| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package pem implements the PEM data encoding, which originated in Privacy |
| // Enhanced Mail. The most common use of PEM encoding today is in TLS keys and |
| // certificates. See RFC 1421. |
| package pem |
| |
| import ( |
| "bytes" |
| "encoding/base64" |
| "errors" |
| "io" |
| "sort" |
| "strings" |
| ) |
| |
| // A Block represents a PEM encoded structure. |
| // |
| // The encoded form is: |
| // -----BEGIN Type----- |
| // Headers |
| // base64-encoded Bytes |
| // -----END Type----- |
| // where Headers is a possibly empty sequence of Key: Value lines. |
| type Block struct { |
| Type string // The type, taken from the preamble (i.e. "RSA PRIVATE KEY"). |
| Headers map[string]string // Optional headers. |
| Bytes []byte // The decoded bytes of the contents. Typically a DER encoded ASN.1 structure. |
| } |
| |
| // getLine results the first \r\n or \n delineated line from the given byte |
| // array. The line does not include trailing whitespace or the trailing new |
| // line bytes. The remainder of the byte array (also not including the new line |
| // bytes) is also returned and this will always be smaller than the original |
| // argument. |
| func getLine(data []byte) (line, rest []byte) { |
| i := bytes.Index(data, []byte{'\n'}) |
| var j int |
| if i < 0 { |
| i = len(data) |
| j = i |
| } else { |
| j = i + 1 |
| if i > 0 && data[i-1] == '\r' { |
| i-- |
| } |
| } |
| return bytes.TrimRight(data[0:i], " \t"), data[j:] |
| } |
| |
| // removeWhitespace returns a copy of its input with all spaces, tab and |
| // newline characters removed. |
| func removeWhitespace(data []byte) []byte { |
| result := make([]byte, len(data)) |
| n := 0 |
| |
| for _, b := range data { |
| if b == ' ' || b == '\t' || b == '\r' || b == '\n' { |
| continue |
| } |
| result[n] = b |
| n++ |
| } |
| |
| return result[0:n] |
| } |
| |
| var pemStart = []byte("\n-----BEGIN ") |
| var pemEnd = []byte("\n-----END ") |
| var pemEndOfLine = []byte("-----") |
| |
| // Decode will find the next PEM formatted block (certificate, private key |
| // etc) in the input. It returns that block and the remainder of the input. If |
| // no PEM data is found, p is nil and the whole of the input is returned in |
| // rest. |
| func Decode(data []byte) (p *Block, rest []byte) { |
| // pemStart begins with a newline. However, at the very beginning of |
| // the byte array, we'll accept the start string without it. |
| rest = data |
| if bytes.HasPrefix(data, pemStart[1:]) { |
| rest = rest[len(pemStart)-1 : len(data)] |
| } else if i := bytes.Index(data, pemStart); i >= 0 { |
| rest = rest[i+len(pemStart) : len(data)] |
| } else { |
| return nil, data |
| } |
| |
| typeLine, rest := getLine(rest) |
| if !bytes.HasSuffix(typeLine, pemEndOfLine) { |
| return decodeError(data, rest) |
| } |
| typeLine = typeLine[0 : len(typeLine)-len(pemEndOfLine)] |
| |
| p = &Block{ |
| Headers: make(map[string]string), |
| Type: string(typeLine), |
| } |
| |
| for { |
| // This loop terminates because getLine's second result is |
| // always smaller than its argument. |
| if len(rest) == 0 { |
| return nil, data |
| } |
| line, next := getLine(rest) |
| |
| i := bytes.Index(line, []byte{':'}) |
| if i == -1 { |
| break |
| } |
| |
| // TODO(agl): need to cope with values that spread across lines. |
| key, val := line[:i], line[i+1:] |
| key = bytes.TrimSpace(key) |
| val = bytes.TrimSpace(val) |
| p.Headers[string(key)] = string(val) |
| rest = next |
| } |
| |
| var endIndex int |
| // If there were no headers, the END line might occur |
| // immediately, without a leading newline. |
| if len(p.Headers) == 0 && bytes.HasPrefix(rest, pemEnd[1:]) { |
| endIndex = 0 |
| } else { |
| endIndex = bytes.Index(rest, pemEnd) |
| } |
| |
| if endIndex < 0 { |
| return decodeError(data, rest) |
| } |
| |
| base64Data := removeWhitespace(rest[:endIndex]) |
| p.Bytes = make([]byte, base64.StdEncoding.DecodedLen(len(base64Data))) |
| n, err := base64.StdEncoding.Decode(p.Bytes, base64Data) |
| if err != nil { |
| return decodeError(data, rest) |
| } |
| p.Bytes = p.Bytes[:n] |
| |
| // the -1 is because we might have only matched pemEnd without the |
| // leading newline if the PEM block was empty. |
| _, rest = getLine(rest[endIndex+len(pemEnd)-1:]) |
| |
| return |
| } |
| |
| func decodeError(data, rest []byte) (*Block, []byte) { |
| // If we get here then we have rejected a likely looking, but |
| // ultimately invalid PEM block. We need to start over from a new |
| // position. We have consumed the preamble line and will have consumed |
| // any lines which could be header lines. However, a valid preamble |
| // line is not a valid header line, therefore we cannot have consumed |
| // the preamble line for the any subsequent block. Thus, we will always |
| // find any valid block, no matter what bytes precede it. |
| // |
| // For example, if the input is |
| // |
| // -----BEGIN MALFORMED BLOCK----- |
| // junk that may look like header lines |
| // or data lines, but no END line |
| // |
| // -----BEGIN ACTUAL BLOCK----- |
| // realdata |
| // -----END ACTUAL BLOCK----- |
| // |
| // we've failed to parse using the first BEGIN line |
| // and now will try again, using the second BEGIN line. |
| p, rest := Decode(rest) |
| if p == nil { |
| rest = data |
| } |
| return p, rest |
| } |
| |
| const pemLineLength = 64 |
| |
| type lineBreaker struct { |
| line [pemLineLength]byte |
| used int |
| out io.Writer |
| } |
| |
| var nl = []byte{'\n'} |
| |
| func (l *lineBreaker) Write(b []byte) (n int, err error) { |
| if l.used+len(b) < pemLineLength { |
| copy(l.line[l.used:], b) |
| l.used += len(b) |
| return len(b), nil |
| } |
| |
| n, err = l.out.Write(l.line[0:l.used]) |
| if err != nil { |
| return |
| } |
| excess := pemLineLength - l.used |
| l.used = 0 |
| |
| n, err = l.out.Write(b[0:excess]) |
| if err != nil { |
| return |
| } |
| |
| n, err = l.out.Write(nl) |
| if err != nil { |
| return |
| } |
| |
| return l.Write(b[excess:]) |
| } |
| |
| func (l *lineBreaker) Close() (err error) { |
| if l.used > 0 { |
| _, err = l.out.Write(l.line[0:l.used]) |
| if err != nil { |
| return |
| } |
| _, err = l.out.Write(nl) |
| } |
| |
| return |
| } |
| |
| func writeHeader(out io.Writer, k, v string) error { |
| _, err := out.Write([]byte(k + ": " + v + "\n")) |
| return err |
| } |
| |
| func Encode(out io.Writer, b *Block) error { |
| if _, err := out.Write(pemStart[1:]); err != nil { |
| return err |
| } |
| if _, err := out.Write([]byte(b.Type + "-----\n")); err != nil { |
| return err |
| } |
| |
| if len(b.Headers) > 0 { |
| const procType = "Proc-Type" |
| h := make([]string, 0, len(b.Headers)) |
| hasProcType := false |
| for k := range b.Headers { |
| if k == procType { |
| hasProcType = true |
| continue |
| } |
| h = append(h, k) |
| } |
| // The Proc-Type header must be written first. |
| // See RFC 1421, section 4.6.1.1 |
| if hasProcType { |
| if err := writeHeader(out, procType, b.Headers[procType]); err != nil { |
| return err |
| } |
| } |
| // For consistency of output, write other headers sorted by key. |
| sort.Strings(h) |
| for _, k := range h { |
| if strings.Contains(k, ":") { |
| return errors.New("pem: cannot encode a header key that contains a colon") |
| } |
| if err := writeHeader(out, k, b.Headers[k]); err != nil { |
| return err |
| } |
| } |
| if _, err := out.Write(nl); err != nil { |
| return err |
| } |
| } |
| |
| var breaker lineBreaker |
| breaker.out = out |
| |
| b64 := base64.NewEncoder(base64.StdEncoding, &breaker) |
| if _, err := b64.Write(b.Bytes); err != nil { |
| return err |
| } |
| b64.Close() |
| breaker.Close() |
| |
| if _, err := out.Write(pemEnd[1:]); err != nil { |
| return err |
| } |
| _, err := out.Write([]byte(b.Type + "-----\n")) |
| return err |
| } |
| |
| func EncodeToMemory(b *Block) []byte { |
| var buf bytes.Buffer |
| Encode(&buf, b) |
| return buf.Bytes() |
| } |