| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements multi-precision floating-point numbers. |
| // Like in the GNU MPFR library (http://www.mpfr.org/), operands |
| // can be of mixed precision. Unlike MPFR, the rounding mode is |
| // not specified with each operation, but with each operand. The |
| // rounding mode of the result operand determines the rounding |
| // mode of an operation. This is a from-scratch implementation. |
| |
| // CAUTION: WORK IN PROGRESS - ANY ASPECT OF THIS IMPLEMENTATION MAY CHANGE! |
| |
| package big |
| |
| import ( |
| "fmt" |
| "io" |
| "math" |
| "strings" |
| ) |
| |
| // TODO(gri): Determine if there's a more natural way to set the precision. |
| // Should there be a special meaning for prec 0? Such as "full precision"? |
| // (would be possible for all ops except quotient). |
| |
| const debugFloat = true // enable for debugging |
| |
| // Internal representation: A floating-point value x != 0 consists |
| // of a sign (x.neg), mantissa (x.mant), and exponent (x.exp) such |
| // that |
| // |
| // x = sign * 0.mantissa * 2**exponent |
| // |
| // and the mantissa is interpreted as a value between 0.5 and 1: |
| // |
| // 0.5 <= mantissa < 1.0 |
| // |
| // The mantissa bits are stored in the shortest nat slice long enough |
| // to hold x.prec mantissa bits. The mantissa is normalized such that |
| // the msb of x.mant == 1. Thus, if the precision is not a multiple of |
| // the Word size _W, x.mant[0] contains trailing zero bits. The number |
| // 0 is represented by an empty mantissa and a zero exponent. |
| |
| // A Float represents a multi-precision floating point number |
| // of the form |
| // |
| // sign * mantissa * 2**exponent |
| // |
| // Each value also has a precision, rounding mode, and accuracy value: |
| // The precision is the number of mantissa bits used to represent a |
| // value, and the result of operations is rounded to that many bits |
| // according to the value's rounding mode (unless specified othewise). |
| // The accuracy value indicates the rounding error with respect to the |
| // exact (not rounded) value. |
| // |
| // The zero value for a Float represents the number 0. |
| // |
| // By setting the desired precision to 24 (or 53) and using ToNearestEven |
| // rounding, Float arithmetic operations emulate the corresponding float32 |
| // or float64 IEEE-754 operations (except for denormalized numbers and NaNs). |
| // |
| // CAUTION: THIS IS WORK IN PROGRESS - DO NOT USE YET. |
| // |
| type Float struct { |
| mode RoundingMode |
| acc Accuracy |
| neg bool |
| mant nat |
| exp int32 |
| prec uint // TODO(gri) make this a 32bit field |
| } |
| |
| // NewFloat returns a new Float with value x rounded |
| // to prec bits according to the given rounding mode. |
| func NewFloat(x float64, prec uint, mode RoundingMode) *Float { |
| // TODO(gri) should make this more efficient |
| z := new(Float).SetFloat64(x) |
| return z.Round(z, prec, mode) |
| } |
| |
| // infExp is the exponent value for infinity. |
| const infExp = 1<<31 - 1 |
| |
| // NewInf returns a new Float with value positive infinity (sign >= 0), |
| // or negative infinity (sign < 0). |
| func NewInf(sign int) *Float { |
| return &Float{neg: sign < 0, exp: infExp} |
| } |
| |
| func (z *Float) setExp(e int64) { |
| e32 := int32(e) |
| if int64(e32) != e { |
| panic("exponent overflow") // TODO(gri) handle this gracefully |
| } |
| z.exp = e32 |
| } |
| |
| // Accuracy describes the rounding error produced by the most recent |
| // operation that generated a Float value, relative to the exact value: |
| // |
| // -1: below exact value |
| // 0: exact value |
| // +1: above exact value |
| // |
| type Accuracy int8 |
| |
| // Constants describing the Accuracy of a Float. |
| const ( |
| Below Accuracy = -1 |
| Exact Accuracy = 0 |
| Above Accuracy = +1 |
| ) |
| |
| func (a Accuracy) String() string { |
| switch { |
| case a < 0: |
| return "below" |
| default: |
| return "exact" |
| case a > 0: |
| return "above" |
| } |
| } |
| |
| // RoundingMode determines how a Float value is rounded to the |
| // desired precision. Rounding may change the Float value; the |
| // rounding error is described by the Float's Accuracy. |
| type RoundingMode uint8 |
| |
| // The following rounding modes are supported. |
| const ( |
| ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven |
| ToNearestAway // == IEEE 754-2008 roundTiesToAway |
| ToZero // == IEEE 754-2008 roundTowardZero |
| AwayFromZero // no IEEE 754-2008 equivalent |
| ToNegativeInf // == IEEE 754-2008 roundTowardNegative |
| ToPositiveInf // == IEEE 754-2008 roundTowardPositive |
| ) |
| |
| func (mode RoundingMode) String() string { |
| switch mode { |
| case ToNearestEven: |
| return "ToNearestEven" |
| case ToNearestAway: |
| return "ToNearestAway" |
| case ToZero: |
| return "ToZero" |
| case AwayFromZero: |
| return "AwayFromZero" |
| case ToNegativeInf: |
| return "ToNegativeInf" |
| case ToPositiveInf: |
| return "ToPositiveInf" |
| } |
| panic("unreachable") |
| } |
| |
| // Precision returns the mantissa precision of x in bits. |
| // The precision may be 0 if x == 0. // TODO(gri) Determine a better approach. |
| func (x *Float) Precision() uint { |
| return uint(x.prec) |
| } |
| |
| // Accuracy returns the accuracy of x produced by the most recent operation. |
| func (x *Float) Accuracy() Accuracy { |
| return x.acc |
| } |
| |
| // Mode returns the rounding mode of x. |
| func (x *Float) Mode() RoundingMode { |
| return x.mode |
| } |
| |
| // debugging support |
| func (x *Float) validate() { |
| // assumes x != 0 |
| const msb = 1 << (_W - 1) |
| m := len(x.mant) |
| if x.mant[m-1]&msb == 0 { |
| panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.PString())) |
| } |
| if x.prec <= 0 { |
| panic(fmt.Sprintf("invalid precision %d", x.prec)) |
| } |
| } |
| |
| // round rounds z according to z.mode to z.prec bits and sets z.acc accordingly. |
| // sbit must be 0 or 1 and summarizes any "sticky bit" information one might |
| // have before calling round. z's mantissa must be normalized, with the msb set. |
| func (z *Float) round(sbit uint) { |
| z.acc = Exact |
| |
| // handle zero |
| m := uint(len(z.mant)) // mantissa length in words for current precision |
| if m == 0 { |
| z.exp = 0 |
| return |
| } |
| |
| if debugFloat { |
| z.validate() |
| } |
| // z.prec > 0 |
| |
| bits := m * _W // available mantissa bits |
| if bits == z.prec { |
| // mantissa fits Exactly => nothing to do |
| return |
| } |
| |
| n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision |
| if bits < z.prec { |
| // mantissa too small => extend |
| if m < n { |
| // slice too short => extend slice |
| if int(n) <= cap(z.mant) { |
| // reuse existing slice |
| z.mant = z.mant[:n] |
| copy(z.mant[n-m:], z.mant[:m]) |
| z.mant[:n-m].clear() |
| } else { |
| // n > cap(z.mant) => allocate new slice |
| const e = 4 // extra capacity (see nat.make) |
| new := make(nat, n, n+e) |
| copy(new[n-m:], z.mant) |
| } |
| } |
| return |
| } |
| |
| // Rounding is based on two bits: the rounding bit (rbit) and the |
| // sticky bit (sbit). The rbit is the bit immediately before the |
| // mantissa bits (the "0.5"). The sbit is set if any of the bits |
| // before the rbit are set (the "0.25", "0.125", etc.): |
| // |
| // rbit sbit => "fractional part" |
| // |
| // 0 0 == 0 |
| // 0 1 > 0 , < 0.5 |
| // 1 0 == 0.5 |
| // 1 1 > 0.5, < 1.0 |
| |
| // bits > z.prec: mantissa too large => round |
| r := bits - z.prec - 1 // rounding bit position; r >= 0 |
| rbit := z.mant.bit(r) // rounding bit |
| if sbit == 0 { |
| sbit = z.mant.sticky(r) |
| } |
| if debugFloat && sbit&^1 != 0 { |
| panic(fmt.Sprintf("invalid sbit %#x", sbit)) |
| } |
| |
| // convert ToXInf rounding modes |
| mode := z.mode |
| switch mode { |
| case ToNegativeInf: |
| mode = ToZero |
| if z.neg { |
| mode = AwayFromZero |
| } |
| case ToPositiveInf: |
| mode = AwayFromZero |
| if z.neg { |
| mode = ToZero |
| } |
| } |
| |
| // cut off extra words |
| if m > n { |
| copy(z.mant, z.mant[m-n:]) // move n last words to front |
| z.mant = z.mant[:n] |
| } |
| |
| // determine number of trailing zero bits t |
| t := n*_W - z.prec // 0 <= t < _W |
| lsb := Word(1) << t |
| |
| // make rounding decision |
| // TODO(gri) This can be simplified (see roundBits in float_test.go). |
| switch mode { |
| case ToZero: |
| // nothing to do |
| case ToNearestEven, ToNearestAway: |
| if rbit == 0 { |
| // rounding bits == 0b0x |
| mode = ToZero |
| } else if sbit == 1 { |
| // rounding bits == 0b11 |
| mode = AwayFromZero |
| } |
| case AwayFromZero: |
| if rbit|sbit == 0 { |
| mode = ToZero |
| } |
| default: |
| // ToXInf modes have been converted to ToZero or AwayFromZero |
| panic("unreachable") |
| } |
| |
| // round and determine accuracy |
| switch mode { |
| case ToZero: |
| if rbit|sbit != 0 { |
| z.acc = Below |
| } |
| |
| case ToNearestEven, ToNearestAway: |
| if debugFloat && rbit != 1 { |
| panic("internal error in rounding") |
| } |
| if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 { |
| z.acc = Below |
| break |
| } |
| // mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0 |
| fallthrough |
| |
| case AwayFromZero: |
| // add 1 to mantissa |
| if addVW(z.mant, z.mant, lsb) != 0 { |
| // overflow => shift mantissa right by 1 and add msb |
| shrVU(z.mant, z.mant, 1) |
| z.mant[n-1] |= 1 << (_W - 1) |
| // adjust exponent |
| z.exp++ |
| } |
| z.acc = Above |
| } |
| |
| // zero out trailing bits in least-significant word |
| z.mant[0] &^= lsb - 1 |
| |
| // update accuracy |
| if z.neg { |
| z.acc = -z.acc |
| } |
| |
| if debugFloat { |
| z.validate() |
| } |
| |
| return |
| } |
| |
| // Round sets z to the value of x rounded according to mode to prec bits and returns z. |
| func (z *Float) Round(x *Float, prec uint, mode RoundingMode) *Float { |
| z.Set(x) |
| z.prec = prec |
| z.mode = mode |
| z.round(0) |
| return z |
| } |
| |
| // nlz returns the number of leading zero bits in x. |
| func nlz(x Word) uint { |
| return _W - uint(bitLen(x)) |
| } |
| |
| func nlz64(x uint64) uint { |
| // TODO(gri) this can be done more nicely |
| if _W == 32 { |
| if x>>32 == 0 { |
| return 32 + nlz(Word(x)) |
| } |
| return nlz(Word(x >> 32)) |
| } |
| if _W == 64 { |
| return nlz(Word(x)) |
| } |
| panic("unreachable") |
| } |
| |
| // SetUint64 sets z to x and returns z. |
| // Precision is set to 64 bits. |
| func (z *Float) SetUint64(x uint64) *Float { |
| z.neg = false |
| z.prec = 64 |
| if x == 0 { |
| z.mant = z.mant[:0] |
| z.exp = 0 |
| return z |
| } |
| s := nlz64(x) |
| z.mant = z.mant.setUint64(x << s) |
| z.exp = int32(64 - s) |
| return z |
| } |
| |
| // SetInt64 sets z to x and returns z. |
| // Precision is set to 64 bits. |
| func (z *Float) SetInt64(x int64) *Float { |
| u := x |
| if u < 0 { |
| u = -u |
| } |
| z.SetUint64(uint64(u)) |
| z.neg = x < 0 |
| return z |
| } |
| |
| // SetFloat64 sets z to x and returns z. |
| // Precision is set to 53 bits. |
| // TODO(gri) test denormals, +/-Inf, disallow NaN. |
| func (z *Float) SetFloat64(x float64) *Float { |
| z.prec = 53 |
| if x == 0 { |
| z.neg = false |
| z.mant = z.mant[:0] |
| z.exp = 0 |
| return z |
| } |
| z.neg = x < 0 |
| fmant, exp := math.Frexp(x) // get normalized mantissa |
| z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11) |
| z.exp = int32(exp) |
| return z |
| } |
| |
| // fnorm normalizes mantissa m by shifting it to the left |
| // such that the msb of the most-significant word (msw) |
| // is 1. It returns the shift amount. |
| // It assumes that m is not the zero nat. |
| func fnorm(m nat) uint { |
| if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) { |
| panic("msw of mantissa is 0") |
| } |
| s := nlz(m[len(m)-1]) |
| if s > 0 { |
| c := shlVU(m, m, s) |
| if debugFloat && c != 0 { |
| panic("nlz or shlVU incorrect") |
| } |
| } |
| return s |
| } |
| |
| // SetInt sets z to x and returns z. |
| // Precision is set to the number of bits required to represent x accurately. |
| // TODO(gri) what about precision for x == 0? |
| func (z *Float) SetInt(x *Int) *Float { |
| if len(x.abs) == 0 { |
| z.neg = false |
| z.mant = z.mant[:0] |
| z.exp = 0 |
| // z.prec = ? |
| return z |
| } |
| // x != 0 |
| z.neg = x.neg |
| z.mant = z.mant.set(x.abs) |
| e := uint(len(z.mant))*_W - fnorm(z.mant) |
| z.exp = int32(e) |
| z.prec = e |
| return z |
| } |
| |
| // SetRat sets z to x rounded to the precision of z and returns z. |
| func (z *Float) SetRat(x *Rat, prec uint) *Float { |
| panic("unimplemented") |
| } |
| |
| // Set sets z to x, with the same precision as x, and returns z. |
| func (z *Float) Set(x *Float) *Float { |
| if z != x { |
| z.neg = x.neg |
| z.exp = x.exp |
| z.mant = z.mant.set(x.mant) |
| z.prec = x.prec |
| } |
| return z |
| } |
| |
| func high64(x nat) uint64 { |
| if len(x) == 0 { |
| return 0 |
| } |
| v := uint64(x[len(x)-1]) |
| if _W == 32 && len(x) > 1 { |
| v = v<<32 | uint64(x[len(x)-2]) |
| } |
| return v |
| } |
| |
| // TODO(gri) FIX THIS (rounding mode, errors, accuracy, etc.) |
| func (x *Float) Uint64() uint64 { |
| m := high64(x.mant) |
| s := x.exp |
| if s >= 0 { |
| return m >> (64 - uint(s)) |
| } |
| return 0 // imprecise |
| } |
| |
| // TODO(gri) FIX THIS (rounding mode, errors, etc.) |
| func (x *Float) Int64() int64 { |
| v := int64(x.Uint64()) |
| if x.neg { |
| return -v |
| } |
| return v |
| } |
| |
| // Float64 returns the closest float64 value of x |
| // by rounding to nearest with 53 bits precision. |
| // TODO(gri) implement/document error scenarios. |
| func (x *Float) Float64() (float64, Accuracy) { |
| if len(x.mant) == 0 { |
| return 0, Exact |
| } |
| // x != 0 |
| r := new(Float).Round(x, 53, ToNearestEven) |
| var s uint64 |
| if r.neg { |
| s = 1 << 63 |
| } |
| e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow |
| m := high64(r.mant) >> 11 & (1<<52 - 1) |
| return math.Float64frombits(s | e<<52 | m), r.acc |
| } |
| |
| func (x *Float) Int() *Int { |
| if len(x.mant) == 0 { |
| return new(Int) |
| } |
| panic("unimplemented") |
| } |
| |
| func (x *Float) Rat() *Rat { |
| panic("unimplemented") |
| } |
| |
| func (x *Float) IsInt() bool { |
| if len(x.mant) == 0 { |
| return true |
| } |
| if x.exp <= 0 { |
| return false |
| } |
| if uint(x.exp) >= x.prec { |
| return true |
| } |
| panic("unimplemented") |
| } |
| |
| // Abs sets z to |x| (the absolute value of x) and returns z. |
| // TODO(gri) should Abs (and Neg) below ignore z's precision and rounding mode? |
| func (z *Float) Abs(x *Float) *Float { |
| z.Set(x) |
| z.neg = false |
| return z |
| } |
| |
| // Neg sets z to x with its sign negated, and returns z. |
| func (z *Float) Neg(x *Float) *Float { |
| z.Set(x) |
| z.neg = !z.neg |
| return z |
| } |
| |
| // z = x + y, ignoring signs of x and y. |
| // x and y must not be 0. |
| func (z *Float) uadd(x, y *Float) { |
| if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) { |
| panic("uadd called with 0 argument") |
| } |
| |
| // Note: This implementation requires 2 shifts most of the |
| // time. It is also inefficient if exponents or precisions |
| // differ by wide margins. The following article describes |
| // an efficient (but much more complicated) implementation |
| // compatible with the internal representation used here: |
| // |
| // Vincent Lefèvre: "The Generic Multiple-Precision Floating- |
| // Point Addition With Exact Rounding (as in the MPFR Library)" |
| // http://www.vinc17.net/research/papers/rnc6.pdf |
| |
| // order x, y by magnitude |
| ex := int(x.exp) - len(x.mant)*_W |
| ey := int(y.exp) - len(y.mant)*_W |
| if ex < ey { |
| // + is commutative => ok to swap operands |
| x, y = y, x |
| ex, ey = ey, ex |
| } |
| // ex >= ey |
| d := uint(ex - ey) |
| |
| // compute adjusted xmant |
| var n0 uint // nlz(z) before addition |
| xadj := x.mant |
| if d > 0 { |
| xadj = z.mant.shl(x.mant, d) // 1st shift |
| n0 = _W - d%_W |
| } |
| z.exp = x.exp |
| |
| // add numbers |
| z.mant = z.mant.add(xadj, y.mant) |
| |
| // normalize mantissa |
| n1 := fnorm(z.mant) // 2nd shift (often) |
| |
| // adjust exponent if the result got longer (by at most 1 bit) |
| if n1 != n0 { |
| if debugFloat && (n1+1)%_W != n0 { |
| panic(fmt.Sprintf("carry is %d bits, expected at most 1 bit", n0-n1)) |
| } |
| z.exp++ |
| } |
| |
| z.round(0) |
| } |
| |
| // z = x - y for x >= y, ignoring signs of x and y. |
| // x and y must not be zero. |
| func (z *Float) usub(x, y *Float) { |
| if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) { |
| panic("usub called with 0 argument") |
| } |
| |
| // Note: Like uadd, this implementation is often doing |
| // too much work and could be optimized by separating |
| // the various special cases. |
| |
| // determine magnitude difference |
| ex := int(x.exp) - len(x.mant)*_W |
| ey := int(y.exp) - len(y.mant)*_W |
| |
| if ex < ey { |
| panic("underflow") |
| } |
| // ex >= ey |
| d := uint(ex - ey) |
| |
| // compute adjusted x.mant |
| var n uint // nlz(z) after adjustment |
| xadj := x.mant |
| if d > 0 { |
| xadj = z.mant.shl(x.mant, d) |
| n = _W - d%_W |
| } |
| e := int64(x.exp) + int64(n) |
| |
| // subtract numbers |
| z.mant = z.mant.sub(xadj, y.mant) |
| |
| if len(z.mant) != 0 { |
| e -= int64(len(xadj)-len(z.mant)) * _W |
| |
| // normalize mantissa |
| z.setExp(e - int64(fnorm(z.mant))) |
| } |
| |
| z.round(0) |
| } |
| |
| // z = x * y, ignoring signs of x and y. |
| // x and y must not be zero. |
| func (z *Float) umul(x, y *Float) { |
| if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) { |
| panic("umul called with 0 argument") |
| } |
| |
| // Note: This is doing too much work if the precision |
| // of z is less than the sum of the precisions of x |
| // and y which is often the case (e.g., if all floats |
| // have the same precision). |
| // TODO(gri) Optimize this for the common case. |
| |
| e := int64(x.exp) + int64(y.exp) |
| z.mant = z.mant.mul(x.mant, y.mant) |
| |
| // normalize mantissa |
| z.setExp(e - int64(fnorm(z.mant))) |
| z.round(0) |
| } |
| |
| // z = x / y, ignoring signs of x and y. |
| // x and y must not be zero. |
| func (z *Float) uquo(x, y *Float) { |
| if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) { |
| panic("uquo called with 0 argument") |
| } |
| |
| // mantissa length in words for desired result precision + 1 |
| // (at least one extra bit so we get the rounding bit after |
| // the division) |
| n := int(z.prec/_W) + 1 |
| |
| // compute adjusted x.mant such that we get enough result precision |
| xadj := x.mant |
| if d := n - len(x.mant) + len(y.mant); d > 0 { |
| // d extra words needed => add d "0 digits" to x |
| xadj = make(nat, len(x.mant)+d) |
| copy(xadj[d:], x.mant) |
| } |
| // TODO(gri): If we have too many digits (d < 0), we should be able |
| // to shorten x for faster division. But we must be extra careful |
| // with rounding in that case. |
| |
| // divide |
| var r nat |
| z.mant, r = z.mant.div(nil, xadj, y.mant) |
| |
| // determine exponent |
| e := int64(x.exp) - int64(y.exp) - int64(len(xadj)-len(y.mant)-len(z.mant))*_W |
| |
| // normalize mantissa |
| z.setExp(e - int64(fnorm(z.mant))) |
| |
| // The result is long enough to include (at least) the rounding bit. |
| // If there's a non-zero remainder, the corresponding fractional part |
| // (if it were computed), would have a non-zero sticky bit (if it were |
| // zero, it couldn't have a non-zero remainder). |
| var sbit uint |
| if len(r) > 0 { |
| sbit = 1 |
| } |
| z.round(sbit) |
| } |
| |
| // ucmp returns -1, 0, or 1, depending on whether x < y, x == y, or x > y, |
| // while ignoring the signs of x and y. x and y must not be zero. |
| func (x *Float) ucmp(y *Float) int { |
| if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) { |
| panic("ucmp called with 0 argument") |
| } |
| |
| switch { |
| case x.exp < y.exp: |
| return -1 |
| case x.exp > y.exp: |
| return 1 |
| } |
| // x.exp == y.exp |
| |
| // compare mantissas |
| i := len(x.mant) |
| j := len(y.mant) |
| for i > 0 || j > 0 { |
| var xm, ym Word |
| if i > 0 { |
| i-- |
| xm = x.mant[i] |
| } |
| if j > 0 { |
| j-- |
| ym = y.mant[j] |
| } |
| switch { |
| case xm < ym: |
| return -1 |
| case xm > ym: |
| return 1 |
| } |
| } |
| |
| return 0 |
| } |
| |
| // Handling of sign bit as defined by IEEE 754-2008, |
| // section 6.3 (note that there are no NaN Floats): |
| // |
| // When neither the inputs nor result are NaN, the sign of a product or |
| // quotient is the exclusive OR of the operands’ signs; the sign of a sum, |
| // or of a difference x−y regarded as a sum x+(−y), differs from at most |
| // one of the addends’ signs; and the sign of the result of conversions, |
| // the quantize operation, the roundToIntegral operations, and the |
| // roundToIntegralExact (see 5.3.1) is the sign of the first or only operand. |
| // These rules shall apply even when operands or results are zero or infinite. |
| // |
| // When the sum of two operands with opposite signs (or the difference of |
| // two operands with like signs) is exactly zero, the sign of that sum (or |
| // difference) shall be +0 in all rounding-direction attributes except |
| // roundTowardNegative; under that attribute, the sign of an exact zero |
| // sum (or difference) shall be −0. However, x+x = x−(−x) retains the same |
| // sign as x even when x is zero. |
| |
| // Add sets z to the rounded sum x+y and returns z. |
| // Rounding is performed according to z's precision |
| // and rounding mode; and z's accuracy reports the |
| // result error relative to the exact (not rounded) |
| // result. |
| func (z *Float) Add(x, y *Float) *Float { |
| // TODO(gri) what about -0? |
| if len(y.mant) == 0 { |
| return z.Round(x, z.prec, z.mode) |
| } |
| if len(x.mant) == 0 { |
| return z.Round(y, z.prec, z.mode) |
| } |
| |
| // x, y != 0 |
| neg := x.neg |
| if x.neg == y.neg { |
| // x + y == x + y |
| // (-x) + (-y) == -(x + y) |
| z.uadd(x, y) |
| } else { |
| // x + (-y) == x - y == -(y - x) |
| // (-x) + y == y - x == -(x - y) |
| if x.ucmp(y) >= 0 { |
| z.usub(x, y) |
| } else { |
| neg = !neg |
| z.usub(y, x) |
| } |
| } |
| z.neg = neg |
| return z |
| } |
| |
| // Sub sets z to the rounded difference x-y and returns z. |
| // Rounding is performed according to z's precision |
| // and rounding mode; and z's accuracy reports the |
| // result error relative to the exact (not rounded) |
| // result. |
| func (z *Float) Sub(x, y *Float) *Float { |
| // TODO(gri) what about -0? |
| if len(y.mant) == 0 { |
| return z.Round(x, z.prec, z.mode) |
| } |
| if len(x.mant) == 0 { |
| prec := z.prec |
| mode := z.mode |
| z.Neg(y) |
| return z.Round(z, prec, mode) |
| } |
| |
| // x, y != 0 |
| neg := x.neg |
| if x.neg != y.neg { |
| // x - (-y) == x + y |
| // (-x) - y == -(x + y) |
| z.uadd(x, y) |
| } else { |
| // x - y == x - y == -(y - x) |
| // (-x) - (-y) == y - x == -(x - y) |
| if x.ucmp(y) >= 0 { |
| z.usub(x, y) |
| } else { |
| neg = !neg |
| z.usub(y, x) |
| } |
| } |
| z.neg = neg |
| return z |
| } |
| |
| // Mul sets z to the rounded product x*y and returns z. |
| // Rounding is performed according to z's precision |
| // and rounding mode; and z's accuracy reports the |
| // result error relative to the exact (not rounded) |
| // result. |
| func (z *Float) Mul(x, y *Float) *Float { |
| // TODO(gri) what about -0? |
| if len(x.mant) == 0 || len(y.mant) == 0 { |
| z.neg = false |
| z.mant = z.mant[:0] |
| z.exp = 0 |
| z.acc = Exact |
| return z |
| } |
| |
| // x, y != 0 |
| z.umul(x, y) |
| z.neg = x.neg != y.neg |
| return z |
| } |
| |
| // Quo sets z to the rounded quotient x/y and returns z. |
| // If y == 0, a division-by-zero run-time panic occurs. TODO(gri) this should become Inf |
| // Rounding is performed according to z's precision |
| // and rounding mode; and z's accuracy reports the |
| // result error relative to the exact (not rounded) |
| // result. |
| func (z *Float) Quo(x, y *Float) *Float { |
| // TODO(gri) what about -0? |
| if len(x.mant) == 0 { |
| z.neg = false |
| z.mant = z.mant[:0] |
| z.exp = 0 |
| z.acc = Exact |
| return z |
| } |
| if len(y.mant) == 0 { |
| panic("division-by-zero") // TODO(gri) handle this better |
| } |
| |
| // x, y != 0 |
| z.uquo(x, y) |
| z.neg = x.neg != y.neg |
| return z |
| } |
| |
| // Lsh sets z to the rounded x * (1<<s) and returns z. |
| // Rounding is performed according to z's precision |
| // and rounding mode; and z's accuracy reports the |
| // result error relative to the exact (not rounded) |
| // result. |
| func (z *Float) Lsh(x *Float, s uint, mode RoundingMode) *Float { |
| z.Round(x, z.prec, mode) |
| z.setExp(int64(z.exp) + int64(s)) |
| return z |
| } |
| |
| // Rsh sets z to the rounded x / (1<<s) and returns z. |
| // Rounding is performed according to z's precision |
| // and rounding mode; and z's accuracy reports the |
| // result error relative to the exact (not rounded) |
| // result. |
| func (z *Float) Rsh(x *Float, s uint, mode RoundingMode) *Float { |
| z.Round(x, z.prec, mode) |
| z.setExp(int64(z.exp) - int64(s)) |
| return z |
| } |
| |
| // Cmp compares x and y and returns: |
| // |
| // -1 if x < y |
| // 0 if x == y (incl. -0 == 0) |
| // +1 if x > y |
| // |
| func (x *Float) Cmp(y *Float) int { |
| // special cases |
| switch { |
| case len(x.mant) == 0: |
| // 0 cmp y == -sign(y) |
| return -y.Sign() |
| case len(y.mant) == 0: |
| // x cmp 0 == sign(x) |
| return x.Sign() |
| } |
| // x != 0 && y != 0 |
| |
| // x cmp y == x cmp y |
| // x cmp (-y) == 1 |
| // (-x) cmp y == -1 |
| // (-x) cmp (-y) == -(x cmp y) |
| switch { |
| case x.neg == y.neg: |
| r := x.ucmp(y) |
| if x.neg { |
| r = -r |
| } |
| return r |
| case x.neg: |
| return -1 |
| default: |
| return 1 |
| } |
| return 0 |
| } |
| |
| // Sign returns: |
| // |
| // -1 if x < 0 |
| // 0 if x == 0 (incl. x == -0) |
| // +1 if x > 0 |
| // |
| func (x *Float) Sign() int { |
| if len(x.mant) == 0 { |
| return 0 |
| } |
| if x.neg { |
| return -1 |
| } |
| return 1 |
| } |
| |
| func (x *Float) String() string { |
| return x.PString() // TODO(gri) fix this |
| } |
| |
| // PString returns x as a string in the format ["-"] "0x" mantissa "p" exponent, |
| // with a hexadecimal mantissa and a signed decimal exponent. |
| func (x *Float) PString() string { |
| prefix := "0." |
| if x.neg { |
| prefix = "-0." |
| } |
| return prefix + x.mant.string(lowercaseDigits[:16]) + fmt.Sprintf("p%d", x.exp) |
| } |
| |
| // SetString sets z to the value of s and returns z and a boolean indicating |
| // success. s must be a floating-point number of the form: |
| // |
| // number = [ sign ] mantissa [ exponent ] . |
| // mantissa = digits | digits "." [ digits ] | "." digits . |
| // exponent = ( "E" | "e" | "p" ) [ sign ] digits . |
| // sign = "+" | "-" . |
| // digits = digit { digit } . |
| // digit = "0" ... "9" . |
| // |
| // A "p" exponent indicates power of 2 for the exponent; for instance 1.2p3 |
| // is 1.2 * 2**3. If the operation failed, the value of z is undefined but |
| // the returned value is nil. |
| // |
| func (z *Float) SetString(s string) (*Float, bool) { |
| r := strings.NewReader(s) |
| |
| f, err := z.scan(r) |
| if err != nil { |
| return nil, false |
| } |
| |
| // there should be no unread characters left |
| if _, _, err = r.ReadRune(); err != io.EOF { |
| return nil, false |
| } |
| |
| return f, true |
| } |
| |
| // scan sets z to the value of the longest prefix of r representing |
| // a floating-point number and returns z or an error, if any. |
| // The number must be of the form: |
| // |
| // number = [ sign ] mantissa [ exponent ] . |
| // mantissa = digits | digits "." [ digits ] | "." digits . |
| // exponent = ( "E" | "e" | "p" ) [ sign ] digits . |
| // sign = "+" | "-" . |
| // digits = digit { digit } . |
| // digit = "0" ... "9" . |
| // |
| // A "p" exponent indicates power of 2 for the exponent; for instance 1.2p3 |
| // is 1.2 * 2**3. If the operation failed, the value of z is undefined but |
| // the returned value is nil. |
| // |
| func (z *Float) scan(r io.RuneScanner) (f *Float, err error) { |
| // sign |
| z.neg, err = scanSign(r) |
| if err != nil { |
| return |
| } |
| |
| // mantissa |
| var ecorr int // decimal exponent correction; valid if <= 0 |
| z.mant, _, ecorr, err = z.mant.scan(r, 1) |
| if err != nil { |
| return |
| } |
| |
| // exponent |
| var exp int64 |
| var ebase int |
| exp, ebase, err = scanExponent(r) |
| if err != nil { |
| return |
| } |
| // special-case 0 |
| if len(z.mant) == 0 { |
| z.exp = 0 |
| return z, nil |
| } |
| // len(z.mant) > 0 |
| |
| // determine binary (exp2) and decimal (exp) exponent |
| exp2 := int64(len(z.mant)*_W - int(fnorm(z.mant))) |
| if ebase == 2 { |
| exp2 += exp |
| exp = 0 |
| } |
| if ecorr < 0 { |
| exp += int64(ecorr) |
| } |
| |
| z.setExp(exp2) |
| if exp == 0 { |
| // no decimal exponent |
| z.round(0) |
| return z, nil |
| } |
| // exp != 0 |
| |
| // compute decimal exponent power |
| expabs := exp |
| if expabs < 0 { |
| expabs = -expabs |
| } |
| powTen := new(Float).SetInt(new(Int).SetBits(nat(nil).expNN(natTen, nat(nil).setWord(Word(expabs)), nil))) |
| |
| // correct result |
| if exp < 0 { |
| z.uquo(z, powTen) |
| } else { |
| z.umul(z, powTen) |
| } |
| |
| return z, nil |
| } |