| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Multiprecision decimal numbers. |
| // For floating-point formatting only; not general purpose. |
| // Only operations are assign and (binary) left/right shift. |
| // Can do binary floating point in multiprecision decimal precisely |
| // because 2 divides 10; cannot do decimal floating point |
| // in multiprecision binary precisely. |
| |
| package strconv |
| |
| import "bytes" |
| |
| type decimal struct { |
| // TODO(rsc): Can make d[] a bit smaller and add |
| // truncated bool; |
| d [2000] byte; // digits |
| nd int; // number of digits used |
| dp int; // decimal point |
| }; |
| |
| func (a *decimal) String() string { |
| n := 10 + a.nd; |
| if a.dp > 0 { |
| n += a.dp; |
| } |
| if a.dp < 0 { |
| n += -a.dp; |
| } |
| |
| buf := make([]byte, n); |
| w := 0; |
| switch { |
| case a.nd == 0: |
| return "0"; |
| |
| case a.dp <= 0: |
| // zeros fill space between decimal point and digits |
| buf[w] = '0'; |
| w++; |
| buf[w] = '.'; |
| w++; |
| w += digitZero(buf[w:w+-a.dp]); |
| w += bytes.Copy(buf[w:w+a.nd], a.d[0:a.nd]); |
| |
| case a.dp < a.nd: |
| // decimal point in middle of digits |
| w += bytes.Copy(buf[w:w+a.dp], a.d[0:a.dp]); |
| buf[w] = '.'; |
| w++; |
| w += bytes.Copy(buf[w:w+a.nd-a.dp], a.d[a.dp:a.nd]); |
| |
| default: |
| // zeros fill space between digits and decimal point |
| w += bytes.Copy(buf[w:w+a.nd], a.d[0:a.nd]); |
| w += digitZero(buf[w:w+a.dp-a.nd]); |
| } |
| return string(buf[0:w]); |
| } |
| |
| func copy(dst []byte, src []byte) int { |
| for i := 0; i < len(dst); i++ { |
| dst[i] = src[i]; |
| } |
| return len(dst); |
| } |
| |
| func digitZero(dst []byte) int { |
| for i := 0; i < len(dst); i++ { |
| dst[i] = '0'; |
| } |
| return len(dst); |
| } |
| |
| // trim trailing zeros from number. |
| // (They are meaningless; the decimal point is tracked |
| // independent of the number of digits.) |
| func trim(a *decimal) { |
| for a.nd > 0 && a.d[a.nd-1] == '0' { |
| a.nd--; |
| } |
| if a.nd == 0 { |
| a.dp = 0; |
| } |
| } |
| |
| // Assign v to a. |
| func (a *decimal) Assign(v uint64) { |
| var buf [50]byte; |
| |
| // Write reversed decimal in buf. |
| n := 0; |
| for v > 0 { |
| v1 := v/10; |
| v -= 10*v1; |
| buf[n] = byte(v + '0'); |
| n++; |
| v = v1; |
| } |
| |
| // Reverse again to produce forward decimal in a.d. |
| a.nd = 0; |
| for n--; n>=0; n-- { |
| a.d[a.nd] = buf[n]; |
| a.nd++; |
| } |
| a.dp = a.nd; |
| trim(a); |
| } |
| |
| func newDecimal(i uint64) *decimal { |
| a := new(decimal); |
| a.Assign(i); |
| return a; |
| } |
| |
| // Maximum shift that we can do in one pass without overflow. |
| // Signed int has 31 bits, and we have to be able to accomodate 9<<k. |
| const maxShift = 27 |
| |
| // Binary shift right (* 2) by k bits. k <= maxShift to avoid overflow. |
| func rightShift(a *decimal, k uint) { |
| r := 0; // read pointer |
| w := 0; // write pointer |
| |
| // Pick up enough leading digits to cover first shift. |
| n := 0; |
| for ; n>>k == 0; r++ { |
| if r >= a.nd { |
| if n == 0 { |
| // a == 0; shouldn't get here, but handle anyway. |
| a.nd = 0; |
| return; |
| } |
| for n>>k == 0 { |
| n = n*10; |
| r++; |
| } |
| break; |
| } |
| c := int(a.d[r]); |
| n = n*10 + c-'0'; |
| } |
| a.dp -= r-1; |
| |
| // Pick up a digit, put down a digit. |
| for ; r < a.nd; r++ { |
| c := int(a.d[r]); |
| dig := n>>k; |
| n -= dig<<k; |
| a.d[w] = byte(dig+'0'); |
| w++; |
| n = n*10 + c-'0'; |
| } |
| |
| // Put down extra digits. |
| for n > 0 { |
| dig := n>>k; |
| n -= dig<<k; |
| a.d[w] = byte(dig+'0'); |
| w++; |
| n = n*10; |
| } |
| |
| a.nd = w; |
| trim(a); |
| } |
| |
| // Cheat sheet for left shift: table indexed by shift count giving |
| // number of new digits that will be introduced by that shift. |
| // |
| // For example, leftcheats[4] = {2, "625"}. That means that |
| // if we are shifting by 4 (multiplying by 16), it will add 2 digits |
| // when the string prefix is "625" through "999", and one fewer digit |
| // if the string prefix is "000" through "624". |
| // |
| // Credit for this trick goes to Ken. |
| |
| type leftCheat struct { |
| delta int; // number of new digits |
| cutoff string; // minus one digit if original < a. |
| } |
| |
| var leftcheats = []leftCheat { |
| // Leading digits of 1/2^i = 5^i. |
| // 5^23 is not an exact 64-bit floating point number, |
| // so have to use bc for the math. |
| /* |
| seq 27 | sed 's/^/5^/' | bc | |
| awk 'BEGIN{ print "\tleftCheat{ 0, \"\" }," } |
| { |
| log2 = log(2)/log(10) |
| printf("\tleftCheat{ %d, \"%s\" },\t// * %d\n", |
| int(log2*NR+1), $0, 2**NR) |
| }' |
| */ |
| leftCheat{ 0, "" }, |
| leftCheat{ 1, "5" }, // * 2 |
| leftCheat{ 1, "25" }, // * 4 |
| leftCheat{ 1, "125" }, // * 8 |
| leftCheat{ 2, "625" }, // * 16 |
| leftCheat{ 2, "3125" }, // * 32 |
| leftCheat{ 2, "15625" }, // * 64 |
| leftCheat{ 3, "78125" }, // * 128 |
| leftCheat{ 3, "390625" }, // * 256 |
| leftCheat{ 3, "1953125" }, // * 512 |
| leftCheat{ 4, "9765625" }, // * 1024 |
| leftCheat{ 4, "48828125" }, // * 2048 |
| leftCheat{ 4, "244140625" }, // * 4096 |
| leftCheat{ 4, "1220703125" }, // * 8192 |
| leftCheat{ 5, "6103515625" }, // * 16384 |
| leftCheat{ 5, "30517578125" }, // * 32768 |
| leftCheat{ 5, "152587890625" }, // * 65536 |
| leftCheat{ 6, "762939453125" }, // * 131072 |
| leftCheat{ 6, "3814697265625" }, // * 262144 |
| leftCheat{ 6, "19073486328125" }, // * 524288 |
| leftCheat{ 7, "95367431640625" }, // * 1048576 |
| leftCheat{ 7, "476837158203125" }, // * 2097152 |
| leftCheat{ 7, "2384185791015625" }, // * 4194304 |
| leftCheat{ 7, "11920928955078125" }, // * 8388608 |
| leftCheat{ 8, "59604644775390625" }, // * 16777216 |
| leftCheat{ 8, "298023223876953125" }, // * 33554432 |
| leftCheat{ 8, "1490116119384765625" }, // * 67108864 |
| leftCheat{ 9, "7450580596923828125" }, // * 134217728 |
| } |
| |
| // Is the leading prefix of b lexicographically less than s? |
| func prefixIsLessThan(b []byte, s string) bool { |
| for i := 0; i < len(s); i++ { |
| if i >= len(b) { |
| return true; |
| } |
| if b[i] != s[i] { |
| return b[i] < s[i]; |
| } |
| } |
| return false; |
| } |
| |
| // Binary shift left (/ 2) by k bits. k <= maxShift to avoid overflow. |
| func leftShift(a *decimal, k uint) { |
| delta := leftcheats[k].delta; |
| if prefixIsLessThan(a.d[0:a.nd], leftcheats[k].cutoff) { |
| delta--; |
| } |
| |
| r := a.nd; // read index |
| w := a.nd + delta; // write index |
| n := 0; |
| |
| // Pick up a digit, put down a digit. |
| for r--; r >= 0; r-- { |
| n += (int(a.d[r])-'0') << k; |
| quo := n/10; |
| rem := n - 10*quo; |
| w--; |
| a.d[w] = byte(rem+'0'); |
| n = quo; |
| } |
| |
| // Put down extra digits. |
| for n > 0 { |
| quo := n/10; |
| rem := n - 10*quo; |
| w--; |
| a.d[w] = byte(rem+'0'); |
| n = quo; |
| } |
| |
| if w != 0 { |
| // TODO: Remove - has no business panicking. |
| panicln("strconv: bad leftShift", w); |
| } |
| a.nd += delta; |
| a.dp += delta; |
| trim(a); |
| } |
| |
| // Binary shift left (k > 0) or right (k < 0). |
| // Returns receiver for convenience. |
| func (a *decimal) Shift(k int) *decimal { |
| switch { |
| case a.nd == 0: |
| // nothing to do: a == 0 |
| case k > 0: |
| for k > maxShift { |
| leftShift(a, maxShift); |
| k -= maxShift; |
| } |
| leftShift(a, uint(k)); |
| case k < 0: |
| for k < -maxShift { |
| rightShift(a, maxShift); |
| k += maxShift; |
| } |
| rightShift(a, uint(-k)); |
| } |
| return a; |
| } |
| |
| // If we chop a at nd digits, should we round up? |
| func shouldRoundUp(a *decimal, nd int) bool { |
| if nd <= 0 || nd >= a.nd { |
| return false; |
| } |
| if a.d[nd] == '5' && nd+1 == a.nd { // exactly halfway - round to even |
| return (a.d[nd-1] - '0') % 2 != 0; |
| } |
| // not halfway - digit tells all |
| return a.d[nd] >= '5'; |
| } |
| |
| // Round a to nd digits (or fewer). |
| // Returns receiver for convenience. |
| func (a *decimal) Round(nd int) *decimal { |
| if nd <= 0 || nd >= a.nd { |
| return a; |
| } |
| if shouldRoundUp(a, nd) { |
| return a.RoundUp(nd); |
| } |
| return a.RoundDown(nd); |
| } |
| |
| // Round a down to nd digits (or fewer). |
| // Returns receiver for convenience. |
| func (a *decimal) RoundDown(nd int) *decimal { |
| if nd <= 0 || nd >= a.nd { |
| return a; |
| } |
| a.nd = nd; |
| trim(a); |
| return a; |
| } |
| |
| // Round a up to nd digits (or fewer). |
| // Returns receiver for convenience. |
| func (a *decimal) RoundUp(nd int) *decimal { |
| if nd <= 0 || nd >= a.nd { |
| return a; |
| } |
| |
| // round up |
| for i := nd-1; i >= 0; i-- { |
| c := a.d[i]; |
| if c < '9' { // can stop after this digit |
| a.d[i]++; |
| a.nd = i+1; |
| return a; |
| } |
| } |
| |
| // Number is all 9s. |
| // Change to single 1 with adjusted decimal point. |
| a.d[0] = '1'; |
| a.nd = 1; |
| a.dp++; |
| return a; |
| } |
| |
| // Extract integer part, rounded appropriately. |
| // No guarantees about overflow. |
| func (a *decimal) RoundedInteger() uint64 { |
| if a.dp > 20 { |
| return 0xFFFFFFFFFFFFFFFF; |
| } |
| var i int; |
| n := uint64(0); |
| for i = 0; i < a.dp && i < a.nd; i++ { |
| n = n*10 + uint64(a.d[i] - '0'); |
| } |
| for ; i < a.dp; i++ { |
| n *= 10; |
| } |
| if shouldRoundUp(a, a.dp) { |
| n++; |
| } |
| return n; |
| } |
| |