| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector. |
| |
| #include "runtime.h" |
| #include "malloc.h" |
| #include "stack.h" |
| |
| enum { |
| Debug = 0, |
| UseCas = 1, |
| PtrSize = sizeof(void*), |
| |
| // Four bits per word (see #defines below). |
| wordsPerBitmapWord = sizeof(void*)*8/4, |
| bitShift = sizeof(void*)*8/4, |
| }; |
| |
| // Bits in per-word bitmap. |
| // #defines because enum might not be able to hold the values. |
| // |
| // Each word in the bitmap describes wordsPerBitmapWord words |
| // of heap memory. There are 4 bitmap bits dedicated to each heap word, |
| // so on a 64-bit system there is one bitmap word per 16 heap words. |
| // The bits in the word are packed together by type first, then by |
| // heap location, so each 64-bit bitmap word consists of, from top to bottom, |
| // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, |
| // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. |
| // This layout makes it easier to iterate over the bits of a given type. |
| // |
| // The bitmap starts at mheap.arena_start and extends *backward* from |
| // there. On a 64-bit system the off'th word in the arena is tracked by |
| // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, |
| // the only difference is that the divisor is 8.) |
| // |
| // To pull out the bits corresponding to a given pointer p, we use: |
| // |
| // off = p - (uintptr*)mheap.arena_start; // word offset |
| // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; |
| // shift = off % wordsPerBitmapWord |
| // bits = *b >> shift; |
| // /* then test bits & bitAllocated, bits & bitMarked, etc. */ |
| // |
| #define bitAllocated ((uintptr)1<<(bitShift*0)) |
| #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ |
| #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ |
| #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ |
| #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ |
| |
| #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) |
| |
| static uint64 nlookup; |
| static uint64 nsizelookup; |
| static uint64 naddrlookup; |
| static int32 gctrace; |
| |
| typedef struct Workbuf Workbuf; |
| struct Workbuf |
| { |
| Workbuf *next; |
| uintptr nw; |
| byte *w[2048-2]; |
| }; |
| |
| extern byte data[]; |
| extern byte etext[]; |
| extern byte end[]; |
| |
| static G *fing; |
| static Finalizer *finq; |
| static int32 fingwait; |
| |
| static void runfinq(void); |
| static Workbuf* getempty(Workbuf*); |
| static Workbuf* getfull(Workbuf*); |
| |
| // scanblock scans a block of n bytes starting at pointer b for references |
| // to other objects, scanning any it finds recursively until there are no |
| // unscanned objects left. Instead of using an explicit recursion, it keeps |
| // a work list in the Workbuf* structures and loops in the main function |
| // body. Keeping an explicit work list is easier on the stack allocator and |
| // more efficient. |
| static void |
| scanblock(byte *b, int64 n) |
| { |
| byte *obj, *arena_start, *p; |
| void **vp; |
| uintptr size, *bitp, bits, shift, i, j, x, xbits, off; |
| MSpan *s; |
| PageID k; |
| void **bw, **w, **ew; |
| Workbuf *wbuf; |
| |
| if((int64)(uintptr)n != n || n < 0) { |
| runtime·printf("scanblock %p %D\n", b, n); |
| runtime·throw("scanblock"); |
| } |
| |
| // Memory arena parameters. |
| arena_start = runtime·mheap.arena_start; |
| |
| wbuf = nil; // current work buffer |
| ew = nil; // end of work buffer |
| bw = nil; // beginning of work buffer |
| w = nil; // current pointer into work buffer |
| |
| // Align b to a word boundary. |
| off = (uintptr)b & (PtrSize-1); |
| if(off != 0) { |
| b += PtrSize - off; |
| n -= PtrSize - off; |
| } |
| |
| for(;;) { |
| // Each iteration scans the block b of length n, queueing pointers in |
| // the work buffer. |
| if(Debug > 1) |
| runtime·printf("scanblock %p %D\n", b, n); |
| |
| vp = (void**)b; |
| n /= PtrSize; |
| for(i=0; i<n; i++) { |
| obj = (byte*)vp[i]; |
| |
| // Words outside the arena cannot be pointers. |
| if((byte*)obj < arena_start || (byte*)obj >= runtime·mheap.arena_used) |
| continue; |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) |
| goto found; |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| obj = (byte*)obj - (shift-j)*PtrSize; |
| shift = j; |
| bits = xbits>>shift; |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| nlookup++; |
| naddrlookup++; |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap.map[x]; |
| if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) |
| continue; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| if((byte*)obj >= (byte*)s->limit) |
| continue; |
| size = runtime·class_to_size[s->sizeclass]; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // If not allocated or already marked, done. |
| if((bits & bitAllocated) == 0 || (bits & bitMarked) != 0) |
| continue; |
| *bitp |= bitMarked<<shift; |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitNoPointers) != 0) |
| continue; |
| |
| // If buffer is full, get a new one. |
| if(w >= ew) { |
| wbuf = getempty(wbuf); |
| bw = wbuf->w; |
| w = bw; |
| ew = bw + nelem(wbuf->w); |
| } |
| *w++ = obj; |
| } |
| |
| // Done scanning [b, b+n). Prepare for the next iteration of |
| // the loop by setting b and n to the parameters for the next block. |
| |
| // Fetch b from the work buffers. |
| if(w <= bw) { |
| // Emptied our buffer: refill. |
| wbuf = getfull(wbuf); |
| if(wbuf == nil) |
| break; |
| bw = wbuf->w; |
| ew = wbuf->w + nelem(wbuf->w); |
| w = bw+wbuf->nw; |
| } |
| b = *--w; |
| |
| // Figure out n = size of b. Start by loading bits for b. |
| off = (uintptr*)b - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Might be small; look for nearby block boundary. |
| // A block boundary is marked by either bitBlockBoundary |
| // or bitAllocated being set (see notes near their definition). |
| enum { |
| boundary = bitBlockBoundary|bitAllocated |
| }; |
| // Look for a block boundary both after and before b |
| // in the same bitmap word. |
| // |
| // A block boundary j words after b is indicated by |
| // bits>>j & boundary |
| // assuming shift+j < bitShift. (If shift+j >= bitShift then |
| // we'll be bleeding other bit types like bitMarked into our test.) |
| // Instead of inserting the conditional shift+j < bitShift into the loop, |
| // we can let j range from 1 to bitShift as long as we first |
| // apply a mask to keep only the bits corresponding |
| // to shift+j < bitShift aka j < bitShift-shift. |
| bits &= (boundary<<(bitShift-shift)) - boundary; |
| |
| // A block boundary j words before b is indicated by |
| // xbits>>(shift-j) & boundary |
| // (assuming shift >= j). There is no cleverness here |
| // avoid the test, because when j gets too large the shift |
| // turns negative, which is undefined in C. |
| |
| for(j=1; j<bitShift; j++) { |
| if(((bits>>j)&boundary) != 0 || shift>=j && ((xbits>>(shift-j))&boundary) != 0) { |
| n = j*PtrSize; |
| goto scan; |
| } |
| } |
| |
| // Fall back to asking span about size class. |
| // (Manually inlined copy of MHeap_Lookup.) |
| nlookup++; |
| nsizelookup++; |
| x = (uintptr)b>>PageShift; |
| if(sizeof(void*) == 8) |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap.map[x]; |
| if(s->sizeclass == 0) |
| n = s->npages<<PageShift; |
| else |
| n = runtime·class_to_size[s->sizeclass]; |
| scan:; |
| } |
| } |
| |
| static struct { |
| Workbuf *full; |
| Workbuf *empty; |
| byte *chunk; |
| uintptr nchunk; |
| } work; |
| |
| // Get an empty work buffer off the work.empty list, |
| // allocating new buffers as needed. |
| static Workbuf* |
| getempty(Workbuf *b) |
| { |
| if(b != nil) { |
| b->nw = nelem(b->w); |
| b->next = work.full; |
| work.full = b; |
| } |
| b = work.empty; |
| if(b != nil) { |
| work.empty = b->next; |
| return b; |
| } |
| |
| if(work.nchunk < sizeof *b) { |
| work.nchunk = 1<<20; |
| work.chunk = runtime·SysAlloc(work.nchunk); |
| } |
| b = (Workbuf*)work.chunk; |
| work.chunk += sizeof *b; |
| work.nchunk -= sizeof *b; |
| return b; |
| } |
| |
| // Get a full work buffer off the work.full list, or return nil. |
| static Workbuf* |
| getfull(Workbuf *b) |
| { |
| if(b != nil) { |
| b->nw = 0; |
| b->next = work.empty; |
| work.empty = b; |
| } |
| b = work.full; |
| if(b != nil) |
| work.full = b->next; |
| return b; |
| } |
| |
| // Scanstack calls scanblock on each of gp's stack segments. |
| static void |
| scanstack(G *gp) |
| { |
| int32 n; |
| Stktop *stk; |
| byte *sp, *guard; |
| |
| stk = (Stktop*)gp->stackbase; |
| guard = gp->stackguard; |
| |
| if(gp == g) { |
| // Scanning our own stack: start at &gp. |
| sp = (byte*)&gp; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| sp = gp->sched.sp; |
| |
| // The exception is that if the goroutine is about to enter or might |
| // have just exited a system call, it may be executing code such |
| // as schedlock and may have needed to start a new stack segment. |
| // Use the stack segment and stack pointer at the time of |
| // the system call instead, since that won't change underfoot. |
| if(gp->gcstack != nil) { |
| stk = (Stktop*)gp->gcstack; |
| sp = gp->gcsp; |
| guard = gp->gcguard; |
| } |
| } |
| |
| if(Debug > 1) |
| runtime·printf("scanstack %d %p\n", gp->goid, sp); |
| n = 0; |
| while(stk) { |
| if(sp < guard-StackGuard || (byte*)stk < sp) { |
| runtime·printf("scanstack inconsistent: g%d#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); |
| runtime·throw("scanstack"); |
| } |
| scanblock(sp, (byte*)stk - sp); |
| sp = stk->gobuf.sp; |
| guard = stk->stackguard; |
| stk = (Stktop*)stk->stackbase; |
| n++; |
| } |
| } |
| |
| // Markfin calls scanblock on the blocks that have finalizers: |
| // the things pointed at cannot be freed until the finalizers have run. |
| static void |
| markfin(void *v) |
| { |
| uintptr size; |
| |
| size = 0; |
| if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v)) |
| runtime·throw("mark - finalizer inconsistency"); |
| |
| // do not mark the finalizer block itself. just mark the things it points at. |
| scanblock(v, size); |
| } |
| |
| // Mark |
| static void |
| mark(void) |
| { |
| G *gp; |
| |
| // mark data+bss. |
| // skip runtime·mheap itself, which has no interesting pointers |
| // and is mostly zeroed and would not otherwise be paged in. |
| scanblock(data, (byte*)&runtime·mheap - data); |
| scanblock((byte*)(&runtime·mheap+1), end - (byte*)(&runtime·mheap+1)); |
| |
| // mark stacks |
| for(gp=runtime·allg; gp!=nil; gp=gp->alllink) { |
| switch(gp->status){ |
| default: |
| runtime·printf("unexpected G.status %d\n", gp->status); |
| runtime·throw("mark - bad status"); |
| case Gdead: |
| break; |
| case Grunning: |
| if(gp != g) |
| runtime·throw("mark - world not stopped"); |
| scanstack(gp); |
| break; |
| case Grunnable: |
| case Gsyscall: |
| case Gwaiting: |
| scanstack(gp); |
| break; |
| } |
| } |
| |
| // mark things pointed at by objects with finalizers |
| runtime·walkfintab(markfin); |
| } |
| |
| // Sweep frees or calls finalizers for blocks not marked in the mark phase. |
| // It clears the mark bits in preparation for the next GC round. |
| static void |
| sweep(void) |
| { |
| MSpan *s; |
| int32 cl, n, npages; |
| uintptr size; |
| byte *p; |
| MCache *c; |
| Finalizer *f; |
| |
| for(s = runtime·mheap.allspans; s != nil; s = s->allnext) { |
| if(s->state != MSpanInUse) |
| continue; |
| |
| p = (byte*)(s->start << PageShift); |
| cl = s->sizeclass; |
| if(cl == 0) { |
| size = s->npages<<PageShift; |
| n = 1; |
| } else { |
| // Chunk full of small blocks. |
| size = runtime·class_to_size[cl]; |
| npages = runtime·class_to_allocnpages[cl]; |
| n = (npages << PageShift) / size; |
| } |
| |
| // sweep through n objects of given size starting at p. |
| for(; n > 0; n--, p += size) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; |
| bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| if((bits & bitAllocated) == 0) |
| continue; |
| |
| if((bits & bitMarked) != 0) { |
| *bitp &= ~(bitMarked<<shift); |
| continue; |
| } |
| |
| if((bits & bitSpecial) != 0) { |
| // Special means it has a finalizer or is being profiled. |
| f = runtime·getfinalizer(p, 1); |
| if(f != nil) { |
| f->arg = p; |
| f->next = finq; |
| finq = f; |
| continue; |
| } |
| runtime·MProf_Free(p, size); |
| } |
| |
| // Mark freed; restore block boundary bit. |
| *bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| |
| c = m->mcache; |
| if(s->sizeclass == 0) { |
| // Free large span. |
| runtime·unmarkspan(p, 1<<PageShift); |
| *(uintptr*)p = 1; // needs zeroing |
| runtime·MHeap_Free(&runtime·mheap, s, 1); |
| } else { |
| // Free small object. |
| if(size > sizeof(uintptr)) |
| ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" |
| c->local_by_size[s->sizeclass].nfree++; |
| runtime·MCache_Free(c, p, s->sizeclass, size); |
| } |
| c->local_alloc -= size; |
| c->local_nfree++; |
| } |
| } |
| } |
| |
| // Semaphore, not Lock, so that the goroutine |
| // reschedules when there is contention rather |
| // than spinning. |
| static uint32 gcsema = 1; |
| |
| // Initialized from $GOGC. GOGC=off means no gc. |
| // |
| // Next gc is after we've allocated an extra amount of |
| // memory proportional to the amount already in use. |
| // If gcpercent=100 and we're using 4M, we'll gc again |
| // when we get to 8M. This keeps the gc cost in linear |
| // proportion to the allocation cost. Adjusting gcpercent |
| // just changes the linear constant (and also the amount of |
| // extra memory used). |
| static int32 gcpercent = -2; |
| |
| static void |
| stealcache(void) |
| { |
| M *m; |
| |
| for(m=runtime·allm; m; m=m->alllink) |
| runtime·MCache_ReleaseAll(m->mcache); |
| } |
| |
| static void |
| cachestats(void) |
| { |
| M *m; |
| MCache *c; |
| int32 i; |
| uint64 stacks_inuse; |
| uint64 stacks_sys; |
| |
| stacks_inuse = 0; |
| stacks_sys = 0; |
| for(m=runtime·allm; m; m=m->alllink) { |
| runtime·purgecachedstats(m); |
| stacks_inuse += m->stackalloc->inuse; |
| stacks_sys += m->stackalloc->sys; |
| c = m->mcache; |
| for(i=0; i<nelem(c->local_by_size); i++) { |
| mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; |
| c->local_by_size[i].nmalloc = 0; |
| mstats.by_size[i].nfree += c->local_by_size[i].nfree; |
| c->local_by_size[i].nfree = 0; |
| } |
| } |
| mstats.stacks_inuse = stacks_inuse; |
| mstats.stacks_sys = stacks_sys; |
| } |
| |
| void |
| runtime·gc(int32 force) |
| { |
| int64 t0, t1, t2, t3; |
| uint64 heap0, heap1, obj0, obj1; |
| byte *p; |
| Finalizer *fp; |
| |
| // The gc is turned off (via enablegc) until |
| // the bootstrap has completed. |
| // Also, malloc gets called in the guts |
| // of a number of libraries that might be |
| // holding locks. To avoid priority inversion |
| // problems, don't bother trying to run gc |
| // while holding a lock. The next mallocgc |
| // without a lock will do the gc instead. |
| if(!mstats.enablegc || m->locks > 0 || runtime·panicking) |
| return; |
| |
| if(gcpercent == -2) { // first time through |
| p = runtime·getenv("GOGC"); |
| if(p == nil || p[0] == '\0') |
| gcpercent = 100; |
| else if(runtime·strcmp(p, (byte*)"off") == 0) |
| gcpercent = -1; |
| else |
| gcpercent = runtime·atoi(p); |
| |
| p = runtime·getenv("GOGCTRACE"); |
| if(p != nil) |
| gctrace = runtime·atoi(p); |
| } |
| if(gcpercent < 0) |
| return; |
| |
| runtime·semacquire(&gcsema); |
| if(!force && mstats.heap_alloc < mstats.next_gc) { |
| runtime·semrelease(&gcsema); |
| return; |
| } |
| |
| t0 = runtime·nanotime(); |
| nlookup = 0; |
| nsizelookup = 0; |
| naddrlookup = 0; |
| |
| m->gcing = 1; |
| runtime·stoptheworld(); |
| if(runtime·mheap.Lock.key != 0) |
| runtime·throw("runtime·mheap locked during gc"); |
| |
| cachestats(); |
| heap0 = mstats.heap_alloc; |
| obj0 = mstats.nmalloc - mstats.nfree; |
| |
| mark(); |
| t1 = runtime·nanotime(); |
| sweep(); |
| t2 = runtime·nanotime(); |
| stealcache(); |
| cachestats(); |
| |
| mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; |
| m->gcing = 0; |
| |
| m->locks++; // disable gc during the mallocs in newproc |
| fp = finq; |
| if(fp != nil) { |
| // kick off or wake up goroutine to run queued finalizers |
| if(fing == nil) |
| fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc); |
| else if(fingwait) { |
| fingwait = 0; |
| runtime·ready(fing); |
| } |
| } |
| m->locks--; |
| |
| cachestats(); |
| heap1 = mstats.heap_alloc; |
| obj1 = mstats.nmalloc - mstats.nfree; |
| |
| t3 = runtime·nanotime(); |
| mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; |
| mstats.pause_total_ns += t3 - t0; |
| mstats.numgc++; |
| if(mstats.debuggc) |
| runtime·printf("pause %D\n", t3-t0); |
| |
| if(gctrace) { |
| runtime·printf("gc%d: %D+%D+%D ms %D -> %D MB %D -> %D (%D-%D) objects %D pointer lookups (%D size, %D addr)\n", |
| mstats.numgc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000, |
| heap0>>20, heap1>>20, obj0, obj1, |
| mstats.nmalloc, mstats.nfree, |
| nlookup, nsizelookup, naddrlookup); |
| } |
| |
| runtime·semrelease(&gcsema); |
| runtime·starttheworld(); |
| |
| // give the queued finalizers, if any, a chance to run |
| if(fp != nil) |
| runtime·gosched(); |
| |
| if(gctrace > 1 && !force) |
| runtime·gc(1); |
| } |
| |
| void |
| runtime·UpdateMemStats(void) |
| { |
| // Have to acquire gcsema to stop the world, |
| // because stoptheworld can only be used by |
| // one goroutine at a time, and there might be |
| // a pending garbage collection already calling it. |
| runtime·semacquire(&gcsema); |
| m->gcing = 1; |
| runtime·stoptheworld(); |
| cachestats(); |
| m->gcing = 0; |
| runtime·semrelease(&gcsema); |
| runtime·starttheworld(); |
| } |
| |
| static void |
| runfinq(void) |
| { |
| Finalizer *f, *next; |
| byte *frame; |
| |
| for(;;) { |
| // There's no need for a lock in this section |
| // because it only conflicts with the garbage |
| // collector, and the garbage collector only |
| // runs when everyone else is stopped, and |
| // runfinq only stops at the gosched() or |
| // during the calls in the for loop. |
| f = finq; |
| finq = nil; |
| if(f == nil) { |
| fingwait = 1; |
| g->status = Gwaiting; |
| runtime·gosched(); |
| continue; |
| } |
| for(; f; f=next) { |
| next = f->next; |
| frame = runtime·mal(sizeof(uintptr) + f->nret); |
| *(void**)frame = f->arg; |
| reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret); |
| runtime·free(frame); |
| f->fn = nil; |
| f->arg = nil; |
| f->next = nil; |
| runtime·free(f); |
| } |
| runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible |
| } |
| } |
| |
| // mark the block at v of size n as allocated. |
| // If noptr is true, mark it as having no pointers. |
| void |
| runtime·markallocated(void *v, uintptr n, bool noptr) |
| { |
| uintptr *b, obits, bits, off, shift; |
| |
| if(0) |
| runtime·printf("markallocated %p+%p\n", v, n); |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markallocated: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift); |
| if(noptr) |
| bits |= bitNoPointers<<shift; |
| if(runtime·gomaxprocs == 1) { |
| *b = bits; |
| break; |
| } else { |
| // gomaxprocs > 1: use atomic op |
| if(runtime·casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| // mark the block at v of size n as freed. |
| void |
| runtime·markfreed(void *v, uintptr n) |
| { |
| uintptr *b, obits, bits, off, shift; |
| |
| if(0) |
| runtime·printf("markallocated %p+%p\n", v, n); |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markallocated: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = (obits & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| if(runtime·gomaxprocs == 1) { |
| *b = bits; |
| break; |
| } else { |
| // gomaxprocs > 1: use atomic op |
| if(runtime·casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| // check that the block at v of size n is marked freed. |
| void |
| runtime·checkfreed(void *v, uintptr n) |
| { |
| uintptr *b, bits, off, shift; |
| |
| if(!runtime·checking) |
| return; |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| return; // not allocated, so okay |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| bits = *b>>shift; |
| if((bits & bitAllocated) != 0) { |
| runtime·printf("checkfreed %p+%p: off=%p have=%p\n", |
| v, n, off, bits & bitMask); |
| runtime·throw("checkfreed: not freed"); |
| } |
| } |
| |
| // mark the span of memory at v as having n blocks of the given size. |
| // if leftover is true, there is left over space at the end of the span. |
| void |
| runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) |
| { |
| uintptr *b, off, shift; |
| byte *p; |
| |
| if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| p = v; |
| if(leftover) // mark a boundary just past end of last block too |
| n++; |
| for(; n-- > 0; p += size) { |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); |
| } |
| } |
| |
| // unmark the span of memory at v of length n bytes. |
| void |
| runtime·unmarkspan(void *v, uintptr n) |
| { |
| uintptr *p, *b, off; |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| p = v; |
| off = p - (uintptr*)runtime·mheap.arena_start; // word offset |
| if(off % wordsPerBitmapWord != 0) |
| runtime·throw("markspan: unaligned pointer"); |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| n /= PtrSize; |
| if(n%wordsPerBitmapWord != 0) |
| runtime·throw("unmarkspan: unaligned length"); |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| n /= wordsPerBitmapWord; |
| while(n-- > 0) |
| *b-- = 0; |
| } |
| |
| bool |
| runtime·blockspecial(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| return (*b & (bitSpecial<<shift)) != 0; |
| } |
| |
| void |
| runtime·setblockspecial(void *v) |
| { |
| uintptr *b, off, shift, bits, obits; |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| for(;;) { |
| obits = *b; |
| bits = obits | (bitSpecial<<shift); |
| if(runtime·gomaxprocs == 1) { |
| *b = bits; |
| break; |
| } else { |
| // gomaxprocs > 1: use atomic op |
| if(runtime·casp((void**)b, (void*)obits, (void*)bits)) |
| break; |
| } |
| } |
| } |
| |
| void |
| runtime·MHeap_MapBits(MHeap *h) |
| { |
| // Caller has added extra mappings to the arena. |
| // Add extra mappings of bitmap words as needed. |
| // We allocate extra bitmap pieces in chunks of bitmapChunk. |
| enum { |
| bitmapChunk = 8192 |
| }; |
| uintptr n; |
| |
| n = (h->arena_used - h->arena_start) / wordsPerBitmapWord; |
| n = (n+bitmapChunk-1) & ~(bitmapChunk-1); |
| if(h->bitmap_mapped >= n) |
| return; |
| |
| runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped); |
| h->bitmap_mapped = n; |
| } |