blob: e2d90e7551fd05006c46f076f81f7ebf002f1673 [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "textflag.h"
// condition code masks
#define EQ 8
#define NE 7
// register assignments
#define R_ZERO R0
#define R_VAL R1
#define R_TMP R2
#define R_PTR R3
#define R_LEN R4
#define R_CHAR R5
#define R_RET R6
#define R_ITER R7
#define R_CNT R8
#define R_MPTR R9
// vector register assignments
#define V_ZERO V0
#define V_CHAR V1
#define V_MASK V2
#define V_VAL V3
#define V_CNT V4
// mask for trailing bytes in vector implementation
GLOBL countbytemask<>(SB), RODATA, $16
DATA countbytemask<>+0(SB)/8, $0x0101010101010101
DATA countbytemask<>+8(SB)/8, $0x0101010101010101
// func Count(b []byte, c byte) int
TEXT ·Count(SB), NOSPLIT|NOFRAME, $0-40
LMG b+0(FP), R_PTR, R_LEN
MOVBZ c+24(FP), R_CHAR
MOVD $ret+32(FP), R_RET
BR countbytebody<>(SB)
// func CountString(s string, c byte) int
TEXT ·CountString(SB), NOSPLIT|NOFRAME, $0-32
LMG s+0(FP), R_PTR, R_LEN
MOVBZ c+16(FP), R_CHAR
MOVD $ret+24(FP), R_RET
BR countbytebody<>(SB)
// input:
// R_PTR = address of array of bytes
// R_LEN = number of bytes in array
// R_CHAR = byte value to count zero (extended to register width)
// R_RET = address of return value
TEXT countbytebody<>(SB), NOSPLIT|NOFRAME, $0-0
MOVD $internal∕cpu·S390X+const_offsetS390xHasVX(SB), R_TMP
MOVD $countbytemask<>(SB), R_MPTR
CGIJ $EQ, R_LEN, $0, ret0 // return if length is 0.
SRD $4, R_LEN, R_ITER // R_ITER is the number of 16-byte chunks
MOVBZ (R_TMP), R_TMP // load bool indicating support for vector facility
CGIJ $EQ, R_TMP, $0, novx // jump to scalar code if the vector facility is not available
// Start of vector code (have vector facility).
//
// Set R_LEN to be the length mod 16 minus 1 to use as an index for
// vector 'load with length' (VLL). It will be in the range [-1,14].
// Also replicate c across a 16-byte vector and initialize V_ZERO.
ANDW $0xf, R_LEN
VLVGB $0, R_CHAR, V_CHAR // V_CHAR = [16]byte{c, 0, ..., 0, 0}
VZERO V_ZERO // V_ZERO = [1]uint128{0}
ADDW $-1, R_LEN
VREPB $0, V_CHAR, V_CHAR // V_CHAR = [16]byte{c, c, ..., c, c}
// Jump to loop if we have more than 15 bytes to process.
CGIJ $NE, R_ITER, $0, vxchunks
// Load 1-15 bytes and corresponding mask.
// Note: only the low 32-bits of R_LEN are used for the index.
VLL R_LEN, (R_PTR), V_VAL
VLL R_LEN, (R_MPTR), V_MASK
// Compare each byte in input chunk against byte to be counted.
// Each byte element will be set to either 0 (no match) or 1 (match).
VCEQB V_CHAR, V_VAL, V_VAL // each byte will be either 0xff or 0x00
VN V_MASK, V_VAL, V_VAL // mask out most significant 7 bits
// Accumulate matched byte count in 128-bit integer value.
VSUMB V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15}[4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15}
VSUMQF V_VAL, V_ZERO, V_CNT // [4]uint32{x0, x1, x2, x3}[1]uint128{x0+x1+x2+x3}
// Return rightmost (lowest) 64-bit part of accumulator.
VSTEG $1, V_CNT, (R_RET)
RET
vxchunks:
// Load 0x01 into every byte element in the 16-byte mask vector.
VREPIB $1, V_MASK // V_MASK = [16]byte{1, 1, ..., 1, 1}
VZERO V_CNT // intial uint128 count of 0
vxloop:
// Load input bytes in 16-byte chunks.
VL (R_PTR), V_VAL
// Compare each byte in input chunk against byte to be counted.
// Each byte element will be set to either 0 (no match) or 1 (match).
VCEQB V_CHAR, V_VAL, V_VAL // each byte will be either 0xff or 0x00
VN V_MASK, V_VAL, V_VAL // mask out most significant 7 bits
// Increment input string address.
MOVD $16(R_PTR), R_PTR
// Accumulate matched byte count in 128-bit integer value.
VSUMB V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15}[4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15}
VSUMQF V_VAL, V_ZERO, V_VAL // [4]uint32{x0, x1, x2, x3}[1]uint128{x0+x1+x2+x3}
VAQ V_VAL, V_CNT, V_CNT // accumulate
// Repeat until all 16-byte chunks are done.
BRCTG R_ITER, vxloop
// Skip to end if there are no trailing bytes.
CIJ $EQ, R_LEN, $-1, vxret
// Load 1-15 bytes and corresponding mask.
// Note: only the low 32-bits of R_LEN are used for the index.
VLL R_LEN, (R_PTR), V_VAL
VLL R_LEN, (R_MPTR), V_MASK
// Compare each byte in input chunk against byte to be counted.
// Each byte element will be set to either 0 (no match) or 1 (match).
VCEQB V_CHAR, V_VAL, V_VAL
VN V_MASK, V_VAL, V_VAL
// Accumulate matched byte count in 128-bit integer value.
VSUMB V_VAL, V_ZERO, V_VAL // [16]byte{x0, x1, ..., x14, x15}[4]uint32{x0+x1+x2+x3, ..., x12+x13+x14+x15}
VSUMQF V_VAL, V_ZERO, V_VAL // [4]uint32{x0, x1, x2, x3}[1]uint128{x0+x1+x2+x3}
VAQ V_VAL, V_CNT, V_CNT // accumulate
vxret:
// Return rightmost (lowest) 64-bit part of accumulator.
VSTEG $1, V_CNT, (R_RET)
RET
novx:
// Start of non-vector code (the vector facility not available).
//
// Initialise counter and constant zero.
MOVD $0, R_CNT
MOVD $0, R_ZERO
loop:
// Read 1-byte from input and compare.
// Note: avoid putting LOCGR in critical path.
MOVBZ (R_PTR), R_VAL
MOVD $1, R_TMP
MOVD $1(R_PTR), R_PTR
CMPW R_VAL, R_CHAR
LOCGR $NE, R_ZERO, R_TMP // select 0 if no match (1 if there is a match)
ADD R_TMP, R_CNT // accumulate 64-bit result
// Repeat until all bytes have been checked.
BRCTG R_LEN, loop
ret:
MOVD R_CNT, (R_RET)
RET
ret0:
MOVD $0, (R_RET)
RET