blob: 072df298f370d8c27a427e037963526924ba24c7 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This program generates Go code that applies rewrite rules to a Value.
// The generated code implements a function of type func (v *Value) bool
// which reports whether if did something.
// Ideas stolen from Swift: http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-2000-2.html
package main
import (
"bufio"
"bytes"
"flag"
"fmt"
"go/ast"
"go/format"
"go/parser"
"go/printer"
"go/token"
"io"
"log"
"os"
"path"
"regexp"
"sort"
"strconv"
"strings"
"golang.org/x/tools/go/ast/astutil"
)
// rule syntax:
// sexpr [&& extra conditions] => [@block] sexpr
//
// sexpr are s-expressions (lisp-like parenthesized groupings)
// sexpr ::= [variable:](opcode sexpr*)
// | variable
// | <type>
// | [auxint]
// | {aux}
//
// aux ::= variable | {code}
// type ::= variable | {code}
// variable ::= some token
// opcode ::= one of the opcodes from the *Ops.go files
// special rules: trailing ellipsis "..." (in the outermost sexpr?) must match on both sides of a rule.
// trailing three underscore "___" in the outermost match sexpr indicate the presence of
// extra ignored args that need not appear in the replacement
// extra conditions is just a chunk of Go that evaluates to a boolean. It may use
// variables declared in the matching tsexpr. The variable "v" is predefined to be
// the value matched by the entire rule.
// If multiple rules match, the first one in file order is selected.
var (
genLog = flag.Bool("log", false, "generate code that logs; for debugging only")
addLine = flag.Bool("line", false, "add line number comment to generated rules; for debugging only")
)
type Rule struct {
Rule string
Loc string // file name & line number
}
func (r Rule) String() string {
return fmt.Sprintf("rule %q at %s", r.Rule, r.Loc)
}
func normalizeSpaces(s string) string {
return strings.Join(strings.Fields(strings.TrimSpace(s)), " ")
}
// parse returns the matching part of the rule, additional conditions, and the result.
func (r Rule) parse() (match, cond, result string) {
s := strings.Split(r.Rule, "=>")
match = normalizeSpaces(s[0])
result = normalizeSpaces(s[1])
cond = ""
if i := strings.Index(match, "&&"); i >= 0 {
cond = normalizeSpaces(match[i+2:])
match = normalizeSpaces(match[:i])
}
return match, cond, result
}
func genRules(arch arch) { genRulesSuffix(arch, "") }
func genSplitLoadRules(arch arch) { genRulesSuffix(arch, "splitload") }
func genLateLowerRules(arch arch) { genRulesSuffix(arch, "latelower") }
func genRulesSuffix(arch arch, suff string) {
// Open input file.
text, err := os.Open(arch.name + suff + ".rules")
if err != nil {
if suff == "" {
// All architectures must have a plain rules file.
log.Fatalf("can't read rule file: %v", err)
}
// Some architectures have bonus rules files that others don't share. That's fine.
return
}
// oprules contains a list of rules for each block and opcode
blockrules := map[string][]Rule{}
oprules := map[string][]Rule{}
// read rule file
scanner := bufio.NewScanner(text)
rule := ""
var lineno int
var ruleLineno int // line number of "=>"
for scanner.Scan() {
lineno++
line := scanner.Text()
if i := strings.Index(line, "//"); i >= 0 {
// Remove comments. Note that this isn't string safe, so
// it will truncate lines with // inside strings. Oh well.
line = line[:i]
}
rule += " " + line
rule = strings.TrimSpace(rule)
if rule == "" {
continue
}
if !strings.Contains(rule, "=>") {
continue
}
if ruleLineno == 0 {
ruleLineno = lineno
}
if strings.HasSuffix(rule, "=>") {
continue // continue on the next line
}
if n := balance(rule); n > 0 {
continue // open parentheses remain, continue on the next line
} else if n < 0 {
break // continuing the line can't help, and it will only make errors worse
}
loc := fmt.Sprintf("%s%s.rules:%d", arch.name, suff, ruleLineno)
for _, rule2 := range expandOr(rule) {
r := Rule{Rule: rule2, Loc: loc}
if rawop := strings.Split(rule2, " ")[0][1:]; isBlock(rawop, arch) {
blockrules[rawop] = append(blockrules[rawop], r)
continue
}
// Do fancier value op matching.
match, _, _ := r.parse()
op, oparch, _, _, _, _ := parseValue(match, arch, loc)
opname := fmt.Sprintf("Op%s%s", oparch, op.name)
oprules[opname] = append(oprules[opname], r)
}
rule = ""
ruleLineno = 0
}
if err := scanner.Err(); err != nil {
log.Fatalf("scanner failed: %v\n", err)
}
if balance(rule) != 0 {
log.Fatalf("%s.rules:%d: unbalanced rule: %v\n", arch.name, lineno, rule)
}
// Order all the ops.
var ops []string
for op := range oprules {
ops = append(ops, op)
}
sort.Strings(ops)
genFile := &File{Arch: arch, Suffix: suff}
// Main rewrite routine is a switch on v.Op.
fn := &Func{Kind: "Value", ArgLen: -1}
sw := &Switch{Expr: exprf("v.Op")}
for _, op := range ops {
eop, ok := parseEllipsisRules(oprules[op], arch)
if ok {
if strings.Contains(oprules[op][0].Rule, "=>") && opByName(arch, op).aux != opByName(arch, eop).aux {
panic(fmt.Sprintf("can't use ... for ops that have different aux types: %s and %s", op, eop))
}
swc := &Case{Expr: exprf("%s", op)}
swc.add(stmtf("v.Op = %s", eop))
swc.add(stmtf("return true"))
sw.add(swc)
continue
}
swc := &Case{Expr: exprf("%s", op)}
swc.add(stmtf("return rewriteValue%s%s_%s(v)", arch.name, suff, op))
sw.add(swc)
}
if len(sw.List) > 0 { // skip if empty
fn.add(sw)
}
fn.add(stmtf("return false"))
genFile.add(fn)
// Generate a routine per op. Note that we don't make one giant routine
// because it is too big for some compilers.
for _, op := range ops {
rules := oprules[op]
_, ok := parseEllipsisRules(oprules[op], arch)
if ok {
continue
}
// rr is kept between iterations, so that each rule can check
// that the previous rule wasn't unconditional.
var rr *RuleRewrite
fn := &Func{
Kind: "Value",
Suffix: fmt.Sprintf("_%s", op),
ArgLen: opByName(arch, op).argLength,
}
fn.add(declReserved("b", "v.Block"))
fn.add(declReserved("config", "b.Func.Config"))
fn.add(declReserved("fe", "b.Func.fe"))
fn.add(declReserved("typ", "&b.Func.Config.Types"))
for _, rule := range rules {
if rr != nil && !rr.CanFail {
log.Fatalf("unconditional rule %s is followed by other rules", rr.Match)
}
rr = &RuleRewrite{Loc: rule.Loc}
rr.Match, rr.Cond, rr.Result = rule.parse()
pos, _ := genMatch(rr, arch, rr.Match, fn.ArgLen >= 0)
if pos == "" {
pos = "v.Pos"
}
if rr.Cond != "" {
rr.add(breakf("!(%s)", rr.Cond))
}
genResult(rr, arch, rr.Result, pos)
if *genLog {
rr.add(stmtf("logRule(%q)", rule.Loc))
}
fn.add(rr)
}
if rr.CanFail {
fn.add(stmtf("return false"))
}
genFile.add(fn)
}
// Generate block rewrite function. There are only a few block types
// so we can make this one function with a switch.
fn = &Func{Kind: "Block"}
fn.add(declReserved("config", "b.Func.Config"))
fn.add(declReserved("typ", "&b.Func.Config.Types"))
sw = &Switch{Expr: exprf("b.Kind")}
ops = ops[:0]
for op := range blockrules {
ops = append(ops, op)
}
sort.Strings(ops)
for _, op := range ops {
name, data := getBlockInfo(op, arch)
swc := &Case{Expr: exprf("%s", name)}
for _, rule := range blockrules[op] {
swc.add(genBlockRewrite(rule, arch, data))
}
sw.add(swc)
}
if len(sw.List) > 0 { // skip if empty
fn.add(sw)
}
fn.add(stmtf("return false"))
genFile.add(fn)
// Remove unused imports and variables.
buf := new(bytes.Buffer)
fprint(buf, genFile)
fset := token.NewFileSet()
file, err := parser.ParseFile(fset, "", buf, parser.ParseComments)
if err != nil {
filename := fmt.Sprintf("%s_broken.go", arch.name)
if err := os.WriteFile(filename, buf.Bytes(), 0644); err != nil {
log.Printf("failed to dump broken code to %s: %v", filename, err)
} else {
log.Printf("dumped broken code to %s", filename)
}
log.Fatalf("failed to parse generated code for arch %s: %v", arch.name, err)
}
tfile := fset.File(file.Pos())
// First, use unusedInspector to find the unused declarations by their
// start position.
u := unusedInspector{unused: make(map[token.Pos]bool)}
u.node(file)
// Then, delete said nodes via astutil.Apply.
pre := func(c *astutil.Cursor) bool {
node := c.Node()
if node == nil {
return true
}
if u.unused[node.Pos()] {
c.Delete()
// Unused imports and declarations use exactly
// one line. Prevent leaving an empty line.
tfile.MergeLine(tfile.Position(node.Pos()).Line)
return false
}
return true
}
post := func(c *astutil.Cursor) bool {
switch node := c.Node().(type) {
case *ast.GenDecl:
if len(node.Specs) == 0 {
// Don't leave a broken or empty GenDecl behind,
// such as "import ()".
c.Delete()
}
}
return true
}
file = astutil.Apply(file, pre, post).(*ast.File)
// Write the well-formatted source to file
f, err := os.Create("../rewrite" + arch.name + suff + ".go")
if err != nil {
log.Fatalf("can't write output: %v", err)
}
defer f.Close()
// gofmt result; use a buffered writer, as otherwise go/format spends
// far too much time in syscalls.
bw := bufio.NewWriter(f)
if err := format.Node(bw, fset, file); err != nil {
log.Fatalf("can't format output: %v", err)
}
if err := bw.Flush(); err != nil {
log.Fatalf("can't write output: %v", err)
}
if err := f.Close(); err != nil {
log.Fatalf("can't write output: %v", err)
}
}
// unusedInspector can be used to detect unused variables and imports in an
// ast.Node via its node method. The result is available in the "unused" map.
//
// note that unusedInspector is lazy and best-effort; it only supports the node
// types and patterns used by the rulegen program.
type unusedInspector struct {
// scope is the current scope, which can never be nil when a declaration
// is encountered. That is, the unusedInspector.node entrypoint should
// generally be an entire file or block.
scope *scope
// unused is the resulting set of unused declared names, indexed by the
// starting position of the node that declared the name.
unused map[token.Pos]bool
// defining is the object currently being defined; this is useful so
// that if "foo := bar" is unused and removed, we can then detect if
// "bar" becomes unused as well.
defining *object
}
// scoped opens a new scope when called, and returns a function which closes
// that same scope. When a scope is closed, unused variables are recorded.
func (u *unusedInspector) scoped() func() {
outer := u.scope
u.scope = &scope{outer: outer, objects: map[string]*object{}}
return func() {
for anyUnused := true; anyUnused; {
anyUnused = false
for _, obj := range u.scope.objects {
if obj.numUses > 0 {
continue
}
u.unused[obj.pos] = true
for _, used := range obj.used {
if used.numUses--; used.numUses == 0 {
anyUnused = true
}
}
// We've decremented numUses for each of the
// objects in used. Zero this slice too, to keep
// everything consistent.
obj.used = nil
}
}
u.scope = outer
}
}
func (u *unusedInspector) exprs(list []ast.Expr) {
for _, x := range list {
u.node(x)
}
}
func (u *unusedInspector) node(node ast.Node) {
switch node := node.(type) {
case *ast.File:
defer u.scoped()()
for _, decl := range node.Decls {
u.node(decl)
}
case *ast.GenDecl:
for _, spec := range node.Specs {
u.node(spec)
}
case *ast.ImportSpec:
impPath, _ := strconv.Unquote(node.Path.Value)
name := path.Base(impPath)
u.scope.objects[name] = &object{
name: name,
pos: node.Pos(),
}
case *ast.FuncDecl:
u.node(node.Type)
if node.Body != nil {
u.node(node.Body)
}
case *ast.FuncType:
if node.Params != nil {
u.node(node.Params)
}
if node.Results != nil {
u.node(node.Results)
}
case *ast.FieldList:
for _, field := range node.List {
u.node(field)
}
case *ast.Field:
u.node(node.Type)
// statements
case *ast.BlockStmt:
defer u.scoped()()
for _, stmt := range node.List {
u.node(stmt)
}
case *ast.DeclStmt:
u.node(node.Decl)
case *ast.IfStmt:
if node.Init != nil {
u.node(node.Init)
}
u.node(node.Cond)
u.node(node.Body)
if node.Else != nil {
u.node(node.Else)
}
case *ast.ForStmt:
if node.Init != nil {
u.node(node.Init)
}
if node.Cond != nil {
u.node(node.Cond)
}
if node.Post != nil {
u.node(node.Post)
}
u.node(node.Body)
case *ast.SwitchStmt:
if node.Init != nil {
u.node(node.Init)
}
if node.Tag != nil {
u.node(node.Tag)
}
u.node(node.Body)
case *ast.CaseClause:
u.exprs(node.List)
defer u.scoped()()
for _, stmt := range node.Body {
u.node(stmt)
}
case *ast.BranchStmt:
case *ast.ExprStmt:
u.node(node.X)
case *ast.AssignStmt:
if node.Tok != token.DEFINE {
u.exprs(node.Rhs)
u.exprs(node.Lhs)
break
}
lhs := node.Lhs
if len(lhs) == 2 && lhs[1].(*ast.Ident).Name == "_" {
lhs = lhs[:1]
}
if len(lhs) != 1 {
panic("no support for := with multiple names")
}
name := lhs[0].(*ast.Ident)
obj := &object{
name: name.Name,
pos: name.NamePos,
}
old := u.defining
u.defining = obj
u.exprs(node.Rhs)
u.defining = old
u.scope.objects[name.Name] = obj
case *ast.ReturnStmt:
u.exprs(node.Results)
case *ast.IncDecStmt:
u.node(node.X)
// expressions
case *ast.CallExpr:
u.node(node.Fun)
u.exprs(node.Args)
case *ast.SelectorExpr:
u.node(node.X)
case *ast.UnaryExpr:
u.node(node.X)
case *ast.BinaryExpr:
u.node(node.X)
u.node(node.Y)
case *ast.StarExpr:
u.node(node.X)
case *ast.ParenExpr:
u.node(node.X)
case *ast.IndexExpr:
u.node(node.X)
u.node(node.Index)
case *ast.TypeAssertExpr:
u.node(node.X)
u.node(node.Type)
case *ast.Ident:
if obj := u.scope.Lookup(node.Name); obj != nil {
obj.numUses++
if u.defining != nil {
u.defining.used = append(u.defining.used, obj)
}
}
case *ast.BasicLit:
case *ast.ValueSpec:
u.exprs(node.Values)
default:
panic(fmt.Sprintf("unhandled node: %T", node))
}
}
// scope keeps track of a certain scope and its declared names, as well as the
// outer (parent) scope.
type scope struct {
outer *scope // can be nil, if this is the top-level scope
objects map[string]*object // indexed by each declared name
}
func (s *scope) Lookup(name string) *object {
if obj := s.objects[name]; obj != nil {
return obj
}
if s.outer == nil {
return nil
}
return s.outer.Lookup(name)
}
// object keeps track of a declared name, such as a variable or import.
type object struct {
name string
pos token.Pos // start position of the node declaring the object
numUses int // number of times this object is used
used []*object // objects that its declaration makes use of
}
func fprint(w io.Writer, n Node) {
switch n := n.(type) {
case *File:
file := n
seenRewrite := make(map[[3]string]string)
fmt.Fprintf(w, "// Code generated from _gen/%s%s.rules using 'go generate'; DO NOT EDIT.\n", n.Arch.name, n.Suffix)
fmt.Fprintf(w, "\npackage ssa\n")
for _, path := range append([]string{
"fmt",
"internal/buildcfg",
"math",
"cmd/internal/obj",
"cmd/compile/internal/base",
"cmd/compile/internal/types",
"cmd/compile/internal/ir",
}, n.Arch.imports...) {
fmt.Fprintf(w, "import %q\n", path)
}
for _, f := range n.List {
f := f.(*Func)
fmt.Fprintf(w, "func rewrite%s%s%s%s(", f.Kind, n.Arch.name, n.Suffix, f.Suffix)
fmt.Fprintf(w, "%c *%s) bool {\n", strings.ToLower(f.Kind)[0], f.Kind)
if f.Kind == "Value" && f.ArgLen > 0 {
for i := f.ArgLen - 1; i >= 0; i-- {
fmt.Fprintf(w, "v_%d := v.Args[%d]\n", i, i)
}
}
for _, n := range f.List {
fprint(w, n)
if rr, ok := n.(*RuleRewrite); ok {
k := [3]string{
normalizeMatch(rr.Match, file.Arch),
normalizeWhitespace(rr.Cond),
normalizeWhitespace(rr.Result),
}
if prev, ok := seenRewrite[k]; ok {
log.Fatalf("duplicate rule %s, previously seen at %s\n", rr.Loc, prev)
}
seenRewrite[k] = rr.Loc
}
}
fmt.Fprintf(w, "}\n")
}
case *Switch:
fmt.Fprintf(w, "switch ")
fprint(w, n.Expr)
fmt.Fprintf(w, " {\n")
for _, n := range n.List {
fprint(w, n)
}
fmt.Fprintf(w, "}\n")
case *Case:
fmt.Fprintf(w, "case ")
fprint(w, n.Expr)
fmt.Fprintf(w, ":\n")
for _, n := range n.List {
fprint(w, n)
}
case *RuleRewrite:
if *addLine {
fmt.Fprintf(w, "// %s\n", n.Loc)
}
fmt.Fprintf(w, "// match: %s\n", n.Match)
if n.Cond != "" {
fmt.Fprintf(w, "// cond: %s\n", n.Cond)
}
fmt.Fprintf(w, "// result: %s\n", n.Result)
fmt.Fprintf(w, "for %s {\n", n.Check)
nCommutative := 0
for _, n := range n.List {
if b, ok := n.(*CondBreak); ok {
b.InsideCommuteLoop = nCommutative > 0
}
fprint(w, n)
if loop, ok := n.(StartCommuteLoop); ok {
if nCommutative != loop.Depth {
panic("mismatch commute loop depth")
}
nCommutative++
}
}
fmt.Fprintf(w, "return true\n")
for i := 0; i < nCommutative; i++ {
fmt.Fprintln(w, "}")
}
if n.CommuteDepth > 0 && n.CanFail {
fmt.Fprint(w, "break\n")
}
fmt.Fprintf(w, "}\n")
case *Declare:
fmt.Fprintf(w, "%s := ", n.Name)
fprint(w, n.Value)
fmt.Fprintln(w)
case *CondBreak:
fmt.Fprintf(w, "if ")
fprint(w, n.Cond)
fmt.Fprintf(w, " {\n")
if n.InsideCommuteLoop {
fmt.Fprintf(w, "continue")
} else {
fmt.Fprintf(w, "break")
}
fmt.Fprintf(w, "\n}\n")
case ast.Node:
printConfig.Fprint(w, emptyFset, n)
if _, ok := n.(ast.Stmt); ok {
fmt.Fprintln(w)
}
case StartCommuteLoop:
fmt.Fprintf(w, "for _i%[1]d := 0; _i%[1]d <= 1; _i%[1]d, %[2]s_0, %[2]s_1 = _i%[1]d + 1, %[2]s_1, %[2]s_0 {\n", n.Depth, n.V)
default:
log.Fatalf("cannot print %T", n)
}
}
var printConfig = printer.Config{
Mode: printer.RawFormat, // we use go/format later, so skip work here
}
var emptyFset = token.NewFileSet()
// Node can be a Statement or an ast.Expr.
type Node interface{}
// Statement can be one of our high-level statement struct types, or an
// ast.Stmt under some limited circumstances.
type Statement interface{}
// BodyBase is shared by all of our statement pseudo-node types which can
// contain other statements.
type BodyBase struct {
List []Statement
CanFail bool
}
func (w *BodyBase) add(node Statement) {
var last Statement
if len(w.List) > 0 {
last = w.List[len(w.List)-1]
}
if node, ok := node.(*CondBreak); ok {
w.CanFail = true
if last, ok := last.(*CondBreak); ok {
// Add to the previous "if <cond> { break }" via a
// logical OR, which will save verbosity.
last.Cond = &ast.BinaryExpr{
Op: token.LOR,
X: last.Cond,
Y: node.Cond,
}
return
}
}
w.List = append(w.List, node)
}
// predeclared contains globally known tokens that should not be redefined.
var predeclared = map[string]bool{
"nil": true,
"false": true,
"true": true,
}
// declared reports if the body contains a Declare with the given name.
func (w *BodyBase) declared(name string) bool {
if predeclared[name] {
// Treat predeclared names as having already been declared.
// This lets us use nil to match an aux field or
// true and false to match an auxint field.
return true
}
for _, s := range w.List {
if decl, ok := s.(*Declare); ok && decl.Name == name {
return true
}
}
return false
}
// These types define some high-level statement struct types, which can be used
// as a Statement. This allows us to keep some node structs simpler, and have
// higher-level nodes such as an entire rule rewrite.
//
// Note that ast.Expr is always used as-is; we don't declare our own expression
// nodes.
type (
File struct {
BodyBase // []*Func
Arch arch
Suffix string
}
Func struct {
BodyBase
Kind string // "Value" or "Block"
Suffix string
ArgLen int32 // if kind == "Value", number of args for this op
}
Switch struct {
BodyBase // []*Case
Expr ast.Expr
}
Case struct {
BodyBase
Expr ast.Expr
}
RuleRewrite struct {
BodyBase
Match, Cond, Result string // top comments
Check string // top-level boolean expression
Alloc int // for unique var names
Loc string // file name & line number of the original rule
CommuteDepth int // used to track depth of commute loops
}
Declare struct {
Name string
Value ast.Expr
}
CondBreak struct {
Cond ast.Expr
InsideCommuteLoop bool
}
StartCommuteLoop struct {
Depth int
V string
}
)
// exprf parses a Go expression generated from fmt.Sprintf, panicking if an
// error occurs.
func exprf(format string, a ...interface{}) ast.Expr {
src := fmt.Sprintf(format, a...)
expr, err := parser.ParseExpr(src)
if err != nil {
log.Fatalf("expr parse error on %q: %v", src, err)
}
return expr
}
// stmtf parses a Go statement generated from fmt.Sprintf. This function is only
// meant for simple statements that don't have a custom Statement node declared
// in this package, such as ast.ReturnStmt or ast.ExprStmt.
func stmtf(format string, a ...interface{}) Statement {
src := fmt.Sprintf(format, a...)
fsrc := "package p\nfunc _() {\n" + src + "\n}\n"
file, err := parser.ParseFile(token.NewFileSet(), "", fsrc, 0)
if err != nil {
log.Fatalf("stmt parse error on %q: %v", src, err)
}
return file.Decls[0].(*ast.FuncDecl).Body.List[0]
}
var reservedNames = map[string]bool{
"v": true, // Values[i], etc
"b": true, // v.Block
"config": true, // b.Func.Config
"fe": true, // b.Func.fe
"typ": true, // &b.Func.Config.Types
}
// declf constructs a simple "name := value" declaration,
// using exprf for its value.
//
// name must not be one of reservedNames.
// This helps prevent unintended shadowing and name clashes.
// To declare a reserved name, use declReserved.
func declf(loc, name, format string, a ...interface{}) *Declare {
if reservedNames[name] {
log.Fatalf("rule %s uses the reserved name %s", loc, name)
}
return &Declare{name, exprf(format, a...)}
}
// declReserved is like declf, but the name must be one of reservedNames.
// Calls to declReserved should generally be static and top-level.
func declReserved(name, value string) *Declare {
if !reservedNames[name] {
panic(fmt.Sprintf("declReserved call does not use a reserved name: %q", name))
}
return &Declare{name, exprf(value)}
}
// breakf constructs a simple "if cond { break }" statement, using exprf for its
// condition.
func breakf(format string, a ...interface{}) *CondBreak {
return &CondBreak{Cond: exprf(format, a...)}
}
func genBlockRewrite(rule Rule, arch arch, data blockData) *RuleRewrite {
rr := &RuleRewrite{Loc: rule.Loc}
rr.Match, rr.Cond, rr.Result = rule.parse()
_, _, auxint, aux, s := extract(rr.Match) // remove parens, then split
// check match of control values
if len(s) < data.controls {
log.Fatalf("incorrect number of arguments in %s, got %v wanted at least %v", rule, len(s), data.controls)
}
controls := s[:data.controls]
pos := make([]string, data.controls)
for i, arg := range controls {
cname := fmt.Sprintf("b.Controls[%v]", i)
if strings.Contains(arg, "(") {
vname, expr := splitNameExpr(arg)
if vname == "" {
vname = fmt.Sprintf("v_%v", i)
}
rr.add(declf(rr.Loc, vname, cname))
p, op := genMatch0(rr, arch, expr, vname, nil, false) // TODO: pass non-nil cnt?
if op != "" {
check := fmt.Sprintf("%s.Op == %s", cname, op)
if rr.Check == "" {
rr.Check = check
} else {
rr.Check += " && " + check
}
}
if p == "" {
p = vname + ".Pos"
}
pos[i] = p
} else {
rr.add(declf(rr.Loc, arg, cname))
pos[i] = arg + ".Pos"
}
}
for _, e := range []struct {
name, field, dclType string
}{
{auxint, "AuxInt", data.auxIntType()},
{aux, "Aux", data.auxType()},
} {
if e.name == "" {
continue
}
if e.dclType == "" {
log.Fatalf("op %s has no declared type for %s", data.name, e.field)
}
if !token.IsIdentifier(e.name) || rr.declared(e.name) {
rr.add(breakf("%sTo%s(b.%s) != %s", unTitle(e.field), title(e.dclType), e.field, e.name))
} else {
rr.add(declf(rr.Loc, e.name, "%sTo%s(b.%s)", unTitle(e.field), title(e.dclType), e.field))
}
}
if rr.Cond != "" {
rr.add(breakf("!(%s)", rr.Cond))
}
// Rule matches. Generate result.
outop, _, auxint, aux, t := extract(rr.Result) // remove parens, then split
blockName, outdata := getBlockInfo(outop, arch)
if len(t) < outdata.controls {
log.Fatalf("incorrect number of output arguments in %s, got %v wanted at least %v", rule, len(s), outdata.controls)
}
// Check if newsuccs is the same set as succs.
succs := s[data.controls:]
newsuccs := t[outdata.controls:]
m := map[string]bool{}
for _, succ := range succs {
if m[succ] {
log.Fatalf("can't have a repeat successor name %s in %s", succ, rule)
}
m[succ] = true
}
for _, succ := range newsuccs {
if !m[succ] {
log.Fatalf("unknown successor %s in %s", succ, rule)
}
delete(m, succ)
}
if len(m) != 0 {
log.Fatalf("unmatched successors %v in %s", m, rule)
}
var genControls [2]string
for i, control := range t[:outdata.controls] {
// Select a source position for any new control values.
// TODO: does it always make sense to use the source position
// of the original control values or should we be using the
// block's source position in some cases?
newpos := "b.Pos" // default to block's source position
if i < len(pos) && pos[i] != "" {
// Use the previous control value's source position.
newpos = pos[i]
}
// Generate a new control value (or copy an existing value).
genControls[i] = genResult0(rr, arch, control, false, false, newpos, nil)
}
switch outdata.controls {
case 0:
rr.add(stmtf("b.Reset(%s)", blockName))
case 1:
rr.add(stmtf("b.resetWithControl(%s, %s)", blockName, genControls[0]))
case 2:
rr.add(stmtf("b.resetWithControl2(%s, %s, %s)", blockName, genControls[0], genControls[1]))
default:
log.Fatalf("too many controls: %d", outdata.controls)
}
if auxint != "" {
// Make sure auxint value has the right type.
rr.add(stmtf("b.AuxInt = %sToAuxInt(%s)", unTitle(outdata.auxIntType()), auxint))
}
if aux != "" {
// Make sure aux value has the right type.
rr.add(stmtf("b.Aux = %sToAux(%s)", unTitle(outdata.auxType()), aux))
}
succChanged := false
for i := 0; i < len(succs); i++ {
if succs[i] != newsuccs[i] {
succChanged = true
}
}
if succChanged {
if len(succs) != 2 {
log.Fatalf("changed successors, len!=2 in %s", rule)
}
if succs[0] != newsuccs[1] || succs[1] != newsuccs[0] {
log.Fatalf("can only handle swapped successors in %s", rule)
}
rr.add(stmtf("b.swapSuccessors()"))
}
if *genLog {
rr.add(stmtf("logRule(%q)", rule.Loc))
}
return rr
}
// genMatch returns the variable whose source position should be used for the
// result (or "" if no opinion), and a boolean that reports whether the match can fail.
func genMatch(rr *RuleRewrite, arch arch, match string, pregenTop bool) (pos, checkOp string) {
cnt := varCount(rr)
return genMatch0(rr, arch, match, "v", cnt, pregenTop)
}
func genMatch0(rr *RuleRewrite, arch arch, match, v string, cnt map[string]int, pregenTop bool) (pos, checkOp string) {
if match[0] != '(' || match[len(match)-1] != ')' {
log.Fatalf("%s: non-compound expr in genMatch0: %q", rr.Loc, match)
}
op, oparch, typ, auxint, aux, args := parseValue(match, arch, rr.Loc)
checkOp = fmt.Sprintf("Op%s%s", oparch, op.name)
if op.faultOnNilArg0 || op.faultOnNilArg1 {
// Prefer the position of an instruction which could fault.
pos = v + ".Pos"
}
// If the last argument is ___, it means "don't care about trailing arguments, really"
// The likely/intended use is for rewrites that are too tricky to express in the existing pattern language
// Do a length check early because long patterns fed short (ultimately not-matching) inputs will
// do an indexing error in pattern-matching.
if op.argLength == -1 {
l := len(args)
if l == 0 || args[l-1] != "___" {
rr.add(breakf("len(%s.Args) != %d", v, l))
} else if l > 1 && args[l-1] == "___" {
rr.add(breakf("len(%s.Args) < %d", v, l-1))
}
}
for _, e := range []struct {
name, field, dclType string
}{
{typ, "Type", "*types.Type"},
{auxint, "AuxInt", op.auxIntType()},
{aux, "Aux", op.auxType()},
} {
if e.name == "" {
continue
}
if e.dclType == "" {
log.Fatalf("op %s has no declared type for %s", op.name, e.field)
}
if !token.IsIdentifier(e.name) || rr.declared(e.name) {
switch e.field {
case "Aux":
rr.add(breakf("auxTo%s(%s.%s) != %s", title(e.dclType), v, e.field, e.name))
case "AuxInt":
rr.add(breakf("auxIntTo%s(%s.%s) != %s", title(e.dclType), v, e.field, e.name))
case "Type":
rr.add(breakf("%s.%s != %s", v, e.field, e.name))
}
} else {
switch e.field {
case "Aux":
rr.add(declf(rr.Loc, e.name, "auxTo%s(%s.%s)", title(e.dclType), v, e.field))
case "AuxInt":
rr.add(declf(rr.Loc, e.name, "auxIntTo%s(%s.%s)", title(e.dclType), v, e.field))
case "Type":
rr.add(declf(rr.Loc, e.name, "%s.%s", v, e.field))
}
}
}
commutative := op.commutative
if commutative {
if args[0] == args[1] {
// When we have (Add x x), for any x,
// even if there are other uses of x besides these two,
// and even if x is not a variable,
// we can skip the commutative match.
commutative = false
}
if cnt[args[0]] == 1 && cnt[args[1]] == 1 {
// When we have (Add x y) with no other uses
// of x and y in the matching rule and condition,
// then we can skip the commutative match (Add y x).
commutative = false
}
}
if !pregenTop {
// Access last argument first to minimize bounds checks.
for n := len(args) - 1; n > 0; n-- {
a := args[n]
if a == "_" {
continue
}
if !rr.declared(a) && token.IsIdentifier(a) && !(commutative && len(args) == 2) {
rr.add(declf(rr.Loc, a, "%s.Args[%d]", v, n))
// delete the last argument so it is not reprocessed
args = args[:n]
} else {
rr.add(stmtf("_ = %s.Args[%d]", v, n))
}
break
}
}
if commutative && !pregenTop {
for i := 0; i <= 1; i++ {
vname := fmt.Sprintf("%s_%d", v, i)
rr.add(declf(rr.Loc, vname, "%s.Args[%d]", v, i))
}
}
if commutative {
rr.add(StartCommuteLoop{rr.CommuteDepth, v})
rr.CommuteDepth++
}
for i, arg := range args {
if arg == "_" {
continue
}
var rhs string
if (commutative && i < 2) || pregenTop {
rhs = fmt.Sprintf("%s_%d", v, i)
} else {
rhs = fmt.Sprintf("%s.Args[%d]", v, i)
}
if !strings.Contains(arg, "(") {
// leaf variable
if rr.declared(arg) {
// variable already has a definition. Check whether
// the old definition and the new definition match.
// For example, (add x x). Equality is just pointer equality
// on Values (so cse is important to do before lowering).
rr.add(breakf("%s != %s", arg, rhs))
} else {
if arg != rhs {
rr.add(declf(rr.Loc, arg, "%s", rhs))
}
}
continue
}
// compound sexpr
argname, expr := splitNameExpr(arg)
if argname == "" {
argname = fmt.Sprintf("%s_%d", v, i)
}
if argname == "b" {
log.Fatalf("don't name args 'b', it is ambiguous with blocks")
}
if argname != rhs {
rr.add(declf(rr.Loc, argname, "%s", rhs))
}
bexpr := exprf("%s.Op != addLater", argname)
rr.add(&CondBreak{Cond: bexpr})
argPos, argCheckOp := genMatch0(rr, arch, expr, argname, cnt, false)
bexpr.(*ast.BinaryExpr).Y.(*ast.Ident).Name = argCheckOp
if argPos != "" {
// Keep the argument in preference to the parent, as the
// argument is normally earlier in program flow.
// Keep the argument in preference to an earlier argument,
// as that prefers the memory argument which is also earlier
// in the program flow.
pos = argPos
}
}
return pos, checkOp
}
func genResult(rr *RuleRewrite, arch arch, result, pos string) {
move := result[0] == '@'
if move {
// parse @block directive
s := strings.SplitN(result[1:], " ", 2)
rr.add(stmtf("b = %s", s[0]))
result = s[1]
}
cse := make(map[string]string)
genResult0(rr, arch, result, true, move, pos, cse)
}
func genResult0(rr *RuleRewrite, arch arch, result string, top, move bool, pos string, cse map[string]string) string {
resname, expr := splitNameExpr(result)
result = expr
// TODO: when generating a constant result, use f.constVal to avoid
// introducing copies just to clean them up again.
if result[0] != '(' {
// variable
if top {
// It in not safe in general to move a variable between blocks
// (and particularly not a phi node).
// Introduce a copy.
rr.add(stmtf("v.copyOf(%s)", result))
}
return result
}
w := normalizeWhitespace(result)
if prev := cse[w]; prev != "" {
return prev
}
op, oparch, typ, auxint, aux, args := parseValue(result, arch, rr.Loc)
// Find the type of the variable.
typeOverride := typ != ""
if typ == "" && op.typ != "" {
typ = typeName(op.typ)
}
v := "v"
if top && !move {
rr.add(stmtf("v.reset(Op%s%s)", oparch, op.name))
if typeOverride {
rr.add(stmtf("v.Type = %s", typ))
}
} else {
if typ == "" {
log.Fatalf("sub-expression %s (op=Op%s%s) at %s must have a type", result, oparch, op.name, rr.Loc)
}
if resname == "" {
v = fmt.Sprintf("v%d", rr.Alloc)
} else {
v = resname
}
rr.Alloc++
rr.add(declf(rr.Loc, v, "b.NewValue0(%s, Op%s%s, %s)", pos, oparch, op.name, typ))
if move && top {
// Rewrite original into a copy
rr.add(stmtf("v.copyOf(%s)", v))
}
}
if auxint != "" {
// Make sure auxint value has the right type.
rr.add(stmtf("%s.AuxInt = %sToAuxInt(%s)", v, unTitle(op.auxIntType()), auxint))
}
if aux != "" {
// Make sure aux value has the right type.
rr.add(stmtf("%s.Aux = %sToAux(%s)", v, unTitle(op.auxType()), aux))
}
all := new(strings.Builder)
for i, arg := range args {
x := genResult0(rr, arch, arg, false, move, pos, cse)
if i > 0 {
all.WriteString(", ")
}
all.WriteString(x)
}
switch len(args) {
case 0:
case 1:
rr.add(stmtf("%s.AddArg(%s)", v, all.String()))
default:
rr.add(stmtf("%s.AddArg%d(%s)", v, len(args), all.String()))
}
if cse != nil {
cse[w] = v
}
return v
}
func split(s string) []string {
var r []string
outer:
for s != "" {
d := 0 // depth of ({[<
var open, close byte // opening and closing markers ({[< or )}]>
nonsp := false // found a non-space char so far
for i := 0; i < len(s); i++ {
switch {
case d == 0 && s[i] == '(':
open, close = '(', ')'
d++
case d == 0 && s[i] == '<':
open, close = '<', '>'
d++
case d == 0 && s[i] == '[':
open, close = '[', ']'
d++
case d == 0 && s[i] == '{':
open, close = '{', '}'
d++
case d == 0 && (s[i] == ' ' || s[i] == '\t'):
if nonsp {
r = append(r, strings.TrimSpace(s[:i]))
s = s[i:]
continue outer
}
case d > 0 && s[i] == open:
d++
case d > 0 && s[i] == close:
d--
default:
nonsp = true
}
}
if d != 0 {
log.Fatalf("imbalanced expression: %q", s)
}
if nonsp {
r = append(r, strings.TrimSpace(s))
}
break
}
return r
}
// isBlock reports whether this op is a block opcode.
func isBlock(name string, arch arch) bool {
for _, b := range genericBlocks {
if b.name == name {
return true
}
}
for _, b := range arch.blocks {
if b.name == name {
return true
}
}
return false
}
func extract(val string) (op, typ, auxint, aux string, args []string) {
val = val[1 : len(val)-1] // remove ()
// Split val up into regions.
// Split by spaces/tabs, except those contained in (), {}, [], or <>.
s := split(val)
// Extract restrictions and args.
op = s[0]
for _, a := range s[1:] {
switch a[0] {
case '<':
typ = a[1 : len(a)-1] // remove <>
case '[':
auxint = a[1 : len(a)-1] // remove []
case '{':
aux = a[1 : len(a)-1] // remove {}
default:
args = append(args, a)
}
}
return
}
// parseValue parses a parenthesized value from a rule.
// The value can be from the match or the result side.
// It returns the op and unparsed strings for typ, auxint, and aux restrictions and for all args.
// oparch is the architecture that op is located in, or "" for generic.
func parseValue(val string, arch arch, loc string) (op opData, oparch, typ, auxint, aux string, args []string) {
// Resolve the op.
var s string
s, typ, auxint, aux, args = extract(val)
// match reports whether x is a good op to select.
// If strict is true, rule generation might succeed.
// If strict is false, rule generation has failed,
// but we're trying to generate a useful error.
// Doing strict=true then strict=false allows
// precise op matching while retaining good error messages.
match := func(x opData, strict bool, archname string) bool {
if x.name != s {
return false
}
if x.argLength != -1 && int(x.argLength) != len(args) && (len(args) != 1 || args[0] != "...") {
if strict {
return false
}
log.Printf("%s: op %s (%s) should have %d args, has %d", loc, s, archname, x.argLength, len(args))
}
return true
}
for _, x := range genericOps {
if match(x, true, "generic") {
op = x
break
}
}
for _, x := range arch.ops {
if arch.name != "generic" && match(x, true, arch.name) {
if op.name != "" {
log.Fatalf("%s: matches for op %s found in both generic and %s", loc, op.name, arch.name)
}
op = x
oparch = arch.name
break
}
}
if op.name == "" {
// Failed to find the op.
// Run through everything again with strict=false
// to generate useful diagnostic messages before failing.
for _, x := range genericOps {
match(x, false, "generic")
}
for _, x := range arch.ops {
match(x, false, arch.name)
}
log.Fatalf("%s: unknown op %s", loc, s)
}
// Sanity check aux, auxint.
if auxint != "" && !opHasAuxInt(op) {
log.Fatalf("%s: op %s %s can't have auxint", loc, op.name, op.aux)
}
if aux != "" && !opHasAux(op) {
log.Fatalf("%s: op %s %s can't have aux", loc, op.name, op.aux)
}
return
}
func opHasAuxInt(op opData) bool {
switch op.aux {
case "Bool", "Int8", "Int16", "Int32", "Int64", "Int128", "UInt8", "Float32", "Float64",
"SymOff", "CallOff", "SymValAndOff", "TypSize", "ARM64BitField", "FlagConstant", "CCop":
return true
}
return false
}
func opHasAux(op opData) bool {
switch op.aux {
case "String", "Sym", "SymOff", "Call", "CallOff", "SymValAndOff", "Typ", "TypSize",
"S390XCCMask", "S390XRotateParams":
return true
}
return false
}
// splitNameExpr splits s-expr arg, possibly prefixed by "name:",
// into name and the unprefixed expression.
// For example, "x:(Foo)" yields "x", "(Foo)",
// and "(Foo)" yields "", "(Foo)".
func splitNameExpr(arg string) (name, expr string) {
colon := strings.Index(arg, ":")
if colon < 0 {
return "", arg
}
openparen := strings.Index(arg, "(")
if openparen < 0 {
log.Fatalf("splitNameExpr(%q): colon but no open parens", arg)
}
if colon > openparen {
// colon is inside the parens, such as in "(Foo x:(Bar))".
return "", arg
}
return arg[:colon], arg[colon+1:]
}
func getBlockInfo(op string, arch arch) (name string, data blockData) {
for _, b := range genericBlocks {
if b.name == op {
return "Block" + op, b
}
}
for _, b := range arch.blocks {
if b.name == op {
return "Block" + arch.name + op, b
}
}
log.Fatalf("could not find block data for %s", op)
panic("unreachable")
}
// typeName returns the string to use to generate a type.
func typeName(typ string) string {
if typ[0] == '(' {
ts := strings.Split(typ[1:len(typ)-1], ",")
if len(ts) != 2 {
log.Fatalf("Tuple expect 2 arguments")
}
return "types.NewTuple(" + typeName(ts[0]) + ", " + typeName(ts[1]) + ")"
}
switch typ {
case "Flags", "Mem", "Void", "Int128":
return "types.Type" + typ
default:
return "typ." + typ
}
}
// balance returns the number of unclosed '(' characters in s.
// If a ')' appears without a corresponding '(', balance returns -1.
func balance(s string) int {
balance := 0
for _, c := range s {
switch c {
case '(':
balance++
case ')':
balance--
if balance < 0 {
// don't allow ")(" to return 0
return -1
}
}
}
return balance
}
// findAllOpcode is a function to find the opcode portion of s-expressions.
var findAllOpcode = regexp.MustCompile(`[(](\w+[|])+\w+[)]`).FindAllStringIndex
// excludeFromExpansion reports whether the substring s[idx[0]:idx[1]] in a rule
// should be disregarded as a candidate for | expansion.
// It uses simple syntactic checks to see whether the substring
// is inside an AuxInt expression or inside the && conditions.
func excludeFromExpansion(s string, idx []int) bool {
left := s[:idx[0]]
if strings.LastIndexByte(left, '[') > strings.LastIndexByte(left, ']') {
// Inside an AuxInt expression.
return true
}
right := s[idx[1]:]
if strings.Contains(left, "&&") && strings.Contains(right, "=>") {
// Inside && conditions.
return true
}
return false
}
// expandOr converts a rule into multiple rules by expanding | ops.
func expandOr(r string) []string {
// Find every occurrence of |-separated things.
// They look like MOV(B|W|L|Q|SS|SD)load or MOV(Q|L)loadidx(1|8).
// Generate rules selecting one case from each |-form.
// Count width of |-forms. They must match.
n := 1
for _, idx := range findAllOpcode(r, -1) {
if excludeFromExpansion(r, idx) {
continue
}
s := r[idx[0]:idx[1]]
c := strings.Count(s, "|") + 1
if c == 1 {
continue
}
if n > 1 && n != c {
log.Fatalf("'|' count doesn't match in %s: both %d and %d\n", r, n, c)
}
n = c
}
if n == 1 {
// No |-form in this rule.
return []string{r}
}
// Build each new rule.
res := make([]string, n)
for i := 0; i < n; i++ {
buf := new(strings.Builder)
x := 0
for _, idx := range findAllOpcode(r, -1) {
if excludeFromExpansion(r, idx) {
continue
}
buf.WriteString(r[x:idx[0]]) // write bytes we've skipped over so far
s := r[idx[0]+1 : idx[1]-1] // remove leading "(" and trailing ")"
buf.WriteString(strings.Split(s, "|")[i]) // write the op component for this rule
x = idx[1] // note that we've written more bytes
}
buf.WriteString(r[x:])
res[i] = buf.String()
}
return res
}
// varCount returns a map which counts the number of occurrences of
// Value variables in the s-expression rr.Match and the Go expression rr.Cond.
func varCount(rr *RuleRewrite) map[string]int {
cnt := map[string]int{}
varCount1(rr.Loc, rr.Match, cnt)
if rr.Cond != "" {
expr, err := parser.ParseExpr(rr.Cond)
if err != nil {
log.Fatalf("%s: failed to parse cond %q: %v", rr.Loc, rr.Cond, err)
}
ast.Inspect(expr, func(n ast.Node) bool {
if id, ok := n.(*ast.Ident); ok {
cnt[id.Name]++
}
return true
})
}
return cnt
}
func varCount1(loc, m string, cnt map[string]int) {
if m[0] == '<' || m[0] == '[' || m[0] == '{' {
return
}
if token.IsIdentifier(m) {
cnt[m]++
return
}
// Split up input.
name, expr := splitNameExpr(m)
if name != "" {
cnt[name]++
}
if expr[0] != '(' || expr[len(expr)-1] != ')' {
log.Fatalf("%s: non-compound expr in varCount1: %q", loc, expr)
}
s := split(expr[1 : len(expr)-1])
for _, arg := range s[1:] {
varCount1(loc, arg, cnt)
}
}
// normalizeWhitespace replaces 2+ whitespace sequences with a single space.
func normalizeWhitespace(x string) string {
x = strings.Join(strings.Fields(x), " ")
x = strings.Replace(x, "( ", "(", -1)
x = strings.Replace(x, " )", ")", -1)
x = strings.Replace(x, "[ ", "[", -1)
x = strings.Replace(x, " ]", "]", -1)
x = strings.Replace(x, ")=>", ") =>", -1)
return x
}
// opIsCommutative reports whether op s is commutative.
func opIsCommutative(op string, arch arch) bool {
for _, x := range genericOps {
if op == x.name {
if x.commutative {
return true
}
break
}
}
if arch.name != "generic" {
for _, x := range arch.ops {
if op == x.name {
if x.commutative {
return true
}
break
}
}
}
return false
}
func normalizeMatch(m string, arch arch) string {
if token.IsIdentifier(m) {
return m
}
op, typ, auxint, aux, args := extract(m)
if opIsCommutative(op, arch) {
if args[1] < args[0] {
args[0], args[1] = args[1], args[0]
}
}
s := new(strings.Builder)
fmt.Fprintf(s, "%s <%s> [%s] {%s}", op, typ, auxint, aux)
for _, arg := range args {
prefix, expr := splitNameExpr(arg)
fmt.Fprint(s, " ", prefix, normalizeMatch(expr, arch))
}
return s.String()
}
func parseEllipsisRules(rules []Rule, arch arch) (newop string, ok bool) {
if len(rules) != 1 {
for _, r := range rules {
if strings.Contains(r.Rule, "...") {
log.Fatalf("%s: found ellipsis in rule, but there are other rules with the same op", r.Loc)
}
}
return "", false
}
rule := rules[0]
match, cond, result := rule.parse()
if cond != "" || !isEllipsisValue(match) || !isEllipsisValue(result) {
if strings.Contains(rule.Rule, "...") {
log.Fatalf("%s: found ellipsis in non-ellipsis rule", rule.Loc)
}
checkEllipsisRuleCandidate(rule, arch)
return "", false
}
op, oparch, _, _, _, _ := parseValue(result, arch, rule.Loc)
return fmt.Sprintf("Op%s%s", oparch, op.name), true
}
// isEllipsisValue reports whether s is of the form (OpX ...).
func isEllipsisValue(s string) bool {
if len(s) < 2 || s[0] != '(' || s[len(s)-1] != ')' {
return false
}
c := split(s[1 : len(s)-1])
if len(c) != 2 || c[1] != "..." {
return false
}
return true
}
func checkEllipsisRuleCandidate(rule Rule, arch arch) {
match, cond, result := rule.parse()
if cond != "" {
return
}
op, _, _, auxint, aux, args := parseValue(match, arch, rule.Loc)
var auxint2, aux2 string
var args2 []string
var usingCopy string
var eop opData
if result[0] != '(' {
// Check for (Foo x) => x, which can be converted to (Foo ...) => (Copy ...).
args2 = []string{result}
usingCopy = " using Copy"
} else {
eop, _, _, auxint2, aux2, args2 = parseValue(result, arch, rule.Loc)
}
// Check that all restrictions in match are reproduced exactly in result.
if aux != aux2 || auxint != auxint2 || len(args) != len(args2) {
return
}
if strings.Contains(rule.Rule, "=>") && op.aux != eop.aux {
return
}
for i := range args {
if args[i] != args2[i] {
return
}
}
switch {
case opHasAux(op) && aux == "" && aux2 == "":
fmt.Printf("%s: rule silently zeros aux, either copy aux or explicitly zero\n", rule.Loc)
case opHasAuxInt(op) && auxint == "" && auxint2 == "":
fmt.Printf("%s: rule silently zeros auxint, either copy auxint or explicitly zero\n", rule.Loc)
default:
fmt.Printf("%s: possible ellipsis rule candidate%s: %q\n", rule.Loc, usingCopy, rule.Rule)
}
}
func opByName(arch arch, name string) opData {
name = name[2:]
for _, x := range genericOps {
if name == x.name {
return x
}
}
if arch.name != "generic" {
name = name[len(arch.name):]
for _, x := range arch.ops {
if name == x.name {
return x
}
}
}
log.Fatalf("failed to find op named %s in arch %s", name, arch.name)
panic("unreachable")
}
// auxType returns the Go type that this operation should store in its aux field.
func (op opData) auxType() string {
switch op.aux {
case "String":
return "string"
case "Sym":
// Note: a Sym can be an *obj.LSym, a *gc.Node, or nil.
return "Sym"
case "SymOff":
return "Sym"
case "Call":
return "Call"
case "CallOff":
return "Call"
case "SymValAndOff":
return "Sym"
case "Typ":
return "*types.Type"
case "TypSize":
return "*types.Type"
case "S390XCCMask":
return "s390x.CCMask"
case "S390XRotateParams":
return "s390x.RotateParams"
default:
return "invalid"
}
}
// auxIntType returns the Go type that this operation should store in its auxInt field.
func (op opData) auxIntType() string {
switch op.aux {
case "Bool":
return "bool"
case "Int8":
return "int8"
case "Int16":
return "int16"
case "Int32":
return "int32"
case "Int64":
return "int64"
case "Int128":
return "int128"
case "UInt8":
return "uint8"
case "Float32":
return "float32"
case "Float64":
return "float64"
case "CallOff":
return "int32"
case "SymOff":
return "int32"
case "SymValAndOff":
return "ValAndOff"
case "TypSize":
return "int64"
case "CCop":
return "Op"
case "FlagConstant":
return "flagConstant"
case "ARM64BitField":
return "arm64BitField"
default:
return "invalid"
}
}
// auxType returns the Go type that this block should store in its aux field.
func (b blockData) auxType() string {
switch b.aux {
case "Sym":
return "Sym"
case "S390XCCMask", "S390XCCMaskInt8", "S390XCCMaskUint8":
return "s390x.CCMask"
case "S390XRotateParams":
return "s390x.RotateParams"
default:
return "invalid"
}
}
// auxIntType returns the Go type that this block should store in its auxInt field.
func (b blockData) auxIntType() string {
switch b.aux {
case "S390XCCMaskInt8":
return "int8"
case "S390XCCMaskUint8":
return "uint8"
case "Int64":
return "int64"
default:
return "invalid"
}
}
func title(s string) string {
if i := strings.Index(s, "."); i >= 0 {
switch strings.ToLower(s[:i]) {
case "s390x": // keep arch prefix for clarity
s = s[:i] + s[i+1:]
default:
s = s[i+1:]
}
}
return strings.Title(s)
}
func unTitle(s string) string {
if i := strings.Index(s, "."); i >= 0 {
switch strings.ToLower(s[:i]) {
case "s390x": // keep arch prefix for clarity
s = s[:i] + s[i+1:]
default:
s = s[i+1:]
}
}
return strings.ToLower(s[:1]) + s[1:]
}