blob: 5d7fefc6cd231b79cfafe2a3cc33d42884f69788 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package jpeg implements a JPEG image decoder and encoder.
//
// JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
package jpeg
import (
"image"
"image/color"
"io"
)
// TODO(nigeltao): fix up the doc comment style so that sentences start with
// the name of the type or function that they annotate.
// A FormatError reports that the input is not a valid JPEG.
type FormatError string
func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
// An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
type UnsupportedError string
func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
// Component specification, specified in section B.2.2.
type component struct {
h int // Horizontal sampling factor.
v int // Vertical sampling factor.
c uint8 // Component identifier.
tq uint8 // Quantization table destination selector.
}
const (
dcTable = 0
acTable = 1
maxTc = 1
maxTh = 3
maxTq = 3
maxComponents = 4
// We only support 4:4:4, 4:4:0, 4:2:2 and 4:2:0 downsampling, and therefore the
// number of luma samples per chroma sample is at most 2 in the horizontal
// and 2 in the vertical direction.
maxH = 2
maxV = 2
)
const (
soiMarker = 0xd8 // Start Of Image.
eoiMarker = 0xd9 // End Of Image.
sof0Marker = 0xc0 // Start Of Frame (Baseline).
sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
sof2Marker = 0xc2 // Start Of Frame (Progressive).
dhtMarker = 0xc4 // Define Huffman Table.
dqtMarker = 0xdb // Define Quantization Table.
sosMarker = 0xda // Start Of Scan.
driMarker = 0xdd // Define Restart Interval.
rst0Marker = 0xd0 // ReSTart (0).
rst7Marker = 0xd7 // ReSTart (7).
comMarker = 0xfe // COMment.
// "APPlication specific" markers aren't part of the JPEG spec per se,
// but in practice, their use is described at
// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
app0Marker = 0xe0
app14Marker = 0xee
app15Marker = 0xef
)
// See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
const (
adobeTransformUnknown = 0
adobeTransformYCbCr = 1
adobeTransformYCbCrK = 2
)
// unzig maps from the zig-zag ordering to the natural ordering. For example,
// unzig[3] is the column and row of the fourth element in zig-zag order. The
// value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
var unzig = [blockSize]int{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
}
// Reader is deprecated.
type Reader interface {
io.ByteReader
io.Reader
}
// bits holds the unprocessed bits that have been taken from the byte-stream.
// The n least significant bits of a form the unread bits, to be read in MSB to
// LSB order.
type bits struct {
a uint32 // accumulator.
m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
n int32 // the number of unread bits in a.
}
type decoder struct {
r io.Reader
bits bits
// bytes is a byte buffer, similar to a bufio.Reader, except that it
// has to be able to unread more than 1 byte, due to byte stuffing.
// Byte stuffing is specified in section F.1.2.3.
bytes struct {
// buf[i:j] are the buffered bytes read from the underlying
// io.Reader that haven't yet been passed further on.
buf [4096]byte
i, j int
// nUnreadable is the number of bytes to back up i after
// overshooting. It can be 0, 1 or 2.
nUnreadable int
}
width, height int
img1 *image.Gray
img3 *image.YCbCr
blackPix []byte
blackStride int
ri int // Restart Interval.
nComp int
progressive bool
adobeTransformValid bool
adobeTransform uint8
eobRun uint16 // End-of-Band run, specified in section G.1.2.2.
comp [maxComponents]component
progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
huff [maxTc + 1][maxTh + 1]huffman
quant [maxTq + 1]block // Quantization tables, in zig-zag order.
tmp [2 * blockSize]byte
}
// fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
// should only be called when there are no unread bytes in d.bytes.
func (d *decoder) fill() error {
if d.bytes.i != d.bytes.j {
panic("jpeg: fill called when unread bytes exist")
}
// Move the last 2 bytes to the start of the buffer, in case we need
// to call unreadByteStuffedByte.
if d.bytes.j > 2 {
d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
d.bytes.i, d.bytes.j = 2, 2
}
// Fill in the rest of the buffer.
n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
d.bytes.j += n
if n > 0 {
err = nil
}
return err
}
// unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
// giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
// requires at least 8 bits for look-up, which means that Huffman decoding can
// sometimes overshoot and read one or two too many bytes. Two-byte overshoot
// can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
func (d *decoder) unreadByteStuffedByte() {
if d.bytes.nUnreadable == 0 {
panic("jpeg: unreadByteStuffedByte call cannot be fulfilled")
}
d.bytes.i -= d.bytes.nUnreadable
d.bytes.nUnreadable = 0
if d.bits.n >= 8 {
d.bits.a >>= 8
d.bits.n -= 8
d.bits.m >>= 8
}
}
// readByte returns the next byte, whether buffered or not buffered. It does
// not care about byte stuffing.
func (d *decoder) readByte() (x byte, err error) {
for d.bytes.i == d.bytes.j {
if err = d.fill(); err != nil {
return 0, err
}
}
x = d.bytes.buf[d.bytes.i]
d.bytes.i++
d.bytes.nUnreadable = 0
return x, nil
}
// errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
// marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
var errMissingFF00 = FormatError("missing 0xff00 sequence")
// readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
func (d *decoder) readByteStuffedByte() (x byte, err error) {
// Take the fast path if d.bytes.buf contains at least two bytes.
if d.bytes.i+2 <= d.bytes.j {
x = d.bytes.buf[d.bytes.i]
d.bytes.i++
d.bytes.nUnreadable = 1
if x != 0xff {
return x, err
}
if d.bytes.buf[d.bytes.i] != 0x00 {
return 0, errMissingFF00
}
d.bytes.i++
d.bytes.nUnreadable = 2
return 0xff, nil
}
x, err = d.readByte()
if err != nil {
return 0, err
}
if x != 0xff {
d.bytes.nUnreadable = 1
return x, nil
}
x, err = d.readByte()
if err != nil {
d.bytes.nUnreadable = 1
return 0, err
}
d.bytes.nUnreadable = 2
if x != 0x00 {
return 0, errMissingFF00
}
return 0xff, nil
}
// readFull reads exactly len(p) bytes into p. It does not care about byte
// stuffing.
func (d *decoder) readFull(p []byte) error {
// Unread the overshot bytes, if any.
if d.bytes.nUnreadable != 0 {
if d.bits.n >= 8 {
d.unreadByteStuffedByte()
}
d.bytes.nUnreadable = 0
}
for {
n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
p = p[n:]
d.bytes.i += n
if len(p) == 0 {
break
}
if err := d.fill(); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return err
}
}
return nil
}
// ignore ignores the next n bytes.
func (d *decoder) ignore(n int) error {
// Unread the overshot bytes, if any.
if d.bytes.nUnreadable != 0 {
if d.bits.n >= 8 {
d.unreadByteStuffedByte()
}
d.bytes.nUnreadable = 0
}
for {
m := d.bytes.j - d.bytes.i
if m > n {
m = n
}
d.bytes.i += m
n -= m
if n == 0 {
break
}
if err := d.fill(); err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return err
}
}
return nil
}
// Specified in section B.2.2.
func (d *decoder) processSOF(n int) error {
switch n {
case 6 + 3*1: // Grayscale image.
d.nComp = 1
case 6 + 3*3: // YCbCr image. (TODO(nigeltao): or RGB image.)
d.nComp = 3
case 6 + 3*4: // YCbCrK or CMYK image.
d.nComp = 4
default:
return UnsupportedError("SOF has wrong length")
}
if err := d.readFull(d.tmp[:n]); err != nil {
return err
}
// We only support 8-bit precision.
if d.tmp[0] != 8 {
return UnsupportedError("precision")
}
d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
if int(d.tmp[5]) != d.nComp {
return UnsupportedError("SOF has wrong number of image components")
}
for i := 0; i < d.nComp; i++ {
d.comp[i].c = d.tmp[6+3*i]
d.comp[i].tq = d.tmp[8+3*i]
if d.nComp == 1 {
// If a JPEG image has only one component, section A.2 says "this data
// is non-interleaved by definition" and section A.2.2 says "[in this
// case...] the order of data units within a scan shall be left-to-right
// and top-to-bottom... regardless of the values of H_1 and V_1". Section
// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
// one data unit". Similarly, section A.1.1 explains that it is the ratio
// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
// images, H_1 is the maximum H_j for all components j, so that ratio is
// always 1. The component's (h, v) is effectively always (1, 1): even if
// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
// MCUs, not two 16x8 MCUs.
d.comp[i].h = 1
d.comp[i].v = 1
continue
}
hv := d.tmp[7+3*i]
d.comp[i].h = int(hv >> 4)
d.comp[i].v = int(hv & 0x0f)
switch d.nComp {
case 3:
// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2 or 4:2:0 chroma
// downsampling ratios. This implies that the (h, v) values for the Y
// component are either (1, 1), (1, 2), (2, 1) or (2, 2), and the (h, v)
// values for the Cr and Cb components must be (1, 1).
if i == 0 {
if hv != 0x11 && hv != 0x21 && hv != 0x22 && hv != 0x12 {
return UnsupportedError("luma/chroma downsample ratio")
}
} else if hv != 0x11 {
return UnsupportedError("luma/chroma downsample ratio")
}
case 4:
// For 4-component images (either CMYK or YCbCrK), we only support two
// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
// Theoretically, 4-component JPEG images could mix and match hv values
// but in practice, those two combinations are the only ones in use,
// and it simplifies the applyBlack code below if we can assume that:
// - for CMYK, the C and K channels have full samples, and if the M
// and Y channels subsample, they subsample both horizontally and
// vertically.
// - for YCbCrK, the Y and K channels have full samples.
switch i {
case 0:
if hv != 0x11 && hv != 0x22 {
return UnsupportedError("luma/chroma downsample ratio")
}
case 1, 2:
if hv != 0x11 {
return UnsupportedError("luma/chroma downsample ratio")
}
case 3:
if d.comp[0].h != d.comp[3].h || d.comp[0].v != d.comp[3].v {
return UnsupportedError("luma/chroma downsample ratio")
}
}
}
}
return nil
}
// Specified in section B.2.4.1.
func (d *decoder) processDQT(n int) error {
loop:
for n > 0 {
n--
x, err := d.readByte()
if err != nil {
return err
}
tq := x & 0x0f
if tq > maxTq {
return FormatError("bad Tq value")
}
switch x >> 4 {
default:
return FormatError("bad Pq value")
case 0:
if n < blockSize {
break loop
}
n -= blockSize
if err := d.readFull(d.tmp[:blockSize]); err != nil {
return err
}
for i := range d.quant[tq] {
d.quant[tq][i] = int32(d.tmp[i])
}
case 1:
if n < 2*blockSize {
break loop
}
n -= 2 * blockSize
if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
return err
}
for i := range d.quant[tq] {
d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
}
}
}
if n != 0 {
return FormatError("DQT has wrong length")
}
return nil
}
// Specified in section B.2.4.4.
func (d *decoder) processDRI(n int) error {
if n != 2 {
return FormatError("DRI has wrong length")
}
if err := d.readFull(d.tmp[:2]); err != nil {
return err
}
d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
return nil
}
func (d *decoder) processApp14Marker(n int) error {
if n < 12 {
return d.ignore(n)
}
if err := d.readFull(d.tmp[:12]); err != nil {
return err
}
n -= 12
if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
d.adobeTransformValid = true
d.adobeTransform = d.tmp[11]
}
if n > 0 {
return d.ignore(n)
}
return nil
}
// decode reads a JPEG image from r and returns it as an image.Image.
func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
d.r = r
// Check for the Start Of Image marker.
if err := d.readFull(d.tmp[:2]); err != nil {
return nil, err
}
if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
return nil, FormatError("missing SOI marker")
}
// Process the remaining segments until the End Of Image marker.
for {
err := d.readFull(d.tmp[:2])
if err != nil {
return nil, err
}
for d.tmp[0] != 0xff {
// Strictly speaking, this is a format error. However, libjpeg is
// liberal in what it accepts. As of version 9, next_marker in
// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
// continues to decode the stream. Even before next_marker sees
// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
// bytes as it can, possibly past the end of a scan's data. It
// effectively puts back any markers that it overscanned (e.g. an
// "\xff\xd9" EOI marker), but it does not put back non-marker data,
// and thus it can silently ignore a small number of extraneous
// non-marker bytes before next_marker has a chance to see them (and
// print a warning).
//
// We are therefore also liberal in what we accept. Extraneous data
// is silently ignored.
//
// This is similar to, but not exactly the same as, the restart
// mechanism within a scan (the RST[0-7] markers).
//
// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
// "\xff\x00", and so are detected a little further down below.
d.tmp[0] = d.tmp[1]
d.tmp[1], err = d.readByte()
if err != nil {
return nil, err
}
}
marker := d.tmp[1]
if marker == 0 {
// Treat "\xff\x00" as extraneous data.
continue
}
for marker == 0xff {
// Section B.1.1.2 says, "Any marker may optionally be preceded by any
// number of fill bytes, which are bytes assigned code X'FF'".
marker, err = d.readByte()
if err != nil {
return nil, err
}
}
if marker == eoiMarker { // End Of Image.
break
}
if rst0Marker <= marker && marker <= rst7Marker {
// Figures B.2 and B.16 of the specification suggest that restart markers should
// only occur between Entropy Coded Segments and not after the final ECS.
// However, some encoders may generate incorrect JPEGs with a final restart
// marker. That restart marker will be seen here instead of inside the processSOS
// method, and is ignored as a harmless error. Restart markers have no extra data,
// so we check for this before we read the 16-bit length of the segment.
continue
}
// Read the 16-bit length of the segment. The value includes the 2 bytes for the
// length itself, so we subtract 2 to get the number of remaining bytes.
if err = d.readFull(d.tmp[:2]); err != nil {
return nil, err
}
n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
if n < 0 {
return nil, FormatError("short segment length")
}
switch marker {
case sof0Marker, sof1Marker, sof2Marker:
d.progressive = marker == sof2Marker
err = d.processSOF(n)
if configOnly {
return nil, err
}
case dhtMarker:
err = d.processDHT(n)
case dqtMarker:
err = d.processDQT(n)
case sosMarker:
err = d.processSOS(n)
case driMarker:
err = d.processDRI(n)
case app14Marker:
err = d.processApp14Marker(n)
default:
if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
err = d.ignore(n)
} else {
err = UnsupportedError("unknown marker")
}
}
if err != nil {
return nil, err
}
}
if d.img1 != nil {
return d.img1, nil
}
if d.img3 != nil {
if d.blackPix != nil {
return d.applyBlack()
}
return d.img3, nil
}
return nil, FormatError("missing SOS marker")
}
// applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
// used depends on whether the JPEG image is stored as CMYK or YCbCrK,
// indicated by the APP14 (Adobe) metadata.
//
// Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
// ink, so we apply "v = 255 - v" at various points. Note that a double
// inversion is a no-op, so inversions might be implicit in the code below.
func (d *decoder) applyBlack() (image.Image, error) {
if !d.adobeTransformValid {
return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
}
// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
// or CMYK)" as per
// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
if d.adobeTransform != adobeTransformUnknown {
// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
// CMY, and patch in the original K. The RGB to CMY inversion cancels
// out the 'Adobe inversion' described in the applyBlack doc comment
// above, so in practice, only the fourth channel (black) is inverted.
bounds := d.img3.Bounds()
img := image.NewRGBA(bounds)
drawYCbCr(img, bounds, d.img3, bounds.Min)
for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
}
}
return &image.CMYK{
Pix: img.Pix,
Stride: img.Stride,
Rect: img.Rect,
}, nil
}
// The first three channels (cyan, magenta, yellow) of the CMYK
// were decoded into d.img3, but each channel was decoded into a separate
// []byte slice, and some channels may be subsampled. We interleave the
// separate channels into an image.CMYK's single []byte slice containing 4
// contiguous bytes per pixel.
bounds := d.img3.Bounds()
img := image.NewCMYK(bounds)
translations := [4]struct {
src []byte
stride int
}{
{d.img3.Y, d.img3.YStride},
{d.img3.Cb, d.img3.CStride},
{d.img3.Cr, d.img3.CStride},
{d.blackPix, d.blackStride},
}
for t, translation := range translations {
subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
sy := y - bounds.Min.Y
if subsample {
sy /= 2
}
for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
sx := x - bounds.Min.X
if subsample {
sx /= 2
}
img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
}
}
}
return img, nil
}
// drawYCbCr is the non-exported drawYCbCr function copy/pasted from the
// image/draw package. It is copy/pasted because it doesn't seem right for the
// image/jpeg package to depend on image/draw.
//
// TODO(nigeltao): remove the copy/paste, possibly by moving this to be an
// exported method on *image.YCbCr. We'd need to make sure we're totally happy
// with the API (for the rest of Go 1 compatibility) though, and if we want to
// have a more general purpose DrawToRGBA method for other image types.
func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) {
// An image.YCbCr is always fully opaque, and so if the mask is implicitly nil
// (i.e. fully opaque) then the op is effectively always Src.
x0 := (r.Min.X - dst.Rect.Min.X) * 4
x1 := (r.Max.X - dst.Rect.Min.X) * 4
y0 := r.Min.Y - dst.Rect.Min.Y
y1 := r.Max.Y - dst.Rect.Min.Y
switch src.SubsampleRatio {
case image.YCbCrSubsampleRatio444:
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride:]
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X)
for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb
dpix[x+3] = 255
}
}
case image.YCbCrSubsampleRatio422:
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride:]
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2
for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
ci := ciBase + sx/2
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb
dpix[x+3] = 255
}
}
case image.YCbCrSubsampleRatio420:
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride:]
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2
for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
ci := ciBase + sx/2
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb
dpix[x+3] = 255
}
}
case image.YCbCrSubsampleRatio440:
for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
dpix := dst.Pix[y*dst.Stride:]
yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X)
for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
dpix[x+0] = rr
dpix[x+1] = gg
dpix[x+2] = bb
dpix[x+3] = 255
}
}
default:
return false
}
return true
}
// Decode reads a JPEG image from r and returns it as an image.Image.
func Decode(r io.Reader) (image.Image, error) {
var d decoder
return d.decode(r, false)
}
// DecodeConfig returns the color model and dimensions of a JPEG image without
// decoding the entire image.
func DecodeConfig(r io.Reader) (image.Config, error) {
var d decoder
if _, err := d.decode(r, true); err != nil {
return image.Config{}, err
}
switch d.nComp {
case 1:
return image.Config{
ColorModel: color.GrayModel,
Width: d.width,
Height: d.height,
}, nil
case 3:
return image.Config{
ColorModel: color.YCbCrModel, // TODO(nigeltao): support RGB JPEGs.
Width: d.width,
Height: d.height,
}, nil
case 4:
return image.Config{
ColorModel: color.CMYKModel,
Width: d.width,
Height: d.height,
}, nil
}
return image.Config{}, FormatError("missing SOF marker")
}
func init() {
image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
}