blob: 88cb1acc5b7d64db396fd239d9befd3f0d78e784 [file] [log] [blame]
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Export guts for testing.
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
var Fadd64 = fadd64
var Fsub64 = fsub64
var Fmul64 = fmul64
var Fdiv64 = fdiv64
var F64to32 = f64to32
var F32to64 = f32to64
var Fcmp64 = fcmp64
var Fintto64 = fintto64
var F64toint = f64toint
var Entersyscall = entersyscall
var Exitsyscall = exitsyscall
var LockedOSThread = lockedOSThread
var Xadduintptr = atomic.Xadduintptr
var FuncPC = funcPC
var Fastlog2 = fastlog2
var Atoi = atoi
var Atoi32 = atoi32
var Nanotime = nanotime
var NetpollBreak = netpollBreak
var Usleep = usleep
var PhysPageSize = physPageSize
var PhysHugePageSize = physHugePageSize
var NetpollGenericInit = netpollGenericInit
var ParseRelease = parseRelease
var Memmove = memmove
var MemclrNoHeapPointers = memclrNoHeapPointers
const PreemptMSupported = preemptMSupported
type LFNode struct {
Next uint64
Pushcnt uintptr
}
func LFStackPush(head *uint64, node *LFNode) {
(*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
}
func LFStackPop(head *uint64) *LFNode {
return (*LFNode)(unsafe.Pointer((*lfstack)(head).pop()))
}
func Netpoll(delta int64) {
systemstack(func() {
netpoll(delta)
})
}
func GCMask(x interface{}) (ret []byte) {
systemstack(func() {
ret = getgcmask(x)
})
return
}
func RunSchedLocalQueueTest() {
_p_ := new(p)
gs := make([]g, len(_p_.runq))
for i := 0; i < len(_p_.runq); i++ {
if g, _ := runqget(_p_); g != nil {
throw("runq is not empty initially")
}
for j := 0; j < i; j++ {
runqput(_p_, &gs[i], false)
}
for j := 0; j < i; j++ {
if g, _ := runqget(_p_); g != &gs[i] {
print("bad element at iter ", i, "/", j, "\n")
throw("bad element")
}
}
if g, _ := runqget(_p_); g != nil {
throw("runq is not empty afterwards")
}
}
}
func RunSchedLocalQueueStealTest() {
p1 := new(p)
p2 := new(p)
gs := make([]g, len(p1.runq))
for i := 0; i < len(p1.runq); i++ {
for j := 0; j < i; j++ {
gs[j].sig = 0
runqput(p1, &gs[j], false)
}
gp := runqsteal(p2, p1, true)
s := 0
if gp != nil {
s++
gp.sig++
}
for {
gp, _ = runqget(p2)
if gp == nil {
break
}
s++
gp.sig++
}
for {
gp, _ = runqget(p1)
if gp == nil {
break
}
gp.sig++
}
for j := 0; j < i; j++ {
if gs[j].sig != 1 {
print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
throw("bad element")
}
}
if s != i/2 && s != i/2+1 {
print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
throw("bad steal")
}
}
}
func RunSchedLocalQueueEmptyTest(iters int) {
// Test that runq is not spuriously reported as empty.
// Runq emptiness affects scheduling decisions and spurious emptiness
// can lead to underutilization (both runnable Gs and idle Ps coexist
// for arbitrary long time).
done := make(chan bool, 1)
p := new(p)
gs := make([]g, 2)
ready := new(uint32)
for i := 0; i < iters; i++ {
*ready = 0
next0 := (i & 1) == 0
next1 := (i & 2) == 0
runqput(p, &gs[0], next0)
go func() {
for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
}
if runqempty(p) {
println("next:", next0, next1)
throw("queue is empty")
}
done <- true
}()
for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
}
runqput(p, &gs[1], next1)
runqget(p)
<-done
runqget(p)
}
}
var (
StringHash = stringHash
BytesHash = bytesHash
Int32Hash = int32Hash
Int64Hash = int64Hash
MemHash = memhash
MemHash32 = memhash32
MemHash64 = memhash64
EfaceHash = efaceHash
IfaceHash = ifaceHash
)
var UseAeshash = &useAeshash
func MemclrBytes(b []byte) {
s := (*slice)(unsafe.Pointer(&b))
memclrNoHeapPointers(s.array, uintptr(s.len))
}
var HashLoad = &hashLoad
// entry point for testing
func GostringW(w []uint16) (s string) {
systemstack(func() {
s = gostringw(&w[0])
})
return
}
type Uintreg sys.Uintreg
var Open = open
var Close = closefd
var Read = read
var Write = write
func Envs() []string { return envs }
func SetEnvs(e []string) { envs = e }
var BigEndian = sys.BigEndian
// For benchmarking.
func BenchSetType(n int, x interface{}) {
e := *efaceOf(&x)
t := e._type
var size uintptr
var p unsafe.Pointer
switch t.kind & kindMask {
case kindPtr:
t = (*ptrtype)(unsafe.Pointer(t)).elem
size = t.size
p = e.data
case kindSlice:
slice := *(*struct {
ptr unsafe.Pointer
len, cap uintptr
})(e.data)
t = (*slicetype)(unsafe.Pointer(t)).elem
size = t.size * slice.len
p = slice.ptr
}
allocSize := roundupsize(size)
systemstack(func() {
for i := 0; i < n; i++ {
heapBitsSetType(uintptr(p), allocSize, size, t)
}
})
}
const PtrSize = sys.PtrSize
var ForceGCPeriod = &forcegcperiod
// SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
// the "environment" traceback level, so later calls to
// debug.SetTraceback (e.g., from testing timeouts) can't lower it.
func SetTracebackEnv(level string) {
setTraceback(level)
traceback_env = traceback_cache
}
var ReadUnaligned32 = readUnaligned32
var ReadUnaligned64 = readUnaligned64
func CountPagesInUse() (pagesInUse, counted uintptr) {
stopTheWorld("CountPagesInUse")
pagesInUse = uintptr(mheap_.pagesInUse)
for _, s := range mheap_.allspans {
if s.state.get() == mSpanInUse {
counted += s.npages
}
}
startTheWorld()
return
}
func Fastrand() uint32 { return fastrand() }
func Fastrandn(n uint32) uint32 { return fastrandn(n) }
type ProfBuf profBuf
func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
}
func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
(*profBuf)(p).write(tag, now, hdr, stk)
}
const (
ProfBufBlocking = profBufBlocking
ProfBufNonBlocking = profBufNonBlocking
)
func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
return (*profBuf)(p).read(profBufReadMode(mode))
}
func (p *ProfBuf) Close() {
(*profBuf)(p).close()
}
// ReadMemStatsSlow returns both the runtime-computed MemStats and
// MemStats accumulated by scanning the heap.
func ReadMemStatsSlow() (base, slow MemStats) {
stopTheWorld("ReadMemStatsSlow")
// Run on the system stack to avoid stack growth allocation.
systemstack(func() {
// Make sure stats don't change.
getg().m.mallocing++
readmemstats_m(&base)
// Initialize slow from base and zero the fields we're
// recomputing.
slow = base
slow.Alloc = 0
slow.TotalAlloc = 0
slow.Mallocs = 0
slow.Frees = 0
slow.HeapReleased = 0
var bySize [_NumSizeClasses]struct {
Mallocs, Frees uint64
}
// Add up current allocations in spans.
for _, s := range mheap_.allspans {
if s.state.get() != mSpanInUse {
continue
}
if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
slow.Mallocs++
slow.Alloc += uint64(s.elemsize)
} else {
slow.Mallocs += uint64(s.allocCount)
slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
bySize[sizeclass].Mallocs += uint64(s.allocCount)
}
}
// Add in frees. readmemstats_m flushed the cached stats, so
// these are up-to-date.
var smallFree uint64
slow.Frees = mheap_.nlargefree
for i := range mheap_.nsmallfree {
slow.Frees += mheap_.nsmallfree[i]
bySize[i].Frees = mheap_.nsmallfree[i]
bySize[i].Mallocs += mheap_.nsmallfree[i]
smallFree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
}
slow.Frees += memstats.tinyallocs
slow.Mallocs += slow.Frees
slow.TotalAlloc = slow.Alloc + mheap_.largefree + smallFree
for i := range slow.BySize {
slow.BySize[i].Mallocs = bySize[i].Mallocs
slow.BySize[i].Frees = bySize[i].Frees
}
for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
pg := mheap_.pages.chunkOf(i).scavenged.popcntRange(0, pallocChunkPages)
slow.HeapReleased += uint64(pg) * pageSize
}
for _, p := range allp {
pg := sys.OnesCount64(p.pcache.scav)
slow.HeapReleased += uint64(pg) * pageSize
}
// Unused space in the current arena also counts as released space.
slow.HeapReleased += uint64(mheap_.curArena.end - mheap_.curArena.base)
getg().m.mallocing--
})
startTheWorld()
return
}
// BlockOnSystemStack switches to the system stack, prints "x\n" to
// stderr, and blocks in a stack containing
// "runtime.blockOnSystemStackInternal".
func BlockOnSystemStack() {
systemstack(blockOnSystemStackInternal)
}
func blockOnSystemStackInternal() {
print("x\n")
lock(&deadlock)
lock(&deadlock)
}
type RWMutex struct {
rw rwmutex
}
func (rw *RWMutex) RLock() {
rw.rw.rlock()
}
func (rw *RWMutex) RUnlock() {
rw.rw.runlock()
}
func (rw *RWMutex) Lock() {
rw.rw.lock()
}
func (rw *RWMutex) Unlock() {
rw.rw.unlock()
}
const RuntimeHmapSize = unsafe.Sizeof(hmap{})
func MapBucketsCount(m map[int]int) int {
h := *(**hmap)(unsafe.Pointer(&m))
return 1 << h.B
}
func MapBucketsPointerIsNil(m map[int]int) bool {
h := *(**hmap)(unsafe.Pointer(&m))
return h.buckets == nil
}
func LockOSCounts() (external, internal uint32) {
g := getg()
if g.m.lockedExt+g.m.lockedInt == 0 {
if g.lockedm != 0 {
panic("lockedm on non-locked goroutine")
}
} else {
if g.lockedm == 0 {
panic("nil lockedm on locked goroutine")
}
}
return g.m.lockedExt, g.m.lockedInt
}
//go:noinline
func TracebackSystemstack(stk []uintptr, i int) int {
if i == 0 {
pc, sp := getcallerpc(), getcallersp()
return gentraceback(pc, sp, 0, getg(), 0, &stk[0], len(stk), nil, nil, _TraceJumpStack)
}
n := 0
systemstack(func() {
n = TracebackSystemstack(stk, i-1)
})
return n
}
func KeepNArenaHints(n int) {
hint := mheap_.arenaHints
for i := 1; i < n; i++ {
hint = hint.next
if hint == nil {
return
}
}
hint.next = nil
}
// MapNextArenaHint reserves a page at the next arena growth hint,
// preventing the arena from growing there, and returns the range of
// addresses that are no longer viable.
func MapNextArenaHint() (start, end uintptr) {
hint := mheap_.arenaHints
addr := hint.addr
if hint.down {
start, end = addr-heapArenaBytes, addr
addr -= physPageSize
} else {
start, end = addr, addr+heapArenaBytes
}
sysReserve(unsafe.Pointer(addr), physPageSize)
return
}
func GetNextArenaHint() uintptr {
return mheap_.arenaHints.addr
}
type G = g
func Getg() *G {
return getg()
}
//go:noinline
func PanicForTesting(b []byte, i int) byte {
return unexportedPanicForTesting(b, i)
}
//go:noinline
func unexportedPanicForTesting(b []byte, i int) byte {
return b[i]
}
func G0StackOverflow() {
systemstack(func() {
stackOverflow(nil)
})
}
func stackOverflow(x *byte) {
var buf [256]byte
stackOverflow(&buf[0])
}
func MapTombstoneCheck(m map[int]int) {
// Make sure emptyOne and emptyRest are distributed correctly.
// We should have a series of filled and emptyOne cells, followed by
// a series of emptyRest cells.
h := *(**hmap)(unsafe.Pointer(&m))
i := interface{}(m)
t := *(**maptype)(unsafe.Pointer(&i))
for x := 0; x < 1<<h.B; x++ {
b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.bucketsize)))
n := 0
for b := b0; b != nil; b = b.overflow(t) {
for i := 0; i < bucketCnt; i++ {
if b.tophash[i] != emptyRest {
n++
}
}
}
k := 0
for b := b0; b != nil; b = b.overflow(t) {
for i := 0; i < bucketCnt; i++ {
if k < n && b.tophash[i] == emptyRest {
panic("early emptyRest")
}
if k >= n && b.tophash[i] != emptyRest {
panic("late non-emptyRest")
}
if k == n-1 && b.tophash[i] == emptyOne {
panic("last non-emptyRest entry is emptyOne")
}
k++
}
}
}
}
func RunGetgThreadSwitchTest() {
// Test that getg works correctly with thread switch.
// With gccgo, if we generate getg inlined, the backend
// may cache the address of the TLS variable, which
// will become invalid after a thread switch. This test
// checks that the bad caching doesn't happen.
ch := make(chan int)
go func(ch chan int) {
ch <- 5
LockOSThread()
}(ch)
g1 := getg()
// Block on a receive. This is likely to get us a thread
// switch. If we yield to the sender goroutine, it will
// lock the thread, forcing us to resume on a different
// thread.
<-ch
g2 := getg()
if g1 != g2 {
panic("g1 != g2")
}
// Also test getg after some control flow, as the
// backend is sensitive to control flow.
g3 := getg()
if g1 != g3 {
panic("g1 != g3")
}
}
const (
PageSize = pageSize
PallocChunkPages = pallocChunkPages
PageAlloc64Bit = pageAlloc64Bit
PallocSumBytes = pallocSumBytes
)
// Expose pallocSum for testing.
type PallocSum pallocSum
func PackPallocSum(start, max, end uint) PallocSum { return PallocSum(packPallocSum(start, max, end)) }
func (m PallocSum) Start() uint { return pallocSum(m).start() }
func (m PallocSum) Max() uint { return pallocSum(m).max() }
func (m PallocSum) End() uint { return pallocSum(m).end() }
// Expose pallocBits for testing.
type PallocBits pallocBits
func (b *PallocBits) Find(npages uintptr, searchIdx uint) (uint, uint) {
return (*pallocBits)(b).find(npages, searchIdx)
}
func (b *PallocBits) AllocRange(i, n uint) { (*pallocBits)(b).allocRange(i, n) }
func (b *PallocBits) Free(i, n uint) { (*pallocBits)(b).free(i, n) }
func (b *PallocBits) Summarize() PallocSum { return PallocSum((*pallocBits)(b).summarize()) }
func (b *PallocBits) PopcntRange(i, n uint) uint { return (*pageBits)(b).popcntRange(i, n) }
// SummarizeSlow is a slow but more obviously correct implementation
// of (*pallocBits).summarize. Used for testing.
func SummarizeSlow(b *PallocBits) PallocSum {
var start, max, end uint
const N = uint(len(b)) * 64
for start < N && (*pageBits)(b).get(start) == 0 {
start++
}
for end < N && (*pageBits)(b).get(N-end-1) == 0 {
end++
}
run := uint(0)
for i := uint(0); i < N; i++ {
if (*pageBits)(b).get(i) == 0 {
run++
} else {
run = 0
}
if run > max {
max = run
}
}
return PackPallocSum(start, max, end)
}
// Expose non-trivial helpers for testing.
func FindBitRange64(c uint64, n uint) uint { return findBitRange64(c, n) }
// Given two PallocBits, returns a set of bit ranges where
// they differ.
func DiffPallocBits(a, b *PallocBits) []BitRange {
ba := (*pageBits)(a)
bb := (*pageBits)(b)
var d []BitRange
base, size := uint(0), uint(0)
for i := uint(0); i < uint(len(ba))*64; i++ {
if ba.get(i) != bb.get(i) {
if size == 0 {
base = i
}
size++
} else {
if size != 0 {
d = append(d, BitRange{base, size})
}
size = 0
}
}
if size != 0 {
d = append(d, BitRange{base, size})
}
return d
}
// StringifyPallocBits gets the bits in the bit range r from b,
// and returns a string containing the bits as ASCII 0 and 1
// characters.
func StringifyPallocBits(b *PallocBits, r BitRange) string {
str := ""
for j := r.I; j < r.I+r.N; j++ {
if (*pageBits)(b).get(j) != 0 {
str += "1"
} else {
str += "0"
}
}
return str
}
// Expose pallocData for testing.
type PallocData pallocData
func (d *PallocData) FindScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) {
return (*pallocData)(d).findScavengeCandidate(searchIdx, min, max)
}
func (d *PallocData) AllocRange(i, n uint) { (*pallocData)(d).allocRange(i, n) }
func (d *PallocData) ScavengedSetRange(i, n uint) {
(*pallocData)(d).scavenged.setRange(i, n)
}
func (d *PallocData) PallocBits() *PallocBits {
return (*PallocBits)(&(*pallocData)(d).pallocBits)
}
func (d *PallocData) Scavenged() *PallocBits {
return (*PallocBits)(&(*pallocData)(d).scavenged)
}
// Expose fillAligned for testing.
func FillAligned(x uint64, m uint) uint64 { return fillAligned(x, m) }
// Expose pageCache for testing.
type PageCache pageCache
const PageCachePages = pageCachePages
func NewPageCache(base uintptr, cache, scav uint64) PageCache {
return PageCache(pageCache{base: base, cache: cache, scav: scav})
}
func (c *PageCache) Empty() bool { return (*pageCache)(c).empty() }
func (c *PageCache) Base() uintptr { return (*pageCache)(c).base }
func (c *PageCache) Cache() uint64 { return (*pageCache)(c).cache }
func (c *PageCache) Scav() uint64 { return (*pageCache)(c).scav }
func (c *PageCache) Alloc(npages uintptr) (uintptr, uintptr) {
return (*pageCache)(c).alloc(npages)
}
func (c *PageCache) Flush(s *PageAlloc) {
(*pageCache)(c).flush((*pageAlloc)(s))
}
// Expose chunk index type.
type ChunkIdx chunkIdx
// Expose pageAlloc for testing. Note that because pageAlloc is
// not in the heap, so is PageAlloc.
type PageAlloc pageAlloc
func (p *PageAlloc) Alloc(npages uintptr) (uintptr, uintptr) {
return (*pageAlloc)(p).alloc(npages)
}
func (p *PageAlloc) AllocToCache() PageCache {
return PageCache((*pageAlloc)(p).allocToCache())
}
func (p *PageAlloc) Free(base, npages uintptr) {
(*pageAlloc)(p).free(base, npages)
}
func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) {
return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end)
}
func (p *PageAlloc) Scavenge(nbytes uintptr, locked bool) (r uintptr) {
systemstack(func() {
r = (*pageAlloc)(p).scavenge(nbytes, locked)
})
return
}
func (p *PageAlloc) InUse() []AddrRange {
ranges := make([]AddrRange, 0, len(p.inUse.ranges))
for _, r := range p.inUse.ranges {
ranges = append(ranges, AddrRange{
Base: r.base,
Limit: r.limit,
})
}
return ranges
}
// Returns nil if the PallocData's L2 is missing.
func (p *PageAlloc) PallocData(i ChunkIdx) *PallocData {
ci := chunkIdx(i)
l2 := (*pageAlloc)(p).chunks[ci.l1()]
if l2 == nil {
return nil
}
return (*PallocData)(&l2[ci.l2()])
}
// AddrRange represents a range over addresses.
// Specifically, it represents the range [Base, Limit).
type AddrRange struct {
Base, Limit uintptr
}
// BitRange represents a range over a bitmap.
type BitRange struct {
I, N uint // bit index and length in bits
}
// NewPageAlloc creates a new page allocator for testing and
// initializes it with the scav and chunks maps. Each key in these maps
// represents a chunk index and each value is a series of bit ranges to
// set within each bitmap's chunk.
//
// The initialization of the pageAlloc preserves the invariant that if a
// scavenged bit is set the alloc bit is necessarily unset, so some
// of the bits described by scav may be cleared in the final bitmap if
// ranges in chunks overlap with them.
//
// scav is optional, and if nil, the scavenged bitmap will be cleared
// (as opposed to all 1s, which it usually is). Furthermore, every
// chunk index in scav must appear in chunks; ones that do not are
// ignored.
func NewPageAlloc(chunks, scav map[ChunkIdx][]BitRange) *PageAlloc {
p := new(pageAlloc)
// We've got an entry, so initialize the pageAlloc.
p.init(new(mutex), nil)
p.test = true
for i, init := range chunks {
addr := chunkBase(chunkIdx(i))
// Mark the chunk's existence in the pageAlloc.
p.grow(addr, pallocChunkBytes)
// Initialize the bitmap and update pageAlloc metadata.
chunk := p.chunkOf(chunkIndex(addr))
// Clear all the scavenged bits which grow set.
chunk.scavenged.clearRange(0, pallocChunkPages)
// Apply scavenge state if applicable.
if scav != nil {
if scvg, ok := scav[i]; ok {
for _, s := range scvg {
// Ignore the case of s.N == 0. setRange doesn't handle
// it and it's a no-op anyway.
if s.N != 0 {
chunk.scavenged.setRange(s.I, s.N)
}
}
}
}
p.resetScavengeAddr()
// Apply alloc state.
for _, s := range init {
// Ignore the case of s.N == 0. allocRange doesn't handle
// it and it's a no-op anyway.
if s.N != 0 {
chunk.allocRange(s.I, s.N)
}
}
// Update heap metadata for the allocRange calls above.
p.update(addr, pallocChunkPages, false, false)
}
return (*PageAlloc)(p)
}
// FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this
// is called the pageAlloc may no longer be used. The object itself will be
// collected by the garbage collector once it is no longer live.
func FreePageAlloc(pp *PageAlloc) {
p := (*pageAlloc)(pp)
// Free all the mapped space for the summary levels.
if pageAlloc64Bit != 0 {
for l := 0; l < summaryLevels; l++ {
sysFree(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes, nil)
}
} else {
resSize := uintptr(0)
for _, s := range p.summary {
resSize += uintptr(cap(s)) * pallocSumBytes
}
sysFree(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize), nil)
}
// Free the mapped space for chunks.
for i := range p.chunks {
if x := p.chunks[i]; x != nil {
p.chunks[i] = nil
// This memory comes from sysAlloc and will always be page-aligned.
sysFree(unsafe.Pointer(x), unsafe.Sizeof(*p.chunks[0]), nil)
}
}
}
// BaseChunkIdx is a convenient chunkIdx value which works on both
// 64 bit and 32 bit platforms, allowing the tests to share code
// between the two.
//
// On AIX, the arenaBaseOffset is 0x0a00000000000000. However, this
// constant can't be used here because it is negative and will cause
// a constant overflow.
//
// This should not be higher than 0x100*pallocChunkBytes to support
// mips and mipsle, which only have 31-bit address spaces.
var BaseChunkIdx = ChunkIdx(chunkIndex(((0xc000*pageAlloc64Bit + 0x100*pageAlloc32Bit) * pallocChunkBytes) + 0x0a00000000000000*sys.GoosAix))
// PageBase returns an address given a chunk index and a page index
// relative to that chunk.
func PageBase(c ChunkIdx, pageIdx uint) uintptr {
return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize
}
type BitsMismatch struct {
Base uintptr
Got, Want uint64
}
func CheckScavengedBitsCleared(mismatches []BitsMismatch) (n int, ok bool) {
ok = true
// Run on the system stack to avoid stack growth allocation.
systemstack(func() {
getg().m.mallocing++
// Lock so that we can safely access the bitmap.
lock(&mheap_.lock)
chunkLoop:
for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
chunk := mheap_.pages.chunkOf(i)
for j := 0; j < pallocChunkPages/64; j++ {
// Run over each 64-bit bitmap section and ensure
// scavenged is being cleared properly on allocation.
// If a used bit and scavenged bit are both set, that's
// an error, and could indicate a larger problem, or
// an accounting problem.
want := chunk.scavenged[j] &^ chunk.pallocBits[j]
got := chunk.scavenged[j]
if want != got {
ok = false
if n >= len(mismatches) {
break chunkLoop
}
mismatches[n] = BitsMismatch{
Base: chunkBase(i) + uintptr(j)*64*pageSize,
Got: got,
Want: want,
}
n++
}
}
}
unlock(&mheap_.lock)
getg().m.mallocing--
})
return
}
func PageCachePagesLeaked() (leaked uintptr) {
stopTheWorld("PageCachePagesLeaked")
// Walk over destroyed Ps and look for unflushed caches.
deadp := allp[len(allp):cap(allp)]
for _, p := range deadp {
// Since we're going past len(allp) we may see nil Ps.
// Just ignore them.
if p != nil {
leaked += uintptr(sys.OnesCount64(p.pcache.cache))
}
}
startTheWorld()
return
}
var Semacquire = semacquire
var Semrelease1 = semrelease1
func SemNwait(addr *uint32) uint32 {
root := semroot(addr)
return atomic.Load(&root.nwait)
}