blob: 728116850fbcd152d6858019f93a6d006c55bd95 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This package parses X.509-encoded keys and certificates.
package x509
import (
"asn1"
"big"
"container/vector"
"crypto/rsa"
"crypto/sha1"
"hash"
"io"
"os"
"strings"
"time"
)
// pkcs1PrivateKey is a structure which mirrors the PKCS#1 ASN.1 for an RSA private key.
type pkcs1PrivateKey struct {
Version int
N asn1.RawValue
E int
D asn1.RawValue
P asn1.RawValue
Q asn1.RawValue
}
// rawValueIsInteger returns true iff the given ASN.1 RawValue is an INTEGER type.
func rawValueIsInteger(raw *asn1.RawValue) bool {
return raw.Class == 0 && raw.Tag == 2 && raw.IsCompound == false
}
// ParsePKCS1PrivateKey returns an RSA private key from its ASN.1 PKCS#1 DER encoded form.
func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err os.Error) {
var priv pkcs1PrivateKey
rest, err := asn1.Unmarshal(&priv, der)
if len(rest) > 0 {
err = asn1.SyntaxError{"trailing data"}
return
}
if err != nil {
return
}
if !rawValueIsInteger(&priv.N) ||
!rawValueIsInteger(&priv.D) ||
!rawValueIsInteger(&priv.P) ||
!rawValueIsInteger(&priv.Q) {
err = asn1.StructuralError{"tags don't match"}
return
}
key = &rsa.PrivateKey{
PublicKey: rsa.PublicKey{
E: priv.E,
N: new(big.Int).SetBytes(priv.N.Bytes),
},
D: new(big.Int).SetBytes(priv.D.Bytes),
P: new(big.Int).SetBytes(priv.P.Bytes),
Q: new(big.Int).SetBytes(priv.Q.Bytes),
}
err = key.Validate()
if err != nil {
return nil, err
}
return
}
// MarshalPKCS1PrivateKey converts a private key to ASN.1 DER encoded form.
func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte {
priv := pkcs1PrivateKey{
Version: 1,
N: asn1.RawValue{Tag: 2, Bytes: key.PublicKey.N.Bytes()},
E: key.PublicKey.E,
D: asn1.RawValue{Tag: 2, Bytes: key.D.Bytes()},
P: asn1.RawValue{Tag: 2, Bytes: key.P.Bytes()},
Q: asn1.RawValue{Tag: 2, Bytes: key.Q.Bytes()},
}
b, _ := asn1.MarshalToMemory(priv)
return b
}
// These structures reflect the ASN.1 structure of X.509 certificates.:
type certificate struct {
TBSCertificate tbsCertificate
SignatureAlgorithm algorithmIdentifier
SignatureValue asn1.BitString
}
type tbsCertificate struct {
Raw asn1.RawContent
Version int "optional,explicit,default:1,tag:0"
SerialNumber asn1.RawValue
SignatureAlgorithm algorithmIdentifier
Issuer rdnSequence
Validity validity
Subject rdnSequence
PublicKey publicKeyInfo
UniqueId asn1.BitString "optional,tag:1"
SubjectUniqueId asn1.BitString "optional,tag:2"
Extensions []extension "optional,explicit,tag:3"
}
type algorithmIdentifier struct {
Algorithm asn1.ObjectIdentifier
}
type rdnSequence []relativeDistinguishedNameSET
type relativeDistinguishedNameSET []attributeTypeAndValue
type attributeTypeAndValue struct {
Type asn1.ObjectIdentifier
Value interface{}
}
type validity struct {
NotBefore, NotAfter *time.Time
}
type publicKeyInfo struct {
Algorithm algorithmIdentifier
PublicKey asn1.BitString
}
type extension struct {
Id asn1.ObjectIdentifier
Critical bool "optional"
Value []byte
}
// RFC 5280, 4.2.1.1
type authKeyId struct {
Id []byte "optional,tag:0"
}
type SignatureAlgorithm int
const (
UnknownSignatureAlgorithm SignatureAlgorithm = iota
MD2WithRSA
MD5WithRSA
SHA1WithRSA
SHA256WithRSA
SHA384WithRSA
SHA512WithRSA
)
type PublicKeyAlgorithm int
const (
UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota
RSA
)
// Name represents an X.509 distinguished name. This only includes the common
// elements of a DN. Additional elements in the name are ignored.
type Name struct {
Country, Organization, OrganizationalUnit string
CommonName, SerialNumber, Locality string
Province, StreetAddress, PostalCode string
}
func (n *Name) fillFromRDNSequence(rdns *rdnSequence) {
for _, rdn := range *rdns {
if len(rdn) == 0 {
continue
}
atv := rdn[0]
value, ok := atv.Value.(string)
if !ok {
continue
}
t := atv.Type
if len(t) == 4 && t[0] == 2 && t[1] == 5 && t[2] == 4 {
switch t[3] {
case 3:
n.CommonName = value
case 5:
n.SerialNumber = value
case 6:
n.Country = value
case 7:
n.Locality = value
case 8:
n.Province = value
case 9:
n.StreetAddress = value
case 10:
n.Organization = value
case 11:
n.OrganizationalUnit = value
case 17:
n.PostalCode = value
}
}
}
}
var (
oidCountry = []int{2, 5, 4, 6}
oidOrganization = []int{2, 5, 4, 10}
oidOrganizationalUnit = []int{2, 5, 4, 11}
oidCommonName = []int{2, 5, 4, 3}
oidSerialNumber = []int{2, 5, 4, 5}
oidLocatity = []int{2, 5, 4, 7}
oidProvince = []int{2, 5, 4, 8}
oidStreetAddress = []int{2, 5, 4, 9}
oidPostalCode = []int{2, 5, 4, 17}
)
func (n Name) toRDNSequence() (ret rdnSequence) {
ret = make([]relativeDistinguishedNameSET, 9 /* maximum number of elements */ )
i := 0
if len(n.Country) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidCountry, n.Country}}
i++
}
if len(n.Organization) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidOrganization, n.Organization}}
i++
}
if len(n.OrganizationalUnit) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidOrganizationalUnit, n.OrganizationalUnit}}
i++
}
if len(n.CommonName) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidCommonName, n.CommonName}}
i++
}
if len(n.SerialNumber) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidSerialNumber, n.SerialNumber}}
i++
}
if len(n.Locality) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidLocatity, n.Locality}}
i++
}
if len(n.Province) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidProvince, n.Province}}
i++
}
if len(n.StreetAddress) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidStreetAddress, n.StreetAddress}}
i++
}
if len(n.PostalCode) > 0 {
ret[i] = []attributeTypeAndValue{attributeTypeAndValue{oidPostalCode, n.PostalCode}}
i++
}
// Adding another RDN here? Remember to update the maximum number of
// elements in the make() at the top of the function.
return ret[0:i]
}
func getSignatureAlgorithmFromOID(oid []int) SignatureAlgorithm {
if len(oid) == 7 && oid[0] == 1 && oid[1] == 2 && oid[2] == 840 &&
oid[3] == 113549 && oid[4] == 1 && oid[5] == 1 {
switch oid[6] {
case 2:
return MD2WithRSA
case 4:
return MD5WithRSA
case 5:
return SHA1WithRSA
case 11:
return SHA256WithRSA
case 12:
return SHA384WithRSA
case 13:
return SHA512WithRSA
}
}
return UnknownSignatureAlgorithm
}
func getPublicKeyAlgorithmFromOID(oid []int) PublicKeyAlgorithm {
if len(oid) == 7 && oid[0] == 1 && oid[1] == 2 && oid[2] == 840 &&
oid[3] == 113549 && oid[4] == 1 && oid[5] == 1 {
switch oid[6] {
case 1:
return RSA
}
}
return UnknownPublicKeyAlgorithm
}
// KeyUsage represents the set of actions that are valid for a given key. It's
// a bitmap of the KeyUsage* constants.
type KeyUsage int
const (
KeyUsageDigitalSignature KeyUsage = 1 << iota
KeyUsageContentCommitment
KeyUsageKeyEncipherment
KeyUsageDataEncipherment
KeyUsageKeyAgreement
KeyUsageCertSign
KeyUsageCRLSign
KeyUsageEncipherOnly
KeyUsageDecipherOnly
)
// A Certificate represents an X.509 certificate.
type Certificate struct {
Raw []byte // Raw ASN.1 DER contents.
Signature []byte
SignatureAlgorithm SignatureAlgorithm
PublicKeyAlgorithm PublicKeyAlgorithm
PublicKey interface{}
Version int
SerialNumber []byte
Issuer Name
Subject Name
NotBefore, NotAfter *time.Time // Validity bounds.
KeyUsage KeyUsage
BasicConstraintsValid bool // if true then the next two fields are valid.
IsCA bool
MaxPathLen int
SubjectKeyId []byte
AuthorityKeyId []byte
// Subject Alternate Name values
DNSNames []string
EmailAddresses []string
}
// UnsupportedAlgorithmError results from attempting to perform an operation
// that involves algorithms that are not currently implemented.
type UnsupportedAlgorithmError struct{}
func (UnsupportedAlgorithmError) String() string {
return "cannot verify signature: algorithm unimplemented"
}
// ConstraintViolationError results when a requested usage is not permitted by
// a certificate. For example: checking a signature when the public key isn't a
// certificate signing key.
type ConstraintViolationError struct{}
func (ConstraintViolationError) String() string {
return "invalid signature: parent certificate cannot sign this kind of certificate"
}
// CheckSignatureFrom verifies that the signature on c is a valid signature
// from parent.
func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err os.Error) {
// RFC 5280, 4.2.1.9:
// "If the basic constraints extension is not present in a version 3
// certificate, or the extension is present but the cA boolean is not
// asserted, then the certified public key MUST NOT be used to verify
// certificate signatures."
if parent.Version == 3 && !parent.BasicConstraintsValid ||
parent.BasicConstraintsValid && !parent.IsCA {
return ConstraintViolationError{}
}
if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 {
return ConstraintViolationError{}
}
if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm {
return UnsupportedAlgorithmError{}
}
// TODO(agl): don't ignore the path length constraint.
var h hash.Hash
var hashType rsa.PKCS1v15Hash
switch c.SignatureAlgorithm {
case SHA1WithRSA:
h = sha1.New()
hashType = rsa.HashSHA1
default:
return UnsupportedAlgorithmError{}
}
pub, ok := parent.PublicKey.(*rsa.PublicKey)
if !ok {
return UnsupportedAlgorithmError{}
}
h.Write(c.Raw)
digest := h.Sum()
return rsa.VerifyPKCS1v15(pub, hashType, digest, c.Signature)
}
func matchHostnames(pattern, host string) bool {
if len(pattern) == 0 || len(host) == 0 {
return false
}
patternParts := strings.Split(pattern, ".", -1)
hostParts := strings.Split(host, ".", -1)
if len(patternParts) != len(hostParts) {
return false
}
for i, patternPart := range patternParts {
if patternPart == "*" {
continue
}
if patternPart != hostParts[i] {
return false
}
}
return true
}
// IsValidForHost returns true iff c is a valid certificate for the given host.
func (c *Certificate) IsValidForHost(h string) bool {
if len(c.DNSNames) > 0 {
for _, match := range c.DNSNames {
if matchHostnames(match, h) {
return true
}
}
// If Subject Alt Name is given, we ignore the common name.
return false
}
return matchHostnames(c.Subject.CommonName, h)
}
type UnhandledCriticalExtension struct{}
func (h UnhandledCriticalExtension) String() string {
return "unhandled critical extension"
}
type basicConstraints struct {
IsCA bool "optional"
MaxPathLen int "optional"
}
type rsaPublicKey struct {
N asn1.RawValue
E int
}
func parsePublicKey(algo PublicKeyAlgorithm, asn1Data []byte) (interface{}, os.Error) {
switch algo {
case RSA:
p := new(rsaPublicKey)
_, err := asn1.Unmarshal(p, asn1Data)
if err != nil {
return nil, err
}
if !rawValueIsInteger(&p.N) {
return nil, asn1.StructuralError{"tags don't match"}
}
pub := &rsa.PublicKey{
E: p.E,
N: new(big.Int).SetBytes(p.N.Bytes),
}
return pub, nil
default:
return nil, nil
}
panic("unreachable")
}
func appendString(in []string, v string) (out []string) {
if cap(in)-len(in) < 1 {
out = make([]string, len(in)+1, len(in)*2+1)
for i, v := range in {
out[i] = v
}
} else {
out = in[0 : len(in)+1]
}
out[len(in)] = v
return out
}
func parseCertificate(in *certificate) (*Certificate, os.Error) {
out := new(Certificate)
out.Raw = in.TBSCertificate.Raw
out.Signature = in.SignatureValue.RightAlign()
out.SignatureAlgorithm =
getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm)
out.PublicKeyAlgorithm =
getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm)
var err os.Error
out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, in.TBSCertificate.PublicKey.PublicKey.RightAlign())
if err != nil {
return nil, err
}
out.Version = in.TBSCertificate.Version
out.SerialNumber = in.TBSCertificate.SerialNumber.Bytes
out.Issuer.fillFromRDNSequence(&in.TBSCertificate.Issuer)
out.Subject.fillFromRDNSequence(&in.TBSCertificate.Subject)
out.NotBefore = in.TBSCertificate.Validity.NotBefore
out.NotAfter = in.TBSCertificate.Validity.NotAfter
for _, e := range in.TBSCertificate.Extensions {
if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 {
switch e.Id[3] {
case 15:
// RFC 5280, 4.2.1.3
var usageBits asn1.BitString
_, err := asn1.Unmarshal(&usageBits, e.Value)
if err == nil {
var usage int
for i := 0; i < 9; i++ {
if usageBits.At(i) != 0 {
usage |= 1 << uint(i)
}
}
out.KeyUsage = KeyUsage(usage)
continue
}
case 19:
// RFC 5280, 4.2.1.9
var constriants basicConstraints
_, err := asn1.Unmarshal(&constriants, e.Value)
if err == nil {
out.BasicConstraintsValid = true
out.IsCA = constriants.IsCA
out.MaxPathLen = constriants.MaxPathLen
continue
}
case 17:
// RFC 5280, 4.2.1.6
// SubjectAltName ::= GeneralNames
//
// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
//
// GeneralName ::= CHOICE {
// otherName [0] OtherName,
// rfc822Name [1] IA5String,
// dNSName [2] IA5String,
// x400Address [3] ORAddress,
// directoryName [4] Name,
// ediPartyName [5] EDIPartyName,
// uniformResourceIdentifier [6] IA5String,
// iPAddress [7] OCTET STRING,
// registeredID [8] OBJECT IDENTIFIER }
var seq asn1.RawValue
_, err := asn1.Unmarshal(&seq, e.Value)
if err != nil {
return nil, err
}
if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 {
return nil, asn1.StructuralError{"bad SAN sequence"}
}
parsedName := false
rest := seq.Bytes
for len(rest) > 0 {
var v asn1.RawValue
rest, err = asn1.Unmarshal(&v, rest)
if err != nil {
return nil, err
}
switch v.Tag {
case 1:
out.EmailAddresses = appendString(out.EmailAddresses, string(v.Bytes))
parsedName = true
case 2:
out.DNSNames = appendString(out.DNSNames, string(v.Bytes))
parsedName = true
}
}
if parsedName {
continue
}
// If we didn't parse any of the names then we
// fall through to the critical check below.
case 35:
// RFC 5280, 4.2.1.1
var a authKeyId
_, err = asn1.Unmarshal(&a, e.Value)
if err != nil {
return nil, err
}
out.AuthorityKeyId = a.Id
continue
case 14:
// RFC 5280, 4.2.1.2
out.SubjectKeyId = e.Value
continue
}
}
if e.Critical {
return out, UnhandledCriticalExtension{}
}
}
return out, nil
}
// ParseCertificate parses a single certificate from the given ASN.1 DER data.
func ParseCertificate(asn1Data []byte) (*Certificate, os.Error) {
var cert certificate
rest, err := asn1.Unmarshal(&cert, asn1Data)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, asn1.SyntaxError{"trailing data"}
}
return parseCertificate(&cert)
}
// ParseCertificates parses one or more certificates from the given ASN.1 DER
// data. The certificates must be concatenated with no intermediate padding.
func ParseCertificates(asn1Data []byte) ([]*Certificate, os.Error) {
v := new(vector.Vector)
for len(asn1Data) > 0 {
cert := new(certificate)
var err os.Error
asn1Data, err = asn1.Unmarshal(cert, asn1Data)
if err != nil {
return nil, err
}
v.Push(cert)
}
ret := make([]*Certificate, v.Len())
for i := 0; i < v.Len(); i++ {
cert, err := parseCertificate(v.At(i).(*certificate))
if err != nil {
return nil, err
}
ret[i] = cert
}
return ret, nil
}
func reverseBitsInAByte(in byte) byte {
b1 := in>>4 | in<<4
b2 := b1>>2&0x33 | b1<<2&0xcc
b3 := b2>>1&0x55 | b2<<1&0xaa
return b3
}
var (
oidExtensionSubjectKeyId = []int{2, 5, 29, 14}
oidExtensionKeyUsage = []int{2, 5, 29, 15}
oidExtensionAuthorityKeyId = []int{2, 5, 29, 35}
oidExtensionBasicConstraints = []int{2, 5, 29, 19}
oidExtensionSubjectAltName = []int{2, 5, 29, 17}
)
func buildExtensions(template *Certificate) (ret []extension, err os.Error) {
ret = make([]extension, 5 /* maximum number of elements. */ )
n := 0
if template.KeyUsage != 0 {
ret[n].Id = oidExtensionKeyUsage
ret[n].Critical = true
var a [2]byte
a[0] = reverseBitsInAByte(byte(template.KeyUsage))
a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8))
l := 1
if a[1] != 0 {
l = 2
}
ret[n].Value, err = asn1.MarshalToMemory(asn1.BitString{Bytes: a[0:l], BitLength: l * 8})
if err != nil {
return
}
n++
}
if template.BasicConstraintsValid {
ret[n].Id = oidExtensionBasicConstraints
ret[n].Value, err = asn1.MarshalToMemory(basicConstraints{template.IsCA, template.MaxPathLen})
ret[n].Critical = true
if err != nil {
return
}
n++
}
if len(template.SubjectKeyId) > 0 {
ret[n].Id = oidExtensionSubjectKeyId
ret[n].Value, err = asn1.MarshalToMemory(template.SubjectKeyId)
if err != nil {
return
}
n++
}
if len(template.AuthorityKeyId) > 0 {
ret[n].Id = oidExtensionAuthorityKeyId
ret[n].Value, err = asn1.MarshalToMemory(authKeyId{template.AuthorityKeyId})
if err != nil {
return
}
n++
}
if len(template.DNSNames) > 0 {
ret[n].Id = oidExtensionSubjectAltName
rawValues := make([]asn1.RawValue, len(template.DNSNames))
for i, name := range template.DNSNames {
rawValues[i] = asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)}
}
ret[n].Value, err = asn1.MarshalToMemory(rawValues)
if err != nil {
return
}
n++
}
// Adding another extension here? Remember to update the maximum number
// of elements in the make() at the top of the function.
return ret[0:n], nil
}
var (
oidSHA1WithRSA = []int{1, 2, 840, 113549, 1, 1, 5}
oidRSA = []int{1, 2, 840, 113549, 1, 1, 1}
)
// CreateSelfSignedCertificate creates a new certificate based on
// a template. The following members of template are used: SerialNumber,
// Subject, NotBefore, NotAfter, KeyUsage, BasicConstraintsValid, IsCA,
// MaxPathLen, SubjectKeyId, DNSNames.
//
// The certificate is signed by parent. If parent is equal to template then the
// certificate is self-signed. The parameter pub is the public key of the
// signee and priv is the private key of the signer.
//
// The returned slice is the certificate in DER encoding.
func CreateCertificate(rand io.Reader, template, parent *Certificate, pub *rsa.PublicKey, priv *rsa.PrivateKey) (cert []byte, err os.Error) {
asn1PublicKey, err := asn1.MarshalToMemory(rsaPublicKey{
N: asn1.RawValue{Tag: 2, Bytes: pub.N.Bytes()},
E: pub.E,
})
if err != nil {
return
}
if len(parent.SubjectKeyId) > 0 {
template.AuthorityKeyId = parent.SubjectKeyId
}
extensions, err := buildExtensions(template)
if err != nil {
return
}
encodedPublicKey := asn1.BitString{BitLength: len(asn1PublicKey) * 8, Bytes: asn1PublicKey}
c := tbsCertificate{
Version: 3,
SerialNumber: asn1.RawValue{Bytes: template.SerialNumber, Tag: 2},
SignatureAlgorithm: algorithmIdentifier{oidSHA1WithRSA},
Issuer: parent.Subject.toRDNSequence(),
Validity: validity{template.NotBefore, template.NotAfter},
Subject: template.Subject.toRDNSequence(),
PublicKey: publicKeyInfo{algorithmIdentifier{oidRSA}, encodedPublicKey},
Extensions: extensions,
}
tbsCertContents, err := asn1.MarshalToMemory(c)
if err != nil {
return
}
c.Raw = tbsCertContents
h := sha1.New()
h.Write(tbsCertContents)
digest := h.Sum()
signature, err := rsa.SignPKCS1v15(rand, priv, rsa.HashSHA1, digest)
if err != nil {
return
}
cert, err = asn1.MarshalToMemory(certificate{
c,
algorithmIdentifier{oidSHA1WithRSA},
asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
})
return
}