blob: 56a7298fa5583603fa22c68423850830c714eba0 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gob
import (
"bytes"
"errors"
"flag"
"math"
"math/rand"
"reflect"
"strings"
"testing"
"time"
)
var doFuzzTests = flag.Bool("gob.fuzz", false, "run the fuzz tests, which are large and very slow")
// Guarantee encoding format by comparing some encodings to hand-written values
type EncodeT struct {
x uint64
b []byte
}
var encodeT = []EncodeT{
{0x00, []byte{0x00}},
{0x0F, []byte{0x0F}},
{0xFF, []byte{0xFF, 0xFF}},
{0xFFFF, []byte{0xFE, 0xFF, 0xFF}},
{0xFFFFFF, []byte{0xFD, 0xFF, 0xFF, 0xFF}},
{0xFFFFFFFF, []byte{0xFC, 0xFF, 0xFF, 0xFF, 0xFF}},
{0xFFFFFFFFFF, []byte{0xFB, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}},
{0xFFFFFFFFFFFF, []byte{0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}},
{0xFFFFFFFFFFFFFF, []byte{0xF9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}},
{0xFFFFFFFFFFFFFFFF, []byte{0xF8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}},
{0x1111, []byte{0xFE, 0x11, 0x11}},
{0x1111111111111111, []byte{0xF8, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11}},
{0x8888888888888888, []byte{0xF8, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88, 0x88}},
{1 << 63, []byte{0xF8, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
}
// testError is meant to be used as a deferred function to turn a panic(gobError) into a
// plain test.Error call.
func testError(t *testing.T) {
if e := recover(); e != nil {
t.Error(e.(gobError).err) // Will re-panic if not one of our errors, such as a runtime error.
}
return
}
func newDecBuffer(data []byte) *decBuffer {
return &decBuffer{
data: data,
}
}
// Test basic encode/decode routines for unsigned integers
func TestUintCodec(t *testing.T) {
defer testError(t)
b := new(encBuffer)
encState := newEncoderState(b)
for _, tt := range encodeT {
b.Reset()
encState.encodeUint(tt.x)
if !bytes.Equal(tt.b, b.Bytes()) {
t.Errorf("encodeUint: %#x encode: expected % x got % x", tt.x, tt.b, b.Bytes())
}
}
for u := uint64(0); ; u = (u + 1) * 7 {
b.Reset()
encState.encodeUint(u)
decState := newDecodeState(newDecBuffer(b.Bytes()))
v := decState.decodeUint()
if u != v {
t.Errorf("Encode/Decode: sent %#x received %#x", u, v)
}
if u&(1<<63) != 0 {
break
}
}
}
func verifyInt(i int64, t *testing.T) {
defer testError(t)
var b = new(encBuffer)
encState := newEncoderState(b)
encState.encodeInt(i)
decState := newDecodeState(newDecBuffer(b.Bytes()))
decState.buf = make([]byte, 8)
j := decState.decodeInt()
if i != j {
t.Errorf("Encode/Decode: sent %#x received %#x", uint64(i), uint64(j))
}
}
// Test basic encode/decode routines for signed integers
func TestIntCodec(t *testing.T) {
for u := uint64(0); ; u = (u + 1) * 7 {
// Do positive and negative values
i := int64(u)
verifyInt(i, t)
verifyInt(-i, t)
verifyInt(^i, t)
if u&(1<<63) != 0 {
break
}
}
verifyInt(-1<<63, t) // a tricky case
}
// The result of encoding a true boolean with field number 7
var boolResult = []byte{0x07, 0x01}
// The result of encoding a number 17 with field number 7
var signedResult = []byte{0x07, 2 * 17}
var unsignedResult = []byte{0x07, 17}
var floatResult = []byte{0x07, 0xFE, 0x31, 0x40}
// The result of encoding a number 17+19i with field number 7
var complexResult = []byte{0x07, 0xFE, 0x31, 0x40, 0xFE, 0x33, 0x40}
// The result of encoding "hello" with field number 7
var bytesResult = []byte{0x07, 0x05, 'h', 'e', 'l', 'l', 'o'}
func newDecodeState(buf *decBuffer) *decoderState {
d := new(decoderState)
d.b = buf
d.buf = make([]byte, uint64Size)
return d
}
func newEncoderState(b *encBuffer) *encoderState {
b.Reset()
state := &encoderState{enc: nil, b: b}
state.fieldnum = -1
return state
}
// Test instruction execution for encoding.
// Do not run the machine yet; instead do individual instructions crafted by hand.
func TestScalarEncInstructions(t *testing.T) {
var b = new(encBuffer)
// bool
{
var data bool = true
instr := &encInstr{encBool, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(boolResult, b.Bytes()) {
t.Errorf("bool enc instructions: expected % x got % x", boolResult, b.Bytes())
}
}
// int
{
b.Reset()
var data int = 17
instr := &encInstr{encInt, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(signedResult, b.Bytes()) {
t.Errorf("int enc instructions: expected % x got % x", signedResult, b.Bytes())
}
}
// uint
{
b.Reset()
var data uint = 17
instr := &encInstr{encUint, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(unsignedResult, b.Bytes()) {
t.Errorf("uint enc instructions: expected % x got % x", unsignedResult, b.Bytes())
}
}
// int8
{
b.Reset()
var data int8 = 17
instr := &encInstr{encInt, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(signedResult, b.Bytes()) {
t.Errorf("int8 enc instructions: expected % x got % x", signedResult, b.Bytes())
}
}
// uint8
{
b.Reset()
var data uint8 = 17
instr := &encInstr{encUint, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(unsignedResult, b.Bytes()) {
t.Errorf("uint8 enc instructions: expected % x got % x", unsignedResult, b.Bytes())
}
}
// int16
{
b.Reset()
var data int16 = 17
instr := &encInstr{encInt, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(signedResult, b.Bytes()) {
t.Errorf("int16 enc instructions: expected % x got % x", signedResult, b.Bytes())
}
}
// uint16
{
b.Reset()
var data uint16 = 17
instr := &encInstr{encUint, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(unsignedResult, b.Bytes()) {
t.Errorf("uint16 enc instructions: expected % x got % x", unsignedResult, b.Bytes())
}
}
// int32
{
b.Reset()
var data int32 = 17
instr := &encInstr{encInt, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(signedResult, b.Bytes()) {
t.Errorf("int32 enc instructions: expected % x got % x", signedResult, b.Bytes())
}
}
// uint32
{
b.Reset()
var data uint32 = 17
instr := &encInstr{encUint, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(unsignedResult, b.Bytes()) {
t.Errorf("uint32 enc instructions: expected % x got % x", unsignedResult, b.Bytes())
}
}
// int64
{
b.Reset()
var data int64 = 17
instr := &encInstr{encInt, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(signedResult, b.Bytes()) {
t.Errorf("int64 enc instructions: expected % x got % x", signedResult, b.Bytes())
}
}
// uint64
{
b.Reset()
var data uint64 = 17
instr := &encInstr{encUint, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(unsignedResult, b.Bytes()) {
t.Errorf("uint64 enc instructions: expected % x got % x", unsignedResult, b.Bytes())
}
}
// float32
{
b.Reset()
var data float32 = 17
instr := &encInstr{encFloat, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(floatResult, b.Bytes()) {
t.Errorf("float32 enc instructions: expected % x got % x", floatResult, b.Bytes())
}
}
// float64
{
b.Reset()
var data float64 = 17
instr := &encInstr{encFloat, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(floatResult, b.Bytes()) {
t.Errorf("float64 enc instructions: expected % x got % x", floatResult, b.Bytes())
}
}
// bytes == []uint8
{
b.Reset()
data := []byte("hello")
instr := &encInstr{encUint8Array, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(bytesResult, b.Bytes()) {
t.Errorf("bytes enc instructions: expected % x got % x", bytesResult, b.Bytes())
}
}
// string
{
b.Reset()
var data string = "hello"
instr := &encInstr{encString, 6, nil, 0}
state := newEncoderState(b)
instr.op(instr, state, reflect.ValueOf(data))
if !bytes.Equal(bytesResult, b.Bytes()) {
t.Errorf("string enc instructions: expected % x got % x", bytesResult, b.Bytes())
}
}
}
func execDec(typ string, instr *decInstr, state *decoderState, t *testing.T, value reflect.Value) {
defer testError(t)
v := int(state.decodeUint())
if v+state.fieldnum != 6 {
t.Fatalf("decoding field number %d, got %d", 6, v+state.fieldnum)
}
instr.op(instr, state, value.Elem())
state.fieldnum = 6
}
func newDecodeStateFromData(data []byte) *decoderState {
b := newDecBuffer(data)
state := newDecodeState(b)
state.fieldnum = -1
return state
}
// Test instruction execution for decoding.
// Do not run the machine yet; instead do individual instructions crafted by hand.
func TestScalarDecInstructions(t *testing.T) {
ovfl := errors.New("overflow")
// bool
{
var data bool
instr := &decInstr{decBool, 6, nil, ovfl}
state := newDecodeStateFromData(boolResult)
execDec("bool", instr, state, t, reflect.ValueOf(&data))
if data != true {
t.Errorf("bool a = %v not true", data)
}
}
// int
{
var data int
instr := &decInstr{decOpTable[reflect.Int], 6, nil, ovfl}
state := newDecodeStateFromData(signedResult)
execDec("int", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("int a = %v not 17", data)
}
}
// uint
{
var data uint
instr := &decInstr{decOpTable[reflect.Uint], 6, nil, ovfl}
state := newDecodeStateFromData(unsignedResult)
execDec("uint", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("uint a = %v not 17", data)
}
}
// int8
{
var data int8
instr := &decInstr{decInt8, 6, nil, ovfl}
state := newDecodeStateFromData(signedResult)
execDec("int8", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("int8 a = %v not 17", data)
}
}
// uint8
{
var data uint8
instr := &decInstr{decUint8, 6, nil, ovfl}
state := newDecodeStateFromData(unsignedResult)
execDec("uint8", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("uint8 a = %v not 17", data)
}
}
// int16
{
var data int16
instr := &decInstr{decInt16, 6, nil, ovfl}
state := newDecodeStateFromData(signedResult)
execDec("int16", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("int16 a = %v not 17", data)
}
}
// uint16
{
var data uint16
instr := &decInstr{decUint16, 6, nil, ovfl}
state := newDecodeStateFromData(unsignedResult)
execDec("uint16", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("uint16 a = %v not 17", data)
}
}
// int32
{
var data int32
instr := &decInstr{decInt32, 6, nil, ovfl}
state := newDecodeStateFromData(signedResult)
execDec("int32", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("int32 a = %v not 17", data)
}
}
// uint32
{
var data uint32
instr := &decInstr{decUint32, 6, nil, ovfl}
state := newDecodeStateFromData(unsignedResult)
execDec("uint32", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("uint32 a = %v not 17", data)
}
}
// uintptr
{
var data uintptr
instr := &decInstr{decOpTable[reflect.Uintptr], 6, nil, ovfl}
state := newDecodeStateFromData(unsignedResult)
execDec("uintptr", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("uintptr a = %v not 17", data)
}
}
// int64
{
var data int64
instr := &decInstr{decInt64, 6, nil, ovfl}
state := newDecodeStateFromData(signedResult)
execDec("int64", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("int64 a = %v not 17", data)
}
}
// uint64
{
var data uint64
instr := &decInstr{decUint64, 6, nil, ovfl}
state := newDecodeStateFromData(unsignedResult)
execDec("uint64", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("uint64 a = %v not 17", data)
}
}
// float32
{
var data float32
instr := &decInstr{decFloat32, 6, nil, ovfl}
state := newDecodeStateFromData(floatResult)
execDec("float32", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("float32 a = %v not 17", data)
}
}
// float64
{
var data float64
instr := &decInstr{decFloat64, 6, nil, ovfl}
state := newDecodeStateFromData(floatResult)
execDec("float64", instr, state, t, reflect.ValueOf(&data))
if data != 17 {
t.Errorf("float64 a = %v not 17", data)
}
}
// complex64
{
var data complex64
instr := &decInstr{decOpTable[reflect.Complex64], 6, nil, ovfl}
state := newDecodeStateFromData(complexResult)
execDec("complex", instr, state, t, reflect.ValueOf(&data))
if data != 17+19i {
t.Errorf("complex a = %v not 17+19i", data)
}
}
// complex128
{
var data complex128
instr := &decInstr{decOpTable[reflect.Complex128], 6, nil, ovfl}
state := newDecodeStateFromData(complexResult)
execDec("complex", instr, state, t, reflect.ValueOf(&data))
if data != 17+19i {
t.Errorf("complex a = %v not 17+19i", data)
}
}
// bytes == []uint8
{
var data []byte
instr := &decInstr{decUint8Slice, 6, nil, ovfl}
state := newDecodeStateFromData(bytesResult)
execDec("bytes", instr, state, t, reflect.ValueOf(&data))
if string(data) != "hello" {
t.Errorf(`bytes a = %q not "hello"`, string(data))
}
}
// string
{
var data string
instr := &decInstr{decString, 6, nil, ovfl}
state := newDecodeStateFromData(bytesResult)
execDec("bytes", instr, state, t, reflect.ValueOf(&data))
if data != "hello" {
t.Errorf(`bytes a = %q not "hello"`, data)
}
}
}
func TestEndToEnd(t *testing.T) {
type T2 struct {
T string
}
s1 := "string1"
s2 := "string2"
type T1 struct {
A, B, C int
M map[string]*float64
EmptyMap map[string]int // to check that we receive a non-nil map.
N *[3]float64
Strs *[2]string
Int64s *[]int64
RI complex64
S string
Y []byte
T *T2
}
pi := 3.14159
e := 2.71828
t1 := &T1{
A: 17,
B: 18,
C: -5,
M: map[string]*float64{"pi": &pi, "e": &e},
EmptyMap: make(map[string]int),
N: &[3]float64{1.5, 2.5, 3.5},
Strs: &[2]string{s1, s2},
Int64s: &[]int64{77, 89, 123412342134},
RI: 17 - 23i,
S: "Now is the time",
Y: []byte("hello, sailor"),
T: &T2{"this is T2"},
}
b := new(bytes.Buffer)
err := NewEncoder(b).Encode(t1)
if err != nil {
t.Error("encode:", err)
}
var _t1 T1
err = NewDecoder(b).Decode(&_t1)
if err != nil {
t.Fatal("decode:", err)
}
if !reflect.DeepEqual(t1, &_t1) {
t.Errorf("encode expected %v got %v", *t1, _t1)
}
// Be absolutely sure the received map is non-nil.
if t1.EmptyMap == nil {
t.Errorf("nil map sent")
}
if _t1.EmptyMap == nil {
t.Errorf("nil map received")
}
}
func TestOverflow(t *testing.T) {
type inputT struct {
Maxi int64
Mini int64
Maxu uint64
Maxf float64
Minf float64
Maxc complex128
Minc complex128
}
var it inputT
var err error
b := new(bytes.Buffer)
enc := NewEncoder(b)
dec := NewDecoder(b)
// int8
b.Reset()
it = inputT{
Maxi: math.MaxInt8 + 1,
}
type outi8 struct {
Maxi int8
Mini int8
}
var o1 outi8
enc.Encode(it)
err = dec.Decode(&o1)
if err == nil || err.Error() != `value for "Maxi" out of range` {
t.Error("wrong overflow error for int8:", err)
}
it = inputT{
Mini: math.MinInt8 - 1,
}
b.Reset()
enc.Encode(it)
err = dec.Decode(&o1)
if err == nil || err.Error() != `value for "Mini" out of range` {
t.Error("wrong underflow error for int8:", err)
}
// int16
b.Reset()
it = inputT{
Maxi: math.MaxInt16 + 1,
}
type outi16 struct {
Maxi int16
Mini int16
}
var o2 outi16
enc.Encode(it)
err = dec.Decode(&o2)
if err == nil || err.Error() != `value for "Maxi" out of range` {
t.Error("wrong overflow error for int16:", err)
}
it = inputT{
Mini: math.MinInt16 - 1,
}
b.Reset()
enc.Encode(it)
err = dec.Decode(&o2)
if err == nil || err.Error() != `value for "Mini" out of range` {
t.Error("wrong underflow error for int16:", err)
}
// int32
b.Reset()
it = inputT{
Maxi: math.MaxInt32 + 1,
}
type outi32 struct {
Maxi int32
Mini int32
}
var o3 outi32
enc.Encode(it)
err = dec.Decode(&o3)
if err == nil || err.Error() != `value for "Maxi" out of range` {
t.Error("wrong overflow error for int32:", err)
}
it = inputT{
Mini: math.MinInt32 - 1,
}
b.Reset()
enc.Encode(it)
err = dec.Decode(&o3)
if err == nil || err.Error() != `value for "Mini" out of range` {
t.Error("wrong underflow error for int32:", err)
}
// uint8
b.Reset()
it = inputT{
Maxu: math.MaxUint8 + 1,
}
type outu8 struct {
Maxu uint8
}
var o4 outu8
enc.Encode(it)
err = dec.Decode(&o4)
if err == nil || err.Error() != `value for "Maxu" out of range` {
t.Error("wrong overflow error for uint8:", err)
}
// uint16
b.Reset()
it = inputT{
Maxu: math.MaxUint16 + 1,
}
type outu16 struct {
Maxu uint16
}
var o5 outu16
enc.Encode(it)
err = dec.Decode(&o5)
if err == nil || err.Error() != `value for "Maxu" out of range` {
t.Error("wrong overflow error for uint16:", err)
}
// uint32
b.Reset()
it = inputT{
Maxu: math.MaxUint32 + 1,
}
type outu32 struct {
Maxu uint32
}
var o6 outu32
enc.Encode(it)
err = dec.Decode(&o6)
if err == nil || err.Error() != `value for "Maxu" out of range` {
t.Error("wrong overflow error for uint32:", err)
}
// float32
b.Reset()
it = inputT{
Maxf: math.MaxFloat32 * 2,
}
type outf32 struct {
Maxf float32
Minf float32
}
var o7 outf32
enc.Encode(it)
err = dec.Decode(&o7)
if err == nil || err.Error() != `value for "Maxf" out of range` {
t.Error("wrong overflow error for float32:", err)
}
// complex64
b.Reset()
it = inputT{
Maxc: complex(math.MaxFloat32*2, math.MaxFloat32*2),
}
type outc64 struct {
Maxc complex64
Minc complex64
}
var o8 outc64
enc.Encode(it)
err = dec.Decode(&o8)
if err == nil || err.Error() != `value for "Maxc" out of range` {
t.Error("wrong overflow error for complex64:", err)
}
}
func TestNesting(t *testing.T) {
type RT struct {
A string
Next *RT
}
rt := new(RT)
rt.A = "level1"
rt.Next = new(RT)
rt.Next.A = "level2"
b := new(bytes.Buffer)
NewEncoder(b).Encode(rt)
var drt RT
dec := NewDecoder(b)
err := dec.Decode(&drt)
if err != nil {
t.Fatal("decoder error:", err)
}
if drt.A != rt.A {
t.Errorf("nesting: encode expected %v got %v", *rt, drt)
}
if drt.Next == nil {
t.Errorf("nesting: recursion failed")
}
if drt.Next.A != rt.Next.A {
t.Errorf("nesting: encode expected %v got %v", *rt.Next, *drt.Next)
}
}
// These three structures have the same data with different indirections
type T0 struct {
A int
B int
C int
D int
}
type T1 struct {
A int
B *int
C **int
D ***int
}
type T2 struct {
A ***int
B **int
C *int
D int
}
func TestAutoIndirection(t *testing.T) {
// First transfer t1 into t0
var t1 T1
t1.A = 17
t1.B = new(int)
*t1.B = 177
t1.C = new(*int)
*t1.C = new(int)
**t1.C = 1777
t1.D = new(**int)
*t1.D = new(*int)
**t1.D = new(int)
***t1.D = 17777
b := new(bytes.Buffer)
enc := NewEncoder(b)
enc.Encode(t1)
dec := NewDecoder(b)
var t0 T0
dec.Decode(&t0)
if t0.A != 17 || t0.B != 177 || t0.C != 1777 || t0.D != 17777 {
t.Errorf("t1->t0: expected {17 177 1777 17777}; got %v", t0)
}
// Now transfer t2 into t0
var t2 T2
t2.D = 17777
t2.C = new(int)
*t2.C = 1777
t2.B = new(*int)
*t2.B = new(int)
**t2.B = 177
t2.A = new(**int)
*t2.A = new(*int)
**t2.A = new(int)
***t2.A = 17
b.Reset()
enc.Encode(t2)
t0 = T0{}
dec.Decode(&t0)
if t0.A != 17 || t0.B != 177 || t0.C != 1777 || t0.D != 17777 {
t.Errorf("t2->t0 expected {17 177 1777 17777}; got %v", t0)
}
// Now transfer t0 into t1
t0 = T0{17, 177, 1777, 17777}
b.Reset()
enc.Encode(t0)
t1 = T1{}
dec.Decode(&t1)
if t1.A != 17 || *t1.B != 177 || **t1.C != 1777 || ***t1.D != 17777 {
t.Errorf("t0->t1 expected {17 177 1777 17777}; got {%d %d %d %d}", t1.A, *t1.B, **t1.C, ***t1.D)
}
// Now transfer t0 into t2
b.Reset()
enc.Encode(t0)
t2 = T2{}
dec.Decode(&t2)
if ***t2.A != 17 || **t2.B != 177 || *t2.C != 1777 || t2.D != 17777 {
t.Errorf("t0->t2 expected {17 177 1777 17777}; got {%d %d %d %d}", ***t2.A, **t2.B, *t2.C, t2.D)
}
// Now do t2 again but without pre-allocated pointers.
b.Reset()
enc.Encode(t0)
***t2.A = 0
**t2.B = 0
*t2.C = 0
t2.D = 0
dec.Decode(&t2)
if ***t2.A != 17 || **t2.B != 177 || *t2.C != 1777 || t2.D != 17777 {
t.Errorf("t0->t2 expected {17 177 1777 17777}; got {%d %d %d %d}", ***t2.A, **t2.B, *t2.C, t2.D)
}
}
type RT0 struct {
A int
B string
C float64
}
type RT1 struct {
C float64
B string
A int
NotSet string
}
func TestReorderedFields(t *testing.T) {
var rt0 RT0
rt0.A = 17
rt0.B = "hello"
rt0.C = 3.14159
b := new(bytes.Buffer)
NewEncoder(b).Encode(rt0)
dec := NewDecoder(b)
var rt1 RT1
// Wire type is RT0, local type is RT1.
err := dec.Decode(&rt1)
if err != nil {
t.Fatal("decode error:", err)
}
if rt0.A != rt1.A || rt0.B != rt1.B || rt0.C != rt1.C {
t.Errorf("rt1->rt0: expected %v; got %v", rt0, rt1)
}
}
// Like an RT0 but with fields we'll ignore on the decode side.
type IT0 struct {
A int64
B string
Ignore_d []int
Ignore_e [3]float64
Ignore_f bool
Ignore_g string
Ignore_h []byte
Ignore_i *RT1
Ignore_m map[string]int
C float64
}
func TestIgnoredFields(t *testing.T) {
var it0 IT0
it0.A = 17
it0.B = "hello"
it0.C = 3.14159
it0.Ignore_d = []int{1, 2, 3}
it0.Ignore_e[0] = 1.0
it0.Ignore_e[1] = 2.0
it0.Ignore_e[2] = 3.0
it0.Ignore_f = true
it0.Ignore_g = "pay no attention"
it0.Ignore_h = []byte("to the curtain")
it0.Ignore_i = &RT1{3.1, "hi", 7, "hello"}
it0.Ignore_m = map[string]int{"one": 1, "two": 2}
b := new(bytes.Buffer)
NewEncoder(b).Encode(it0)
dec := NewDecoder(b)
var rt1 RT1
// Wire type is IT0, local type is RT1.
err := dec.Decode(&rt1)
if err != nil {
t.Error("error: ", err)
}
if int(it0.A) != rt1.A || it0.B != rt1.B || it0.C != rt1.C {
t.Errorf("rt0->rt1: expected %v; got %v", it0, rt1)
}
}
func TestBadRecursiveType(t *testing.T) {
type Rec ***Rec
var rec Rec
b := new(bytes.Buffer)
err := NewEncoder(b).Encode(&rec)
if err == nil {
t.Error("expected error; got none")
} else if strings.Index(err.Error(), "recursive") < 0 {
t.Error("expected recursive type error; got", err)
}
// Can't test decode easily because we can't encode one, so we can't pass one to a Decoder.
}
type Indirect struct {
A ***[3]int
S ***[]int
M ****map[string]int
}
type Direct struct {
A [3]int
S []int
M map[string]int
}
func TestIndirectSliceMapArray(t *testing.T) {
// Marshal indirect, unmarshal to direct.
i := new(Indirect)
i.A = new(**[3]int)
*i.A = new(*[3]int)
**i.A = new([3]int)
***i.A = [3]int{1, 2, 3}
i.S = new(**[]int)
*i.S = new(*[]int)
**i.S = new([]int)
***i.S = []int{4, 5, 6}
i.M = new(***map[string]int)
*i.M = new(**map[string]int)
**i.M = new(*map[string]int)
***i.M = new(map[string]int)
****i.M = map[string]int{"one": 1, "two": 2, "three": 3}
b := new(bytes.Buffer)
NewEncoder(b).Encode(i)
dec := NewDecoder(b)
var d Direct
err := dec.Decode(&d)
if err != nil {
t.Error("error: ", err)
}
if len(d.A) != 3 || d.A[0] != 1 || d.A[1] != 2 || d.A[2] != 3 {
t.Errorf("indirect to direct: d.A is %v not %v", d.A, ***i.A)
}
if len(d.S) != 3 || d.S[0] != 4 || d.S[1] != 5 || d.S[2] != 6 {
t.Errorf("indirect to direct: d.S is %v not %v", d.S, ***i.S)
}
if len(d.M) != 3 || d.M["one"] != 1 || d.M["two"] != 2 || d.M["three"] != 3 {
t.Errorf("indirect to direct: d.M is %v not %v", d.M, ***i.M)
}
// Marshal direct, unmarshal to indirect.
d.A = [3]int{11, 22, 33}
d.S = []int{44, 55, 66}
d.M = map[string]int{"four": 4, "five": 5, "six": 6}
i = new(Indirect)
b.Reset()
NewEncoder(b).Encode(d)
dec = NewDecoder(b)
err = dec.Decode(&i)
if err != nil {
t.Fatal("error: ", err)
}
if len(***i.A) != 3 || (***i.A)[0] != 11 || (***i.A)[1] != 22 || (***i.A)[2] != 33 {
t.Errorf("direct to indirect: ***i.A is %v not %v", ***i.A, d.A)
}
if len(***i.S) != 3 || (***i.S)[0] != 44 || (***i.S)[1] != 55 || (***i.S)[2] != 66 {
t.Errorf("direct to indirect: ***i.S is %v not %v", ***i.S, ***i.S)
}
if len(****i.M) != 3 || (****i.M)["four"] != 4 || (****i.M)["five"] != 5 || (****i.M)["six"] != 6 {
t.Errorf("direct to indirect: ****i.M is %v not %v", ****i.M, d.M)
}
}
// An interface with several implementations
type Squarer interface {
Square() int
}
type Int int
func (i Int) Square() int {
return int(i * i)
}
type Float float64
func (f Float) Square() int {
return int(f * f)
}
type Vector []int
func (v Vector) Square() int {
sum := 0
for _, x := range v {
sum += x * x
}
return sum
}
type Point struct {
X, Y int
}
func (p Point) Square() int {
return p.X*p.X + p.Y*p.Y
}
// A struct with interfaces in it.
type InterfaceItem struct {
I int
Sq1, Sq2, Sq3 Squarer
F float64
Sq []Squarer
}
// The same struct without interfaces
type NoInterfaceItem struct {
I int
F float64
}
func TestInterface(t *testing.T) {
iVal := Int(3)
fVal := Float(5)
// Sending a Vector will require that the receiver define a type in the middle of
// receiving the value for item2.
vVal := Vector{1, 2, 3}
b := new(bytes.Buffer)
item1 := &InterfaceItem{1, iVal, fVal, vVal, 11.5, []Squarer{iVal, fVal, nil, vVal}}
// Register the types.
Register(Int(0))
Register(Float(0))
Register(Vector{})
err := NewEncoder(b).Encode(item1)
if err != nil {
t.Error("expected no encode error; got", err)
}
item2 := InterfaceItem{}
err = NewDecoder(b).Decode(&item2)
if err != nil {
t.Fatal("decode:", err)
}
if item2.I != item1.I {
t.Error("normal int did not decode correctly")
}
if item2.Sq1 == nil || item2.Sq1.Square() != iVal.Square() {
t.Error("Int did not decode correctly")
}
if item2.Sq2 == nil || item2.Sq2.Square() != fVal.Square() {
t.Error("Float did not decode correctly")
}
if item2.Sq3 == nil || item2.Sq3.Square() != vVal.Square() {
t.Error("Vector did not decode correctly")
}
if item2.F != item1.F {
t.Error("normal float did not decode correctly")
}
// Now check that we received a slice of Squarers correctly, including a nil element
if len(item1.Sq) != len(item2.Sq) {
t.Fatalf("[]Squarer length wrong: got %d; expected %d", len(item2.Sq), len(item1.Sq))
}
for i, v1 := range item1.Sq {
v2 := item2.Sq[i]
if v1 == nil || v2 == nil {
if v1 != nil || v2 != nil {
t.Errorf("item %d inconsistent nils", i)
}
} else if v1.Square() != v2.Square() {
t.Errorf("item %d inconsistent values: %v %v", i, v1, v2)
}
}
}
// A struct with all basic types, stored in interfaces.
type BasicInterfaceItem struct {
Int, Int8, Int16, Int32, Int64 interface{}
Uint, Uint8, Uint16, Uint32, Uint64 interface{}
Float32, Float64 interface{}
Complex64, Complex128 interface{}
Bool interface{}
String interface{}
Bytes interface{}
}
func TestInterfaceBasic(t *testing.T) {
b := new(bytes.Buffer)
item1 := &BasicInterfaceItem{
int(1), int8(1), int16(1), int32(1), int64(1),
uint(1), uint8(1), uint16(1), uint32(1), uint64(1),
float32(1), 1.0,
complex64(1i), complex128(1i),
true,
"hello",
[]byte("sailor"),
}
err := NewEncoder(b).Encode(item1)
if err != nil {
t.Error("expected no encode error; got", err)
}
item2 := &BasicInterfaceItem{}
err = NewDecoder(b).Decode(&item2)
if err != nil {
t.Fatal("decode:", err)
}
if !reflect.DeepEqual(item1, item2) {
t.Errorf("encode expected %v got %v", item1, item2)
}
// Hand check a couple for correct types.
if v, ok := item2.Bool.(bool); !ok || !v {
t.Error("boolean should be true")
}
if v, ok := item2.String.(string); !ok || v != item1.String.(string) {
t.Errorf("string should be %v is %v", item1.String, v)
}
}
type String string
type PtrInterfaceItem struct {
Str1 interface{} // basic
Str2 interface{} // derived
}
// We'll send pointers; should receive values.
// Also check that we can register T but send *T.
func TestInterfacePointer(t *testing.T) {
b := new(bytes.Buffer)
str1 := "howdy"
str2 := String("kiddo")
item1 := &PtrInterfaceItem{
&str1,
&str2,
}
// Register the type.
Register(str2)
err := NewEncoder(b).Encode(item1)
if err != nil {
t.Error("expected no encode error; got", err)
}
item2 := &PtrInterfaceItem{}
err = NewDecoder(b).Decode(&item2)
if err != nil {
t.Fatal("decode:", err)
}
// Hand test for correct types and values.
if v, ok := item2.Str1.(string); !ok || v != str1 {
t.Errorf("basic string failed: %q should be %q", v, str1)
}
if v, ok := item2.Str2.(String); !ok || v != str2 {
t.Errorf("derived type String failed: %q should be %q", v, str2)
}
}
func TestIgnoreInterface(t *testing.T) {
iVal := Int(3)
fVal := Float(5)
// Sending a Point will require that the receiver define a type in the middle of
// receiving the value for item2.
pVal := Point{2, 3}
b := new(bytes.Buffer)
item1 := &InterfaceItem{1, iVal, fVal, pVal, 11.5, nil}
// Register the types.
Register(Int(0))
Register(Float(0))
Register(Point{})
err := NewEncoder(b).Encode(item1)
if err != nil {
t.Error("expected no encode error; got", err)
}
item2 := NoInterfaceItem{}
err = NewDecoder(b).Decode(&item2)
if err != nil {
t.Fatal("decode:", err)
}
if item2.I != item1.I {
t.Error("normal int did not decode correctly")
}
if item2.F != item2.F {
t.Error("normal float did not decode correctly")
}
}
type U struct {
A int
B string
c float64
D uint
}
func TestUnexportedFields(t *testing.T) {
var u0 U
u0.A = 17
u0.B = "hello"
u0.c = 3.14159
u0.D = 23
b := new(bytes.Buffer)
NewEncoder(b).Encode(u0)
dec := NewDecoder(b)
var u1 U
u1.c = 1234.
err := dec.Decode(&u1)
if err != nil {
t.Fatal("decode error:", err)
}
if u0.A != u0.A || u0.B != u1.B || u0.D != u1.D {
t.Errorf("u1->u0: expected %v; got %v", u0, u1)
}
if u1.c != 1234. {
t.Error("u1.c modified")
}
}
var singletons = []interface{}{
true,
7,
3.2,
"hello",
[3]int{11, 22, 33},
[]float32{0.5, 0.25, 0.125},
map[string]int{"one": 1, "two": 2},
}
func TestDebugSingleton(t *testing.T) {
if debugFunc == nil {
return
}
b := new(bytes.Buffer)
// Accumulate a number of values and print them out all at once.
for _, x := range singletons {
err := NewEncoder(b).Encode(x)
if err != nil {
t.Fatal("encode:", err)
}
}
debugFunc(b)
}
// A type that won't be defined in the gob until we send it in an interface value.
type OnTheFly struct {
A int
}
type DT struct {
// X OnTheFly
A int
B string
C float64
I interface{}
J interface{}
I_nil interface{}
M map[string]int
T [3]int
S []string
}
func newDT() DT {
var dt DT
dt.A = 17
dt.B = "hello"
dt.C = 3.14159
dt.I = 271828
dt.J = OnTheFly{3}
dt.I_nil = nil
dt.M = map[string]int{"one": 1, "two": 2}
dt.T = [3]int{11, 22, 33}
dt.S = []string{"hi", "joe"}
return dt
}
func TestDebugStruct(t *testing.T) {
if debugFunc == nil {
return
}
Register(OnTheFly{})
dt := newDT()
b := new(bytes.Buffer)
err := NewEncoder(b).Encode(dt)
if err != nil {
t.Fatal("encode:", err)
}
debugBuffer := bytes.NewBuffer(b.Bytes())
dt2 := &DT{}
err = NewDecoder(b).Decode(&dt2)
if err != nil {
t.Error("decode:", err)
}
debugFunc(debugBuffer)
}
func encFuzzDec(rng *rand.Rand, in interface{}) error {
buf := new(bytes.Buffer)
enc := NewEncoder(buf)
if err := enc.Encode(&in); err != nil {
return err
}
b := buf.Bytes()
for i, bi := range b {
if rng.Intn(10) < 3 {
b[i] = bi + uint8(rng.Intn(256))
}
}
dec := NewDecoder(buf)
var e interface{}
if err := dec.Decode(&e); err != nil {
return err
}
return nil
}
// This does some "fuzz testing" by attempting to decode a sequence of random bytes.
func TestFuzz(t *testing.T) {
if !*doFuzzTests {
t.Logf("disabled; run with -gob.fuzz to enable")
return
}
// all possible inputs
input := []interface{}{
new(int),
new(float32),
new(float64),
new(complex128),
&ByteStruct{255},
&ArrayStruct{},
&StringStruct{"hello"},
&GobTest1{0, &StringStruct{"hello"}},
}
testFuzz(t, time.Now().UnixNano(), 100, input...)
}
func TestFuzzRegressions(t *testing.T) {
if !*doFuzzTests {
t.Logf("disabled; run with -gob.fuzz to enable")
return
}
// An instance triggering a type name of length ~102 GB.
testFuzz(t, 1328492090837718000, 100, new(float32))
// An instance triggering a type name of 1.6 GB.
// Note: can take several minutes to run.
testFuzz(t, 1330522872628565000, 100, new(int))
}
func testFuzz(t *testing.T, seed int64, n int, input ...interface{}) {
for _, e := range input {
t.Logf("seed=%d n=%d e=%T", seed, n, e)
rng := rand.New(rand.NewSource(seed))
for i := 0; i < n; i++ {
encFuzzDec(rng, e)
}
}
}
// TestFuzzOneByte tries to decode corrupted input sequences
// and checks that no panic occurs.
func TestFuzzOneByte(t *testing.T) {
buf := new(bytes.Buffer)
Register(OnTheFly{})
dt := newDT()
if err := NewEncoder(buf).Encode(dt); err != nil {
t.Fatal(err)
}
s := buf.String()
indices := make([]int, 0, len(s))
for i := 0; i < len(s); i++ {
switch i {
case 14, 167, 231, 265: // a slice length, corruptions are not handled yet.
continue
}
indices = append(indices, i)
}
if testing.Short() {
indices = []int{1, 111, 178} // known fixed panics
}
for _, i := range indices {
for j := 0; j < 256; j += 3 {
b := []byte(s)
b[i] ^= byte(j)
var e DT
func() {
defer func() {
if p := recover(); p != nil {
t.Errorf("crash for b[%d] ^= 0x%x", i, j)
panic(p)
}
}()
err := NewDecoder(bytes.NewReader(b)).Decode(&e)
_ = err
}()
}
}
}