCalledAsFunction() bool {
return n.Left.Op == ONAME && n.Left.Left != nil && n.Left.Left.Op == OTYPE && n.Left.Right != nil && n.Left.Right.Op == ONAME
}