| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements multi-precision rational numbers. |
| |
| package big |
| |
| import ( |
| "fmt" |
| "math" |
| ) |
| |
| // A Rat represents a quotient a/b of arbitrary precision. |
| // The zero value for a Rat represents the value 0. |
| // |
| // Operations always take pointer arguments (*Rat) rather |
| // than Rat values, and each unique Rat value requires |
| // its own unique *Rat pointer. To "copy" a Rat value, |
| // an existing (or newly allocated) Rat must be set to |
| // a new value using the Rat.Set method; shallow copies |
| // of Rats are not supported and may lead to errors. |
| type Rat struct { |
| // To make zero values for Rat work w/o initialization, |
| // a zero value of b (len(b) == 0) acts like b == 1. At |
| // the earliest opportunity (when an assignment to the Rat |
| // is made), such uninitialized denominators are set to 1. |
| // a.neg determines the sign of the Rat, b.neg is ignored. |
| a, b Int |
| } |
| |
| // NewRat creates a new Rat with numerator a and denominator b. |
| func NewRat(a, b int64) *Rat { |
| return new(Rat).SetFrac64(a, b) |
| } |
| |
| // SetFloat64 sets z to exactly f and returns z. |
| // If f is not finite, SetFloat returns nil. |
| func (z *Rat) SetFloat64(f float64) *Rat { |
| const expMask = 1<<11 - 1 |
| bits := math.Float64bits(f) |
| mantissa := bits & (1<<52 - 1) |
| exp := int((bits >> 52) & expMask) |
| switch exp { |
| case expMask: // non-finite |
| return nil |
| case 0: // denormal |
| exp -= 1022 |
| default: // normal |
| mantissa |= 1 << 52 |
| exp -= 1023 |
| } |
| |
| shift := 52 - exp |
| |
| // Optimization (?): partially pre-normalise. |
| for mantissa&1 == 0 && shift > 0 { |
| mantissa >>= 1 |
| shift-- |
| } |
| |
| z.a.SetUint64(mantissa) |
| z.a.neg = f < 0 |
| z.b.Set(intOne) |
| if shift > 0 { |
| z.b.Lsh(&z.b, uint(shift)) |
| } else { |
| z.a.Lsh(&z.a, uint(-shift)) |
| } |
| return z.norm() |
| } |
| |
| // quotToFloat32 returns the non-negative float32 value |
| // nearest to the quotient a/b, using round-to-even in |
| // halfway cases. It does not mutate its arguments. |
| // Preconditions: b is non-zero; a and b have no common factors. |
| func quotToFloat32(a, b nat) (f float32, exact bool) { |
| const ( |
| // float size in bits |
| Fsize = 32 |
| |
| // mantissa |
| Msize = 23 |
| Msize1 = Msize + 1 // incl. implicit 1 |
| Msize2 = Msize1 + 1 |
| |
| // exponent |
| Esize = Fsize - Msize1 |
| Ebias = 1<<(Esize-1) - 1 |
| Emin = 1 - Ebias |
| Emax = Ebias |
| ) |
| |
| // TODO(adonovan): specialize common degenerate cases: 1.0, integers. |
| alen := a.bitLen() |
| if alen == 0 { |
| return 0, true |
| } |
| blen := b.bitLen() |
| if blen == 0 { |
| panic("division by zero") |
| } |
| |
| // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) |
| // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). |
| // This is 2 or 3 more than the float32 mantissa field width of Msize: |
| // - the optional extra bit is shifted away in step 3 below. |
| // - the high-order 1 is omitted in "normal" representation; |
| // - the low-order 1 will be used during rounding then discarded. |
| exp := alen - blen |
| var a2, b2 nat |
| a2 = a2.set(a) |
| b2 = b2.set(b) |
| if shift := Msize2 - exp; shift > 0 { |
| a2 = a2.shl(a2, uint(shift)) |
| } else if shift < 0 { |
| b2 = b2.shl(b2, uint(-shift)) |
| } |
| |
| // 2. Compute quotient and remainder (q, r). NB: due to the |
| // extra shift, the low-order bit of q is logically the |
| // high-order bit of r. |
| var q nat |
| q, r := q.div(a2, a2, b2) // (recycle a2) |
| mantissa := low32(q) |
| haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half |
| |
| // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 |
| // (in effect---we accomplish this incrementally). |
| if mantissa>>Msize2 == 1 { |
| if mantissa&1 == 1 { |
| haveRem = true |
| } |
| mantissa >>= 1 |
| exp++ |
| } |
| if mantissa>>Msize1 != 1 { |
| panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) |
| } |
| |
| // 4. Rounding. |
| if Emin-Msize <= exp && exp <= Emin { |
| // Denormal case; lose 'shift' bits of precision. |
| shift := uint(Emin - (exp - 1)) // [1..Esize1) |
| lostbits := mantissa & (1<<shift - 1) |
| haveRem = haveRem || lostbits != 0 |
| mantissa >>= shift |
| exp = 2 - Ebias // == exp + shift |
| } |
| // Round q using round-half-to-even. |
| exact = !haveRem |
| if mantissa&1 != 0 { |
| exact = false |
| if haveRem || mantissa&2 != 0 { |
| if mantissa++; mantissa >= 1<<Msize2 { |
| // Complete rollover 11...1 => 100...0, so shift is safe |
| mantissa >>= 1 |
| exp++ |
| } |
| } |
| } |
| mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. |
| |
| f = float32(math.Ldexp(float64(mantissa), exp-Msize1)) |
| if math.IsInf(float64(f), 0) { |
| exact = false |
| } |
| return |
| } |
| |
| // quotToFloat64 returns the non-negative float64 value |
| // nearest to the quotient a/b, using round-to-even in |
| // halfway cases. It does not mutate its arguments. |
| // Preconditions: b is non-zero; a and b have no common factors. |
| func quotToFloat64(a, b nat) (f float64, exact bool) { |
| const ( |
| // float size in bits |
| Fsize = 64 |
| |
| // mantissa |
| Msize = 52 |
| Msize1 = Msize + 1 // incl. implicit 1 |
| Msize2 = Msize1 + 1 |
| |
| // exponent |
| Esize = Fsize - Msize1 |
| Ebias = 1<<(Esize-1) - 1 |
| Emin = 1 - Ebias |
| Emax = Ebias |
| ) |
| |
| // TODO(adonovan): specialize common degenerate cases: 1.0, integers. |
| alen := a.bitLen() |
| if alen == 0 { |
| return 0, true |
| } |
| blen := b.bitLen() |
| if blen == 0 { |
| panic("division by zero") |
| } |
| |
| // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) |
| // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). |
| // This is 2 or 3 more than the float64 mantissa field width of Msize: |
| // - the optional extra bit is shifted away in step 3 below. |
| // - the high-order 1 is omitted in "normal" representation; |
| // - the low-order 1 will be used during rounding then discarded. |
| exp := alen - blen |
| var a2, b2 nat |
| a2 = a2.set(a) |
| b2 = b2.set(b) |
| if shift := Msize2 - exp; shift > 0 { |
| a2 = a2.shl(a2, uint(shift)) |
| } else if shift < 0 { |
| b2 = b2.shl(b2, uint(-shift)) |
| } |
| |
| // 2. Compute quotient and remainder (q, r). NB: due to the |
| // extra shift, the low-order bit of q is logically the |
| // high-order bit of r. |
| var q nat |
| q, r := q.div(a2, a2, b2) // (recycle a2) |
| mantissa := low64(q) |
| haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half |
| |
| // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 |
| // (in effect---we accomplish this incrementally). |
| if mantissa>>Msize2 == 1 { |
| if mantissa&1 == 1 { |
| haveRem = true |
| } |
| mantissa >>= 1 |
| exp++ |
| } |
| if mantissa>>Msize1 != 1 { |
| panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) |
| } |
| |
| // 4. Rounding. |
| if Emin-Msize <= exp && exp <= Emin { |
| // Denormal case; lose 'shift' bits of precision. |
| shift := uint(Emin - (exp - 1)) // [1..Esize1) |
| lostbits := mantissa & (1<<shift - 1) |
| haveRem = haveRem || lostbits != 0 |
| mantissa >>= shift |
| exp = 2 - Ebias // == exp + shift |
| } |
| // Round q using round-half-to-even. |
| exact = !haveRem |
| if mantissa&1 != 0 { |
| exact = false |
| if haveRem || mantissa&2 != 0 { |
| if mantissa++; mantissa >= 1<<Msize2 { |
| // Complete rollover 11...1 => 100...0, so shift is safe |
| mantissa >>= 1 |
| exp++ |
| } |
| } |
| } |
| mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. |
| |
| f = math.Ldexp(float64(mantissa), exp-Msize1) |
| if math.IsInf(f, 0) { |
| exact = false |
| } |
| return |
| } |
| |
| // Float32 returns the nearest float32 value for x and a bool indicating |
| // whether f represents x exactly. If the magnitude of x is too large to |
| // be represented by a float32, f is an infinity and exact is false. |
| // The sign of f always matches the sign of x, even if f == 0. |
| func (x *Rat) Float32() (f float32, exact bool) { |
| b := x.b.abs |
| if len(b) == 0 { |
| b = natOne |
| } |
| f, exact = quotToFloat32(x.a.abs, b) |
| if x.a.neg { |
| f = -f |
| } |
| return |
| } |
| |
| // Float64 returns the nearest float64 value for x and a bool indicating |
| // whether f represents x exactly. If the magnitude of x is too large to |
| // be represented by a float64, f is an infinity and exact is false. |
| // The sign of f always matches the sign of x, even if f == 0. |
| func (x *Rat) Float64() (f float64, exact bool) { |
| b := x.b.abs |
| if len(b) == 0 { |
| b = natOne |
| } |
| f, exact = quotToFloat64(x.a.abs, b) |
| if x.a.neg { |
| f = -f |
| } |
| return |
| } |
| |
| // SetFrac sets z to a/b and returns z. |
| // If b == 0, SetFrac panics. |
| func (z *Rat) SetFrac(a, b *Int) *Rat { |
| z.a.neg = a.neg != b.neg |
| babs := b.abs |
| if len(babs) == 0 { |
| panic("division by zero") |
| } |
| if &z.a == b || alias(z.a.abs, babs) { |
| babs = nat(nil).set(babs) // make a copy |
| } |
| z.a.abs = z.a.abs.set(a.abs) |
| z.b.abs = z.b.abs.set(babs) |
| return z.norm() |
| } |
| |
| // SetFrac64 sets z to a/b and returns z. |
| // If b == 0, SetFrac64 panics. |
| func (z *Rat) SetFrac64(a, b int64) *Rat { |
| if b == 0 { |
| panic("division by zero") |
| } |
| z.a.SetInt64(a) |
| if b < 0 { |
| b = -b |
| z.a.neg = !z.a.neg |
| } |
| z.b.abs = z.b.abs.setUint64(uint64(b)) |
| return z.norm() |
| } |
| |
| // SetInt sets z to x (by making a copy of x) and returns z. |
| func (z *Rat) SetInt(x *Int) *Rat { |
| z.a.Set(x) |
| z.b.abs = z.b.abs.setWord(1) |
| return z |
| } |
| |
| // SetInt64 sets z to x and returns z. |
| func (z *Rat) SetInt64(x int64) *Rat { |
| z.a.SetInt64(x) |
| z.b.abs = z.b.abs.setWord(1) |
| return z |
| } |
| |
| // SetUint64 sets z to x and returns z. |
| func (z *Rat) SetUint64(x uint64) *Rat { |
| z.a.SetUint64(x) |
| z.b.abs = z.b.abs.setWord(1) |
| return z |
| } |
| |
| // Set sets z to x (by making a copy of x) and returns z. |
| func (z *Rat) Set(x *Rat) *Rat { |
| if z != x { |
| z.a.Set(&x.a) |
| z.b.Set(&x.b) |
| } |
| if len(z.b.abs) == 0 { |
| z.b.abs = z.b.abs.setWord(1) |
| } |
| return z |
| } |
| |
| // Abs sets z to |x| (the absolute value of x) and returns z. |
| func (z *Rat) Abs(x *Rat) *Rat { |
| z.Set(x) |
| z.a.neg = false |
| return z |
| } |
| |
| // Neg sets z to -x and returns z. |
| func (z *Rat) Neg(x *Rat) *Rat { |
| z.Set(x) |
| z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign |
| return z |
| } |
| |
| // Inv sets z to 1/x and returns z. |
| // If x == 0, Inv panics. |
| func (z *Rat) Inv(x *Rat) *Rat { |
| if len(x.a.abs) == 0 { |
| panic("division by zero") |
| } |
| z.Set(x) |
| z.a.abs, z.b.abs = z.b.abs, z.a.abs |
| return z |
| } |
| |
| // Sign returns: |
| // |
| // -1 if x < 0 |
| // 0 if x == 0 |
| // +1 if x > 0 |
| // |
| func (x *Rat) Sign() int { |
| return x.a.Sign() |
| } |
| |
| // IsInt reports whether the denominator of x is 1. |
| func (x *Rat) IsInt() bool { |
| return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 |
| } |
| |
| // Num returns the numerator of x; it may be <= 0. |
| // The result is a reference to x's numerator; it |
| // may change if a new value is assigned to x, and vice versa. |
| // The sign of the numerator corresponds to the sign of x. |
| func (x *Rat) Num() *Int { |
| return &x.a |
| } |
| |
| // Denom returns the denominator of x; it is always > 0. |
| // The result is a reference to x's denominator, unless |
| // x is an uninitialized (zero value) Rat, in which case |
| // the result is a new Int of value 1. (To initialize x, |
| // any operation that sets x will do, including x.Set(x).) |
| // If the result is a reference to x's denominator it |
| // may change if a new value is assigned to x, and vice versa. |
| func (x *Rat) Denom() *Int { |
| // Note that x.b.neg is guaranteed false. |
| if len(x.b.abs) == 0 { |
| // Note: If this proves problematic, we could |
| // panic instead and require the Rat to |
| // be explicitly initialized. |
| return &Int{abs: nat{1}} |
| } |
| return &x.b |
| } |
| |
| func (z *Rat) norm() *Rat { |
| switch { |
| case len(z.a.abs) == 0: |
| // z == 0; normalize sign and denominator |
| z.a.neg = false |
| fallthrough |
| case len(z.b.abs) == 0: |
| // z is integer; normalize denominator |
| z.b.abs = z.b.abs.setWord(1) |
| default: |
| // z is fraction; normalize numerator and denominator |
| neg := z.a.neg |
| z.a.neg = false |
| z.b.neg = false |
| if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 { |
| z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) |
| z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) |
| } |
| z.a.neg = neg |
| } |
| return z |
| } |
| |
| // mulDenom sets z to the denominator product x*y (by taking into |
| // account that 0 values for x or y must be interpreted as 1) and |
| // returns z. |
| func mulDenom(z, x, y nat) nat { |
| switch { |
| case len(x) == 0 && len(y) == 0: |
| return z.setWord(1) |
| case len(x) == 0: |
| return z.set(y) |
| case len(y) == 0: |
| return z.set(x) |
| } |
| return z.mul(x, y) |
| } |
| |
| // scaleDenom sets z to the product x*f. |
| // If f == 0 (zero value of denominator), z is set to (a copy of) x. |
| func (z *Int) scaleDenom(x *Int, f nat) { |
| if len(f) == 0 { |
| z.Set(x) |
| return |
| } |
| z.abs = z.abs.mul(x.abs, f) |
| z.neg = x.neg |
| } |
| |
| // Cmp compares x and y and returns: |
| // |
| // -1 if x < y |
| // 0 if x == y |
| // +1 if x > y |
| // |
| func (x *Rat) Cmp(y *Rat) int { |
| var a, b Int |
| a.scaleDenom(&x.a, y.b.abs) |
| b.scaleDenom(&y.a, x.b.abs) |
| return a.Cmp(&b) |
| } |
| |
| // Add sets z to the sum x+y and returns z. |
| func (z *Rat) Add(x, y *Rat) *Rat { |
| var a1, a2 Int |
| a1.scaleDenom(&x.a, y.b.abs) |
| a2.scaleDenom(&y.a, x.b.abs) |
| z.a.Add(&a1, &a2) |
| z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) |
| return z.norm() |
| } |
| |
| // Sub sets z to the difference x-y and returns z. |
| func (z *Rat) Sub(x, y *Rat) *Rat { |
| var a1, a2 Int |
| a1.scaleDenom(&x.a, y.b.abs) |
| a2.scaleDenom(&y.a, x.b.abs) |
| z.a.Sub(&a1, &a2) |
| z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) |
| return z.norm() |
| } |
| |
| // Mul sets z to the product x*y and returns z. |
| func (z *Rat) Mul(x, y *Rat) *Rat { |
| if x == y { |
| // a squared Rat is positive and can't be reduced (no need to call norm()) |
| z.a.neg = false |
| z.a.abs = z.a.abs.sqr(x.a.abs) |
| if len(x.b.abs) == 0 { |
| z.b.abs = z.b.abs.setWord(1) |
| } else { |
| z.b.abs = z.b.abs.sqr(x.b.abs) |
| } |
| return z |
| } |
| z.a.Mul(&x.a, &y.a) |
| z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) |
| return z.norm() |
| } |
| |
| // Quo sets z to the quotient x/y and returns z. |
| // If y == 0, Quo panics. |
| func (z *Rat) Quo(x, y *Rat) *Rat { |
| if len(y.a.abs) == 0 { |
| panic("division by zero") |
| } |
| var a, b Int |
| a.scaleDenom(&x.a, y.b.abs) |
| b.scaleDenom(&y.a, x.b.abs) |
| z.a.abs = a.abs |
| z.b.abs = b.abs |
| z.a.neg = a.neg != b.neg |
| return z.norm() |
| } |