| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package openpgp |
| |
| import ( |
| "crypto" |
| "crypto/openpgp/armor" |
| "crypto/openpgp/error" |
| "crypto/openpgp/packet" |
| "crypto/rsa" |
| "io" |
| "os" |
| "time" |
| ) |
| |
| // PublicKeyType is the armor type for a PGP public key. |
| var PublicKeyType = "PGP PUBLIC KEY BLOCK" |
| // PrivateKeyType is the armor type for a PGP private key. |
| var PrivateKeyType = "PGP PRIVATE KEY BLOCK" |
| |
| // An Entity represents the components of an OpenPGP key: a primary public key |
| // (which must be a signing key), one or more identities claimed by that key, |
| // and zero or more subkeys, which may be encryption keys. |
| type Entity struct { |
| PrimaryKey *packet.PublicKey |
| PrivateKey *packet.PrivateKey |
| Identities map[string]*Identity // indexed by Identity.Name |
| Subkeys []Subkey |
| } |
| |
| // An Identity represents an identity claimed by an Entity and zero or more |
| // assertions by other entities about that claim. |
| type Identity struct { |
| Name string // by convention, has the form "Full Name (comment) <email@example.com>" |
| UserId *packet.UserId |
| SelfSignature *packet.Signature |
| Signatures []*packet.Signature |
| } |
| |
| // A Subkey is an additional public key in an Entity. Subkeys can be used for |
| // encryption. |
| type Subkey struct { |
| PublicKey *packet.PublicKey |
| PrivateKey *packet.PrivateKey |
| Sig *packet.Signature |
| } |
| |
| // A Key identifies a specific public key in an Entity. This is either the |
| // Entity's primary key or a subkey. |
| type Key struct { |
| Entity *Entity |
| PublicKey *packet.PublicKey |
| PrivateKey *packet.PrivateKey |
| SelfSignature *packet.Signature |
| } |
| |
| // A KeyRing provides access to public and private keys. |
| type KeyRing interface { |
| // KeysById returns the set of keys that have the given key id. |
| KeysById(id uint64) []Key |
| // DecryptionKeys returns all private keys that are valid for |
| // decryption. |
| DecryptionKeys() []Key |
| } |
| |
| // primaryIdentity returns the Identity marked as primary or the first identity |
| // if none are so marked. |
| func (e *Entity) primaryIdentity() *Identity { |
| var firstIdentity *Identity |
| for _, ident := range e.Identities { |
| if firstIdentity == nil { |
| firstIdentity = ident |
| } |
| if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { |
| return ident |
| } |
| } |
| return firstIdentity |
| } |
| |
| // encryptionKey returns the best candidate Key for encrypting a message to the |
| // given Entity. |
| func (e *Entity) encryptionKey() Key { |
| candidateSubkey := -1 |
| |
| for i, subkey := range e.Subkeys { |
| if subkey.Sig.FlagsValid && subkey.Sig.FlagEncryptCommunications && subkey.PublicKey.PubKeyAlgo.CanEncrypt() { |
| candidateSubkey = i |
| break |
| } |
| } |
| |
| i := e.primaryIdentity() |
| |
| if e.PrimaryKey.PubKeyAlgo.CanEncrypt() { |
| // If we don't have any candidate subkeys for encryption and |
| // the primary key doesn't have any usage metadata then we |
| // assume that the primary key is ok. Or, if the primary key is |
| // marked as ok to encrypt to, then we can obviously use it. |
| if candidateSubkey == -1 && !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications && i.SelfSignature.FlagsValid { |
| return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature} |
| } |
| } |
| |
| if candidateSubkey != -1 { |
| subkey := e.Subkeys[candidateSubkey] |
| return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig} |
| } |
| |
| // This Entity appears to be signing only. |
| return Key{} |
| } |
| |
| // signingKey return the best candidate Key for signing a message with this |
| // Entity. |
| func (e *Entity) signingKey() Key { |
| candidateSubkey := -1 |
| |
| for i, subkey := range e.Subkeys { |
| if subkey.Sig.FlagsValid && subkey.Sig.FlagSign && subkey.PublicKey.PubKeyAlgo.CanSign() { |
| candidateSubkey = i |
| break |
| } |
| } |
| |
| i := e.primaryIdentity() |
| |
| // If we have no candidate subkey then we assume that it's ok to sign |
| // with the primary key. |
| if candidateSubkey == -1 || i.SelfSignature.FlagsValid && i.SelfSignature.FlagSign { |
| return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature} |
| } |
| |
| subkey := e.Subkeys[candidateSubkey] |
| return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig} |
| } |
| |
| // An EntityList contains one or more Entities. |
| type EntityList []*Entity |
| |
| // KeysById returns the set of keys that have the given key id. |
| func (el EntityList) KeysById(id uint64) (keys []Key) { |
| for _, e := range el { |
| if e.PrimaryKey.KeyId == id { |
| var selfSig *packet.Signature |
| for _, ident := range e.Identities { |
| if selfSig == nil { |
| selfSig = ident.SelfSignature |
| } else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { |
| selfSig = ident.SelfSignature |
| break |
| } |
| } |
| keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig}) |
| } |
| |
| for _, subKey := range e.Subkeys { |
| if subKey.PublicKey.KeyId == id { |
| keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) |
| } |
| } |
| } |
| return |
| } |
| |
| // DecryptionKeys returns all private keys that are valid for decryption. |
| func (el EntityList) DecryptionKeys() (keys []Key) { |
| for _, e := range el { |
| for _, subKey := range e.Subkeys { |
| if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) { |
| keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) |
| } |
| } |
| } |
| return |
| } |
| |
| // ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file. |
| func ReadArmoredKeyRing(r io.Reader) (EntityList, os.Error) { |
| block, err := armor.Decode(r) |
| if err == os.EOF { |
| return nil, error.InvalidArgumentError("no armored data found") |
| } |
| if err != nil { |
| return nil, err |
| } |
| if block.Type != PublicKeyType && block.Type != PrivateKeyType { |
| return nil, error.InvalidArgumentError("expected public or private key block, got: " + block.Type) |
| } |
| |
| return ReadKeyRing(block.Body) |
| } |
| |
| // ReadKeyRing reads one or more public/private keys. Unsupported keys are |
| // ignored as long as at least a single valid key is found. |
| func ReadKeyRing(r io.Reader) (el EntityList, err os.Error) { |
| packets := packet.NewReader(r) |
| var lastUnsupportedError os.Error |
| |
| for { |
| var e *Entity |
| e, err = readEntity(packets) |
| if err != nil { |
| if _, ok := err.(error.UnsupportedError); ok { |
| lastUnsupportedError = err |
| err = readToNextPublicKey(packets) |
| } |
| if err == os.EOF { |
| err = nil |
| break |
| } |
| if err != nil { |
| el = nil |
| break |
| } |
| } else { |
| el = append(el, e) |
| } |
| } |
| |
| if len(el) == 0 && err == nil { |
| err = lastUnsupportedError |
| } |
| return |
| } |
| |
| // readToNextPublicKey reads packets until the start of the entity and leaves |
| // the first packet of the new entity in the Reader. |
| func readToNextPublicKey(packets *packet.Reader) (err os.Error) { |
| var p packet.Packet |
| for { |
| p, err = packets.Next() |
| if err == os.EOF { |
| return |
| } else if err != nil { |
| if _, ok := err.(error.UnsupportedError); ok { |
| err = nil |
| continue |
| } |
| return |
| } |
| |
| if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey { |
| packets.Unread(p) |
| return |
| } |
| } |
| |
| panic("unreachable") |
| } |
| |
| // readEntity reads an entity (public key, identities, subkeys etc) from the |
| // given Reader. |
| func readEntity(packets *packet.Reader) (*Entity, os.Error) { |
| e := new(Entity) |
| e.Identities = make(map[string]*Identity) |
| |
| p, err := packets.Next() |
| if err != nil { |
| return nil, err |
| } |
| |
| var ok bool |
| if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok { |
| if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok { |
| packets.Unread(p) |
| return nil, error.StructuralError("first packet was not a public/private key") |
| } else { |
| e.PrimaryKey = &e.PrivateKey.PublicKey |
| } |
| } |
| |
| if !e.PrimaryKey.PubKeyAlgo.CanSign() { |
| return nil, error.StructuralError("primary key cannot be used for signatures") |
| } |
| |
| var current *Identity |
| EachPacket: |
| for { |
| p, err := packets.Next() |
| if err == os.EOF { |
| break |
| } else if err != nil { |
| return nil, err |
| } |
| |
| switch pkt := p.(type) { |
| case *packet.UserId: |
| current = new(Identity) |
| current.Name = pkt.Id |
| current.UserId = pkt |
| e.Identities[pkt.Id] = current |
| |
| for { |
| p, err = packets.Next() |
| if err == os.EOF { |
| return nil, io.ErrUnexpectedEOF |
| } else if err != nil { |
| return nil, err |
| } |
| |
| sig, ok := p.(*packet.Signature) |
| if !ok { |
| return nil, error.StructuralError("user ID packet not followed by self-signature") |
| } |
| |
| if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId { |
| if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, sig); err != nil { |
| return nil, error.StructuralError("user ID self-signature invalid: " + err.String()) |
| } |
| current.SelfSignature = sig |
| break |
| } |
| current.Signatures = append(current.Signatures, sig) |
| } |
| case *packet.Signature: |
| if current == nil { |
| return nil, error.StructuralError("signature packet found before user id packet") |
| } |
| current.Signatures = append(current.Signatures, pkt) |
| case *packet.PrivateKey: |
| if pkt.IsSubkey == false { |
| packets.Unread(p) |
| break EachPacket |
| } |
| err = addSubkey(e, packets, &pkt.PublicKey, pkt) |
| if err != nil { |
| return nil, err |
| } |
| case *packet.PublicKey: |
| if pkt.IsSubkey == false { |
| packets.Unread(p) |
| break EachPacket |
| } |
| err = addSubkey(e, packets, pkt, nil) |
| if err != nil { |
| return nil, err |
| } |
| default: |
| // we ignore unknown packets |
| } |
| } |
| |
| if len(e.Identities) == 0 { |
| return nil, error.StructuralError("entity without any identities") |
| } |
| |
| return e, nil |
| } |
| |
| func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) os.Error { |
| var subKey Subkey |
| subKey.PublicKey = pub |
| subKey.PrivateKey = priv |
| p, err := packets.Next() |
| if err == os.EOF { |
| return io.ErrUnexpectedEOF |
| } |
| if err != nil { |
| return error.StructuralError("subkey signature invalid: " + err.String()) |
| } |
| var ok bool |
| subKey.Sig, ok = p.(*packet.Signature) |
| if !ok { |
| return error.StructuralError("subkey packet not followed by signature") |
| } |
| if subKey.Sig.SigType != packet.SigTypeSubkeyBinding { |
| return error.StructuralError("subkey signature with wrong type") |
| } |
| err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, subKey.Sig) |
| if err != nil { |
| return error.StructuralError("subkey signature invalid: " + err.String()) |
| } |
| e.Subkeys = append(e.Subkeys, subKey) |
| return nil |
| } |
| |
| const defaultRSAKeyBits = 2048 |
| |
| // NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a |
| // single identity composed of the given full name, comment and email, any of |
| // which may be empty but must not contain any of "()<>\x00". |
| func NewEntity(rand io.Reader, currentTimeSecs int64, name, comment, email string) (*Entity, os.Error) { |
| uid := packet.NewUserId(name, comment, email) |
| if uid == nil { |
| return nil, error.InvalidArgumentError("user id field contained invalid characters") |
| } |
| signingPriv, err := rsa.GenerateKey(rand, defaultRSAKeyBits) |
| if err != nil { |
| return nil, err |
| } |
| encryptingPriv, err := rsa.GenerateKey(rand, defaultRSAKeyBits) |
| if err != nil { |
| return nil, err |
| } |
| |
| t := uint32(currentTimeSecs) |
| |
| e := &Entity{ |
| PrimaryKey: packet.NewRSAPublicKey(t, &signingPriv.PublicKey, false /* not a subkey */ ), |
| PrivateKey: packet.NewRSAPrivateKey(t, signingPriv, false /* not a subkey */ ), |
| Identities: make(map[string]*Identity), |
| } |
| isPrimaryId := true |
| e.Identities[uid.Id] = &Identity{ |
| Name: uid.Name, |
| UserId: uid, |
| SelfSignature: &packet.Signature{ |
| CreationTime: t, |
| SigType: packet.SigTypePositiveCert, |
| PubKeyAlgo: packet.PubKeyAlgoRSA, |
| Hash: crypto.SHA256, |
| IsPrimaryId: &isPrimaryId, |
| FlagsValid: true, |
| FlagSign: true, |
| FlagCertify: true, |
| IssuerKeyId: &e.PrimaryKey.KeyId, |
| }, |
| } |
| |
| e.Subkeys = make([]Subkey, 1) |
| e.Subkeys[0] = Subkey{ |
| PublicKey: packet.NewRSAPublicKey(t, &encryptingPriv.PublicKey, true /* is a subkey */ ), |
| PrivateKey: packet.NewRSAPrivateKey(t, encryptingPriv, true /* is a subkey */ ), |
| Sig: &packet.Signature{ |
| CreationTime: t, |
| SigType: packet.SigTypeSubkeyBinding, |
| PubKeyAlgo: packet.PubKeyAlgoRSA, |
| Hash: crypto.SHA256, |
| FlagsValid: true, |
| FlagEncryptStorage: true, |
| FlagEncryptCommunications: true, |
| IssuerKeyId: &e.PrimaryKey.KeyId, |
| }, |
| } |
| |
| return e, nil |
| } |
| |
| // SerializePrivate serializes an Entity, including private key material, to |
| // the given Writer. For now, it must only be used on an Entity returned from |
| // NewEntity. |
| func (e *Entity) SerializePrivate(w io.Writer) (err os.Error) { |
| err = e.PrivateKey.Serialize(w) |
| if err != nil { |
| return |
| } |
| for _, ident := range e.Identities { |
| err = ident.UserId.Serialize(w) |
| if err != nil { |
| return |
| } |
| err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey) |
| if err != nil { |
| return |
| } |
| err = ident.SelfSignature.Serialize(w) |
| if err != nil { |
| return |
| } |
| } |
| for _, subkey := range e.Subkeys { |
| err = subkey.PrivateKey.Serialize(w) |
| if err != nil { |
| return |
| } |
| err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey) |
| if err != nil { |
| return |
| } |
| err = subkey.Sig.Serialize(w) |
| if err != nil { |
| return |
| } |
| } |
| return nil |
| } |
| |
| // Serialize writes the public part of the given Entity to w. (No private |
| // key material will be output). |
| func (e *Entity) Serialize(w io.Writer) os.Error { |
| err := e.PrimaryKey.Serialize(w) |
| if err != nil { |
| return err |
| } |
| for _, ident := range e.Identities { |
| err = ident.UserId.Serialize(w) |
| if err != nil { |
| return err |
| } |
| err = ident.SelfSignature.Serialize(w) |
| if err != nil { |
| return err |
| } |
| for _, sig := range ident.Signatures { |
| err = sig.Serialize(w) |
| if err != nil { |
| return err |
| } |
| } |
| } |
| for _, subkey := range e.Subkeys { |
| err = subkey.PublicKey.Serialize(w) |
| if err != nil { |
| return err |
| } |
| err = subkey.Sig.Serialize(w) |
| if err != nil { |
| return err |
| } |
| } |
| return nil |
| } |
| |
| // SignIdentity adds a signature to e, from signer, attesting that identity is |
| // associated with e. The provided identity must already be an element of |
| // e.Identities and the private key of signer must have been decrypted if |
| // necessary. |
| func (e *Entity) SignIdentity(identity string, signer *Entity) os.Error { |
| if signer.PrivateKey == nil { |
| return error.InvalidArgumentError("signing Entity must have a private key") |
| } |
| if signer.PrivateKey.Encrypted { |
| return error.InvalidArgumentError("signing Entity's private key must be decrypted") |
| } |
| ident, ok := e.Identities[identity] |
| if !ok { |
| return error.InvalidArgumentError("given identity string not found in Entity") |
| } |
| |
| sig := &packet.Signature{ |
| SigType: packet.SigTypeGenericCert, |
| PubKeyAlgo: signer.PrivateKey.PubKeyAlgo, |
| Hash: crypto.SHA256, |
| CreationTime: uint32(time.Seconds()), |
| IssuerKeyId: &signer.PrivateKey.KeyId, |
| } |
| if err := sig.SignKey(e.PrimaryKey, signer.PrivateKey); err != nil { |
| return err |
| } |
| ident.Signatures = append(ident.Signatures, sig) |
| return nil |
| } |