blob: 47755f2719296c909981a071ab3eb105323e1ba6 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements multi-precision floating-point numbers.
// Like in the GNU MPFR library (http://www.mpfr.org/), operands
// can be of mixed precision. Unlike MPFR, the rounding mode is
// not specified with each operation, but with each operand. The
// rounding mode of the result operand determines the rounding
// mode of an operation. This is a from-scratch implementation.
// CAUTION: WORK IN PROGRESS - USE AT YOUR OWN RISK.
package big
import (
"fmt"
"math"
)
const debugFloat = true // enable for debugging
// A Float represents a multi-precision floating point number of the form
//
// sign × mantissa × 2**exponent
//
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp (with the
// exception of 0 and Inf which have a 0 mantissa and special exponents).
//
// Each Float value also has a precision, rounding mode, and accuracy.
//
// The precision is the maximum number of mantissa bits available to
// represent the value. The rounding mode specifies how a result should
// be rounded to fit into the mantissa bits, and accuracy describes the
// rounding error with respect to the exact result.
//
// All operations, including setters, that specify a *Float for the result,
// usually via the receiver, round their result to the result's precision
// and according to its rounding mode, unless specified otherwise. If the
// result precision is 0 (see below), it is set to the precision of the
// argument with the largest precision value before any rounding takes
// place, and the rounding mode remains unchanged. Thus, uninitialized Floats
// provided as result arguments will have their precision set to a reasonable
// value determined by the operands and their mode is the zero value for
// RoundingMode (ToNearestEven).
//
// By setting the desired precision to 24 or 53 and using ToNearestEven
// rounding, Float operations produce the same results as the corresponding
// float32 or float64 IEEE-754 arithmetic for normalized operands (no NaNs
// or denormalized numbers). Additionally, positive and negative zeros and
// infinities are fully supported.
//
// The zero (uninitialized) value for a Float is ready to use and represents
// the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
//
type Float struct {
mode RoundingMode
acc Accuracy
neg bool
mant nat
exp int32
prec uint // TODO(gri) make this a 32bit field
}
// TODO(gri) provide a couple of Example tests showing typical Float intialization
// and use.
// Internal representation: The mantissa bits x.mant of a Float x are stored
// in a nat slice long enough to hold up to x.prec bits; the slice may (but
// doesn't have to) be shorter if the mantissa contains trailing 0 bits.
// Unless x is a zero or an infinity, x.mant is normalized such that the
// msb of x.mant == 1 (i.e., the msb is shifted all the way "to the left").
// Thus, if the mantissa has trailing 0 bits or x.prec is not a multiple
// of the the Word size _W, x.mant[0] has trailing zero bits. Zero and Inf
// values have an empty mantissa and a 0 or infExp exponent, respectively.
const (
MaxExp = math.MaxInt32 // largest supported exponent magnitude
infExp = -MaxExp - 1 // exponent for Inf values
)
// NewInf returns a new infinite Float value with value +Inf (sign >= 0),
// or -Inf (sign < 0).
func NewInf(sign int) *Float {
return &Float{neg: sign < 0, exp: infExp}
}
// Accuracy describes the rounding error produced by the most recent
// operation that generated a Float value, relative to the exact value:
//
// -1: below exact value
// 0: exact value
// +1: above exact value
//
type Accuracy int8
// Constants describing the Accuracy of a Float.
const (
Below Accuracy = -1
Exact Accuracy = 0
Above Accuracy = +1
)
func (a Accuracy) String() string {
switch {
case a < 0:
return "below"
default:
return "exact"
case a > 0:
return "above"
}
}
// RoundingMode determines how a Float value is rounded to the
// desired precision. Rounding may change the Float value; the
// rounding error is described by the Float's Accuracy.
type RoundingMode uint8
// The following rounding modes are supported.
const (
ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
ToNearestAway // == IEEE 754-2008 roundTiesToAway
ToZero // == IEEE 754-2008 roundTowardZero
AwayFromZero // no IEEE 754-2008 equivalent
ToNegativeInf // == IEEE 754-2008 roundTowardNegative
ToPositiveInf // == IEEE 754-2008 roundTowardPositive
)
func (mode RoundingMode) String() string {
switch mode {
case ToNearestEven:
return "ToNearestEven"
case ToNearestAway:
return "ToNearestAway"
case ToZero:
return "ToZero"
case AwayFromZero:
return "AwayFromZero"
case ToNegativeInf:
return "ToNegativeInf"
case ToPositiveInf:
return "ToPositiveInf"
}
panic("unreachable")
}
// SetPrec sets z's precision to prec and returns the (possibly) rounded
// value of z. Rounding occurs according to z's rounding mode if the mantissa
// cannot be represented in prec bits without loss of precision.
func (z *Float) SetPrec(prec uint) *Float {
old := z.prec
z.acc = Exact
z.prec = prec
if prec < old {
z.round(0)
}
return z
}
// SetMode sets z's rounding mode to mode and returns an exact z.
// z remains unchanged otherwise.
func (z *Float) SetMode(mode RoundingMode) *Float {
z.acc = Exact // TODO(gri) should we not do this? what's the general rule for setting accuracy?
z.mode = mode
return z
}
// Prec returns the mantissa precision of x in bits.
// The result may be 0 for |x| == 0 or |x| == Inf.
func (x *Float) Prec() uint {
return uint(x.prec)
}
// Acc returns the accuracy of x produced by the most recent operation.
func (x *Float) Acc() Accuracy {
return x.acc
}
// Mode returns the rounding mode of x.
func (x *Float) Mode() RoundingMode {
return x.mode
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0 or x == -0
// +1 if x > 0
//
func (x *Float) Sign() int {
s := 0
if len(x.mant) != 0 || x.exp == infExp {
s = 1 // non-zero x
}
if x.neg {
s = -s
}
return s
}
// MantExp breaks x into its mantissa and exponent components.
// It returns mant and exp satisfying x == mant × 2**exp, with
// the absolute value of mant satisfying 0.5 <= |mant| < 1.0.
// mant has the same precision and rounding mode as x.
//
// Special cases are:
//
// ( ±0).MantExp() = ±0, 0
// (±Inf).MantExp() = ±Inf, 0
//
// MantExp does not modify x; the result mant is a new Float.
func (x *Float) MantExp() (mant *Float, exp int) {
mant = new(Float).Copy(x)
if x.exp != infExp {
mant.exp = 0
exp = int(x.exp)
}
return
}
// SetMantExp is the inverse of MantExp. It sets z to mant × 2**exp and
// and returns z. The result z has the same precision and rounding mode
// as mant.
//
// Special cases are:
//
// z.SetMantExp( ±0, exp) = ±0
// z.SetMantExp(±Inf, exp) = ±Inf
//
// The result is ±Inf if the magnitude of exp is > MaxExp.
func (z *Float) SetMantExp(mant *Float, exp int) *Float {
z.Copy(mant)
if len(z.mant) == 0 || z.exp == infExp {
return z
}
z.setExp(int64(exp))
return z
}
// IsInt reports whether x is an integer.
// ±Inf are not considered integers.
func (x *Float) IsInt() bool {
if debugFloat {
validate(x)
}
// pick off easy cases
if x.exp <= 0 {
// |x| < 1 || |x| == Inf
return len(x.mant) == 0 && x.exp != infExp
}
// x.exp > 0
return x.prec <= uint(x.exp) || x.minPrec() <= uint(x.exp) // not enough bits for fractional mantissa
}
// IsInf reports whether x is an infinity, according to sign.
// If sign > 0, IsInf reports whether x is positive infinity.
// If sign < 0, IsInf reports whether x is negative infinity.
// If sign == 0, IsInf reports whether x is either infinity.
func (x *Float) IsInf(sign int) bool {
return x.exp == infExp && (sign == 0 || x.neg == (sign < 0))
}
// setExp sets the exponent for z.
// If the exponent's magnitude is too large, z becomes ±Inf.
func (z *Float) setExp(e int64) {
if -MaxExp <= e && e <= MaxExp {
if len(z.mant) == 0 {
e = 0
}
z.exp = int32(e)
return
}
// Inf
z.mant = z.mant[:0]
z.exp = infExp
}
// debugging support
func validate(x *Float) {
const msb = 1 << (_W - 1)
m := len(x.mant)
if m == 0 {
// 0.0 or Inf
if x.exp != 0 && x.exp != infExp {
panic(fmt.Sprintf("%empty matissa with invalid exponent %d", x.exp))
}
return
}
if x.mant[m-1]&msb == 0 {
panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
}
if x.prec <= 0 {
panic(fmt.Sprintf("invalid precision %d", x.prec))
}
}
// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
// have before calling round. z's mantissa must be normalized (with the msb set)
// or empty.
//
// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
// sign of z. For correct rounding, the sign of z must be set correctly before
// calling round.
func (z *Float) round(sbit uint) {
if debugFloat {
validate(z)
}
z.acc = Exact
// handle zero and Inf
m := uint(len(z.mant)) // present mantissa length in words
if m == 0 {
if z.exp != infExp {
z.exp = 0
}
return
}
// m > 0 implies z.prec > 0 (checked by validate)
bits := m * _W // present mantissa bits
if bits <= z.prec {
// mantissa fits => nothing to do
return
}
// bits > z.prec
n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
// Rounding is based on two bits: the rounding bit (rbit) and the
// sticky bit (sbit). The rbit is the bit immediately before the
// z.prec leading mantissa bits (the "0.5"). The sbit is set if any
// of the bits before the rbit are set (the "0.25", "0.125", etc.):
//
// rbit sbit => "fractional part"
//
// 0 0 == 0
// 0 1 > 0 , < 0.5
// 1 0 == 0.5
// 1 1 > 0.5, < 1.0
// bits > z.prec: mantissa too large => round
r := bits - z.prec - 1 // rounding bit position; r >= 0
rbit := z.mant.bit(r) // rounding bit
if sbit == 0 {
sbit = z.mant.sticky(r)
}
if debugFloat && sbit&^1 != 0 {
panic(fmt.Sprintf("invalid sbit %#x", sbit))
}
// convert ToXInf rounding modes
mode := z.mode
switch mode {
case ToNegativeInf:
mode = ToZero
if z.neg {
mode = AwayFromZero
}
case ToPositiveInf:
mode = AwayFromZero
if z.neg {
mode = ToZero
}
}
// cut off extra words
if m > n {
copy(z.mant, z.mant[m-n:]) // move n last words to front
z.mant = z.mant[:n]
}
// determine number of trailing zero bits t
t := n*_W - z.prec // 0 <= t < _W
lsb := Word(1) << t
// make rounding decision
// TODO(gri) This can be simplified (see roundBits in float_test.go).
switch mode {
case ToZero:
// nothing to do
case ToNearestEven, ToNearestAway:
if rbit == 0 {
// rounding bits == 0b0x
mode = ToZero
} else if sbit == 1 {
// rounding bits == 0b11
mode = AwayFromZero
}
case AwayFromZero:
if rbit|sbit == 0 {
mode = ToZero
}
default:
// ToXInf modes have been converted to ToZero or AwayFromZero
panic("unreachable")
}
// round and determine accuracy
switch mode {
case ToZero:
if rbit|sbit != 0 {
z.acc = Below
}
case ToNearestEven, ToNearestAway:
if debugFloat && rbit != 1 {
panic("internal error in rounding")
}
if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 {
z.acc = Below
break
}
// mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0
fallthrough
case AwayFromZero:
// add 1 to mantissa
if addVW(z.mant, z.mant, lsb) != 0 {
// overflow => shift mantissa right by 1 and add msb
shrVU(z.mant, z.mant, 1)
z.mant[n-1] |= 1 << (_W - 1)
// adjust exponent
z.exp++
}
z.acc = Above
}
// zero out trailing bits in least-significant word
z.mant[0] &^= lsb - 1
// update accuracy
if z.neg {
z.acc = -z.acc
}
if debugFloat {
validate(z)
}
return
}
// nlz returns the number of leading zero bits in x.
func nlz(x Word) uint {
return _W - uint(bitLen(x))
}
func nlz64(x uint64) uint {
// TODO(gri) this can be done more nicely
if _W == 32 {
if x>>32 == 0 {
return 32 + nlz(Word(x))
}
return nlz(Word(x >> 32))
}
if _W == 64 {
return nlz(Word(x))
}
panic("unreachable")
}
func (z *Float) setBits64(neg bool, x uint64) *Float {
if z.prec == 0 {
z.prec = 64
}
z.acc = Exact
z.neg = neg
if x == 0 {
z.mant = z.mant[:0]
z.exp = 0
return z
}
// x != 0
s := nlz64(x)
z.mant = z.mant.setUint64(x << s)
z.exp = int32(64 - s) // always fits
if z.prec < 64 {
z.round(0)
}
return z
}
// SetUint64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetUint64(x uint64) *Float {
return z.setBits64(false, x)
}
// SetInt64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetInt64(x int64) *Float {
u := x
if u < 0 {
u = -u
}
// We cannot simply call z.SetUint64(uint64(u)) and change
// the sign afterwards because the sign affects rounding.
return z.setBits64(x < 0, uint64(u))
}
// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 53 (and rounding will have
// no effect).
// If x is denormalized or NaN, the result is unspecified.
// TODO(gri) should return nil in those cases
func (z *Float) SetFloat64(x float64) *Float {
if z.prec == 0 {
z.prec = 53
}
z.acc = Exact
z.neg = math.Signbit(x) // handle -0 correctly
if math.IsInf(x, 0) {
z.mant = z.mant[:0]
z.exp = infExp
return z
}
if x == 0 {
z.mant = z.mant[:0]
z.exp = 0
return z
}
// x != 0
fmant, exp := math.Frexp(x) // get normalized mantissa
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
z.exp = int32(exp) // always fits
if z.prec < 53 {
z.round(0)
}
return z
}
// fnorm normalizes mantissa m by shifting it to the left
// such that the msb of the most-significant word (msw) is 1.
// It returns the shift amount. It assumes that len(m) != 0.
func fnorm(m nat) uint {
if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
panic("msw of mantissa is 0")
}
s := nlz(m[len(m)-1])
if s > 0 {
c := shlVU(m, m, s)
if debugFloat && c != 0 {
panic("nlz or shlVU incorrect")
}
}
return s
}
// SetInt sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the larger of x.BitLen()
// or 64 (and rounding will have no effect).
func (z *Float) SetInt(x *Int) *Float {
// TODO(gri) can be more efficient if z.prec > 0
// but small compared to the size of x, or if there
// are many trailing 0's.
bits := uint(x.BitLen())
if z.prec == 0 {
z.prec = umax(bits, 64)
}
z.acc = Exact
z.neg = x.neg
if len(x.abs) == 0 {
z.mant = z.mant[:0]
z.exp = 0
return z
}
// x != 0
z.mant = z.mant.set(x.abs)
fnorm(z.mant)
z.setExp(int64(bits))
if z.prec < bits {
z.round(0)
}
return z
}
// SetRat sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the largest of a.BitLen(),
// b.BitLen(), or 64; with x = a/b.
func (z *Float) SetRat(x *Rat) *Float {
if x.IsInt() {
return z.SetInt(x.Num())
}
var a, b Float
a.SetInt(x.Num())
b.SetInt(x.Denom())
if z.prec == 0 {
z.prec = umax(a.prec, b.prec)
}
return z.Quo(&a, &b)
}
// Set sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the precision of x
// before setting z (and rounding will have no effect).
// Rounding is performed according to z's precision and rounding
// mode; and z's accuracy reports the result error relative to the
// exact (not rounded) result.
func (z *Float) Set(x *Float) *Float {
// TODO(gri) what about z.acc? should it be always Exact?
if z != x {
if z.prec == 0 {
z.prec = x.prec
}
z.acc = Exact
z.neg = x.neg
z.exp = x.exp
z.mant = z.mant.set(x.mant)
if z.prec < x.prec {
z.round(0)
}
}
return z
}
// Copy sets z to x, with the same precision and rounding mode as x,
// and returns z.
func (z *Float) Copy(x *Float) *Float {
// TODO(gri) what about z.acc? should it be always Exact?
if z != x {
z.acc = Exact
z.neg = x.neg
z.exp = x.exp
z.mant = z.mant.set(x.mant)
z.prec = x.prec
z.mode = x.mode
}
return z
}
func high64(x nat) uint64 {
i := len(x)
if i == 0 {
return 0
}
// i > 0
v := uint64(x[i-1])
if _W == 32 {
v <<= 32
if i > 1 {
v |= uint64(x[i-2])
}
}
return v
}
// minPrec returns the minimum precision required to represent
// x without loss of accuracy.
// TODO(gri) this might be useful to export, perhaps under a better name
func (x *Float) minPrec() uint {
return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
}
// Uint64 returns the unsigned integer resulting from truncating x
// towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
// if x is an integer and Below otherwise.
// The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
// for x > math.MaxUint64.
func (x *Float) Uint64() (uint64, Accuracy) {
if debugFloat {
validate(x)
}
switch x.ord() {
case -2, -1:
// x < 0
return 0, Above
case 0:
// x == 0 || x == -0
return 0, Exact
case 1:
// 0 < x < +Inf
if x.exp <= 0 {
// 0 < x < 1
return 0, Below
}
// 1 <= x < +Inf
if x.exp <= 64 {
// u = trunc(x) fits into a uint64
u := high64(x.mant) >> (64 - uint32(x.exp))
if x.minPrec() <= 64 {
return u, Exact
}
return u, Below // x truncated
}
fallthrough // x too large
case 2:
// x == +Inf
return math.MaxUint64, Below
}
panic("unreachable")
}
// Int64 returns the integer resulting from truncating x towards zero.
// If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
// an integer, and Above (x < 0) or Below (x > 0) otherwise.
// The result is (math.MinInt64, Above) for x < math.MinInt64, and
// (math.MaxInt64, Below) for x > math.MaxInt64.
func (x *Float) Int64() (int64, Accuracy) {
if debugFloat {
validate(x)
}
switch x.ord() {
case -2:
// x == -Inf
return math.MinInt64, Above
case 0:
// x == 0 || x == -0
return 0, Exact
case -1, 1:
// 0 < |x| < +Inf
acc := Below
if x.neg {
acc = Above
}
if x.exp <= 0 {
// 0 < |x| < 1
return 0, acc
}
// 1 <= |x| < +Inf
if x.exp <= 63 {
// i = trunc(x) fits into an int64 (excluding math.MinInt64)
i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
if x.neg {
i = -i
}
if x.minPrec() <= 63 {
return i, Exact
}
return i, acc // x truncated
}
if x.neg {
// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
if x.exp == 64 && x.minPrec() == 1 {
acc = Exact
}
return math.MinInt64, acc
}
fallthrough
case 2:
// x == +Inf
return math.MaxInt64, Below
}
panic("unreachable")
}
// Float64 returns the closest float64 value of x
// by rounding to nearest with 53 bits precision.
// TODO(gri) implement/document error scenarios.
func (x *Float) Float64() (float64, Accuracy) {
// x == ±Inf
if x.exp == infExp {
var sign int
if x.neg {
sign = -1
}
return math.Inf(sign), Exact
}
// x == 0
if len(x.mant) == 0 {
return 0, Exact
}
// x != 0
var r Float
r.prec = 53
r.Set(x)
var s uint64
if r.neg {
s = 1 << 63
}
e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow
m := high64(r.mant) >> 11 & (1<<52 - 1)
return math.Float64frombits(s | e<<52 | m), r.acc
}
// Int returns the result of truncating x towards zero; or nil
// if x is an infinity. The result is Exact if x.IsInt();
// otherwise it is Below for x > 0, and Above for x < 0.
func (x *Float) Int() (res *Int, acc Accuracy) {
if debugFloat {
validate(x)
}
// accuracy for inexact results
acc = Below // truncation
if x.neg {
acc = Above
}
// pick off easy cases
if x.exp <= 0 {
// |x| < 1 || |x| == Inf
if x.exp == infExp {
return nil, acc // ±Inf
}
if len(x.mant) == 0 {
acc = Exact // ±0
}
return new(Int), acc // ±0.xxx
}
// x.exp > 0
// x.mant[len(x.mant)-1] != 0
// determine minimum required precision for x
allBits := uint(len(x.mant)) * _W
exp := uint(x.exp)
if x.minPrec() <= exp {
acc = Exact
}
// shift mantissa as needed
res = &Int{neg: x.neg}
// TODO(gri) should have a shift that takes positive and negative shift counts
switch {
case exp > allBits:
res.abs = res.abs.shl(x.mant, exp-allBits)
default:
res.abs = res.abs.set(x.mant)
case exp < allBits:
res.abs = res.abs.shr(x.mant, allBits-exp)
}
return
}
// BUG(gri) Rat is not yet implemented
func (x *Float) Rat() *Rat {
panic("unimplemented")
}
// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
// and returns z.
func (z *Float) Abs(x *Float) *Float {
z.Set(x)
z.neg = false
return z
}
// Neg sets z to the (possibly rounded) value of x with its sign negated,
// and returns z.
func (z *Float) Neg(x *Float) *Float {
z.Set(x)
z.neg = !z.neg
return z
}
// z = x + y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) uadd(x, y *Float) {
// Note: This implementation requires 2 shifts most of the
// time. It is also inefficient if exponents or precisions
// differ by wide margins. The following article describes
// an efficient (but much more complicated) implementation
// compatible with the internal representation used here:
//
// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
// Point Addition With Exact Rounding (as in the MPFR Library)"
// http://www.vinc17.net/research/papers/rnc6.pdf
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("uadd called with 0 argument")
}
// compute exponents ex, ey for mantissa with "binary point"
// on the right (mantissa.0) - use int64 to avoid overflow
ex := int64(x.exp) - int64(len(x.mant))*_W
ey := int64(y.exp) - int64(len(y.mant))*_W
// TODO(gri) having a combined add-and-shift primitive
// could make this code significantly faster
switch {
case ex < ey:
// cannot re-use z.mant w/o testing for aliasing
t := nat(nil).shl(y.mant, uint(ey-ex))
z.mant = z.mant.add(x.mant, t)
default:
// ex == ey, no shift needed
z.mant = z.mant.add(x.mant, y.mant)
case ex > ey:
// cannot re-use z.mant w/o testing for aliasing
t := nat(nil).shl(x.mant, uint(ex-ey))
z.mant = z.mant.add(t, y.mant)
ex = ey
}
// len(z.mant) > 0
z.setExp(ex + int64(len(z.mant))*_W - int64(fnorm(z.mant)))
z.round(0)
}
// z = x - y for x >= y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) usub(x, y *Float) {
// This code is symmetric to uadd.
// We have not factored the common code out because
// eventually uadd (and usub) should be optimized
// by special-casing, and the code will diverge.
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("usub called with 0 argument")
}
ex := int64(x.exp) - int64(len(x.mant))*_W
ey := int64(y.exp) - int64(len(y.mant))*_W
switch {
case ex < ey:
// cannot re-use z.mant w/o testing for aliasing
t := nat(nil).shl(y.mant, uint(ey-ex))
z.mant = t.sub(x.mant, t)
default:
// ex == ey, no shift needed
z.mant = z.mant.sub(x.mant, y.mant)
case ex > ey:
// cannot re-use z.mant w/o testing for aliasing
t := nat(nil).shl(x.mant, uint(ex-ey))
z.mant = t.sub(t, y.mant)
ex = ey
}
// operands may have cancelled each other out
if len(z.mant) == 0 {
z.acc = Exact
z.setExp(0)
return
}
// len(z.mant) > 0
z.setExp(ex + int64(len(z.mant))*_W - int64(fnorm(z.mant)))
z.round(0)
}
// z = x * y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) umul(x, y *Float) {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("umul called with 0 argument")
}
// Note: This is doing too much work if the precision
// of z is less than the sum of the precisions of x
// and y which is often the case (e.g., if all floats
// have the same precision).
// TODO(gri) Optimize this for the common case.
e := int64(x.exp) + int64(y.exp)
z.mant = z.mant.mul(x.mant, y.mant)
// normalize mantissa
z.setExp(e - int64(fnorm(z.mant)))
z.round(0)
}
// z = x / y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) uquo(x, y *Float) {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("uquo called with 0 argument")
}
// mantissa length in words for desired result precision + 1
// (at least one extra bit so we get the rounding bit after
// the division)
n := int(z.prec/_W) + 1
// compute adjusted x.mant such that we get enough result precision
xadj := x.mant
if d := n - len(x.mant) + len(y.mant); d > 0 {
// d extra words needed => add d "0 digits" to x
xadj = make(nat, len(x.mant)+d)
copy(xadj[d:], x.mant)
}
// TODO(gri): If we have too many digits (d < 0), we should be able
// to shorten x for faster division. But we must be extra careful
// with rounding in that case.
// Compute d before division since there may be aliasing of x.mant
// (via xadj) or y.mant with z.mant.
d := len(xadj) - len(y.mant)
// divide
var r nat
z.mant, r = z.mant.div(nil, xadj, y.mant)
// determine exponent
e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
// normalize mantissa
z.setExp(e - int64(fnorm(z.mant)))
// The result is long enough to include (at least) the rounding bit.
// If there's a non-zero remainder, the corresponding fractional part
// (if it were computed), would have a non-zero sticky bit (if it were
// zero, it couldn't have a non-zero remainder).
var sbit uint
if len(r) > 0 {
sbit = 1
}
z.round(sbit)
}
// ucmp returns -1, 0, or 1, depending on whether x < y, x == y, or x > y,
// while ignoring the signs of x and y. x and y must not be 0 or an Inf.
func (x *Float) ucmp(y *Float) int {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("ucmp called with 0 argument")
}
switch {
case x.exp < y.exp:
return -1
case x.exp > y.exp:
return 1
}
// x.exp == y.exp
// compare mantissas
i := len(x.mant)
j := len(y.mant)
for i > 0 || j > 0 {
var xm, ym Word
if i > 0 {
i--
xm = x.mant[i]
}
if j > 0 {
j--
ym = y.mant[j]
}
switch {
case xm < ym:
return -1
case xm > ym:
return 1
}
}
return 0
}
// Handling of sign bit as defined by IEEE 754-2008,
// section 6.3 (note that there are no NaN Floats):
//
// When neither the inputs nor result are NaN, the sign of a product or
// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
// or of a difference x−y regarded as a sum x+(−y), differs from at most
// one of the addends’ signs; and the sign of the result of conversions,
// the quantize operation, the roundToIntegral operations, and the
// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
// These rules shall apply even when operands or results are zero or infinite.
//
// When the sum of two operands with opposite signs (or the difference of
// two operands with like signs) is exactly zero, the sign of that sum (or
// difference) shall be +0 in all rounding-direction attributes except
// roundTowardNegative; under that attribute, the sign of an exact zero
// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
// sign as x even when x is zero.
// Add sets z to the rounded sum x+y and returns z.
// If z's precision is 0, it is changed to the larger
// of x's or y's precision before the operation.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
func (z *Float) Add(x, y *Float) *Float {
if debugFloat {
validate(x)
validate(y)
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) what about -0?
if len(y.mant) == 0 {
// TODO(gri) handle Inf
return z.Set(x)
}
if len(x.mant) == 0 {
// TODO(gri) handle Inf
return z.Set(y)
}
// x, y != 0
z.neg = x.neg
if x.neg == y.neg {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z.uadd(x, y)
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.ucmp(y) >= 0 {
z.usub(x, y)
} else {
z.neg = !z.neg
z.usub(y, x)
}
}
return z
}
// Sub sets z to the rounded difference x-y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Sub(x, y *Float) *Float {
if debugFloat {
validate(x)
validate(y)
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) what about -0?
if len(y.mant) == 0 {
// TODO(gri) handle Inf
return z.Set(x)
}
if len(x.mant) == 0 {
return z.Neg(y)
}
// x, y != 0
z.neg = x.neg
if x.neg != y.neg {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z.uadd(x, y)
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.ucmp(y) >= 0 {
z.usub(x, y)
} else {
z.neg = !z.neg
z.usub(y, x)
}
}
return z
}
// Mul sets z to the rounded product x*y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Mul(x, y *Float) *Float {
if debugFloat {
validate(x)
validate(y)
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) handle Inf
// TODO(gri) what about -0?
if len(x.mant) == 0 || len(y.mant) == 0 {
z.neg = false
z.mant = z.mant[:0]
z.exp = 0
z.acc = Exact
return z
}
// x, y != 0
z.neg = x.neg != y.neg
z.umul(x, y)
return z
}
// Quo sets z to the rounded quotient x/y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Quo(x, y *Float) *Float {
if debugFloat {
validate(x)
validate(y)
}
if z.prec == 0 {
z.prec = umax(x.prec, y.prec)
}
// TODO(gri) handle Inf
// TODO(gri) check that this is correct
z.neg = x.neg != y.neg
if len(y.mant) == 0 {
z.setExp(infExp)
return z
}
if len(x.mant) == 0 {
z.mant = z.mant[:0]
z.exp = 0
z.acc = Exact
return z
}
// x, y != 0
z.uquo(x, y)
return z
}
// Lsh sets z to the rounded x * (1<<s) and returns z.
// If z's precision is 0, it is changed to x's precision.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
// BUG(gri) Lsh is not tested and may not work correctly.
func (z *Float) Lsh(x *Float, s uint) *Float {
if debugFloat {
validate(x)
}
if z.prec == 0 {
z.prec = x.prec
}
// TODO(gri) handle Inf
z.round(0)
z.setExp(int64(z.exp) + int64(s))
return z
}
// Rsh sets z to the rounded x / (1<<s) and returns z.
// Precision, rounding, and accuracy reporting are as for Lsh.
// BUG(gri) Rsh is not tested and may not work correctly.
func (z *Float) Rsh(x *Float, s uint) *Float {
if debugFloat {
validate(x)
}
if z.prec == 0 {
z.prec = x.prec
}
// TODO(gri) handle Inf
z.round(0)
z.setExp(int64(z.exp) - int64(s))
return z
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y (incl. -0 == 0)
// +1 if x > y
//
// Infinities with matching sign are equal.
func (x *Float) Cmp(y *Float) int {
if debugFloat {
validate(x)
validate(y)
}
mx := x.ord()
my := y.ord()
switch {
case mx < my:
return -1
case mx > my:
return +1
}
// mx == my
// only if |mx| == 1 we have to compare the mantissae
switch mx {
case -1:
return -x.ucmp(y)
case +1:
return +x.ucmp(y)
}
return 0
}
func umax(x, y uint) uint {
if x > y {
return x
}
return y
}
// ord classifies x and returns:
//
// -2 if -Inf == x
// -1 if -Inf < x < 0
// 0 if x == 0 (signed or unsigned)
// +1 if 0 < x < +Inf
// +2 if x == +Inf
//
// TODO(gri) export (and remove IsInf)?
func (x *Float) ord() int {
m := 1 // common case
if len(x.mant) == 0 {
m = 0
if x.exp == infExp {
m = 2
}
}
if x.neg {
m = -m
}
return m
}