blob: b7df672784c1858ea38989ce496fecf8e2770219 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package color
// RGBToYCbCr converts an RGB triple to a Y'CbCr triple.
func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
// The JFIF specification says:
// Y' = 0.2990*R + 0.5870*G + 0.1140*B
// Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
// Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
r1 := int(r)
g1 := int(g)
b1 := int(b)
yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16
if yy < 0 {
yy = 0
} else if yy > 255 {
yy = 255
}
if cb < 0 {
cb = 0
} else if cb > 255 {
cb = 255
}
if cr < 0 {
cr = 0
} else if cr > 255 {
cr = 255
}
return uint8(yy), uint8(cb), uint8(cr)
}
// YCbCrToRGB converts a Y'CbCr triple to an RGB triple.
func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
// The JFIF specification says:
// R = Y' + 1.40200*(Cr-128)
// G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
// B = Y' + 1.77200*(Cb-128)
// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
yy1 := int(y)<<16 + 1<<15
cb1 := int(cb) - 128
cr1 := int(cr) - 128
r := (yy1 + 91881*cr1) >> 16
g := (yy1 - 22554*cb1 - 46802*cr1) >> 16
b := (yy1 + 116130*cb1) >> 16
if r < 0 {
r = 0
} else if r > 255 {
r = 255
}
if g < 0 {
g = 0
} else if g > 255 {
g = 255
}
if b < 0 {
b = 0
} else if b > 255 {
b = 255
}
return uint8(r), uint8(g), uint8(b)
}
// YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
// one luma and two chroma components.
//
// JPEG, VP8, the MPEG family and other codecs use this color model. Such
// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
// speaking, the term YUV applies only to analog video signals, and Y' (luma)
// is Y (luminance) after applying gamma correction.
//
// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
// different formulae for converting between the two. This package follows
// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
type YCbCr struct {
Y, Cb, Cr uint8
}
func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr)
return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
}
// YCbCrModel is the Model for Y'CbCr colors.
var YCbCrModel Model = ModelFunc(yCbCrModel)
func yCbCrModel(c Color) Color {
if _, ok := c.(YCbCr); ok {
return c
}
r, g, b, _ := c.RGBA()
y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
return YCbCr{y, u, v}
}
// RGBToCMYK converts an RGB triple to a CMYK quadruple.
func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) {
rr := uint32(r)
gg := uint32(g)
bb := uint32(b)
w := rr
if w < gg {
w = gg
}
if w < bb {
w = bb
}
if w == 0 {
return 0, 0, 0, 255
}
c := (w - rr) * 255 / w
m := (w - gg) * 255 / w
y := (w - bb) * 255 / w
return uint8(c), uint8(m), uint8(y), uint8(255 - w)
}
// CMYKToRGB converts a CMYK quadruple to an RGB triple.
func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) {
w := uint32(255 - k)
r := uint32(255-c) * w / 255
g := uint32(255-m) * w / 255
b := uint32(255-y) * w / 255
return uint8(r), uint8(g), uint8(b)
}
// CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan,
// magenta, yellow and black.
//
// It is not associated with any particular color profile.
type CMYK struct {
C, M, Y, K uint8
}
func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) {
r, g, b := CMYKToRGB(c.C, c.M, c.Y, c.K)
return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
}
// CMYKModel is the Model for CMYK colors.
var CMYKModel Model = ModelFunc(cmykModel)
func cmykModel(c Color) Color {
if _, ok := c.(CMYK); ok {
return c
}
r, g, b, _ := c.RGBA()
cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8))
return CMYK{cc, mm, yy, kk}
}