blob: 8ccebded2a3881d02c67817963bf296f95ca8a74 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package gc
import (
"cmd/compile/internal/syntax"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
)
// A Node is a single node in the syntax tree.
// Actually the syntax tree is a syntax DAG, because there is only one
// node with Op=ONAME for a given instance of a variable x.
// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
type Node struct {
// Tree structure.
// Generic recursive walks should follow these fields.
Left *Node
Right *Node
Ninit Nodes
Nbody Nodes
List Nodes
Rlist Nodes
// most nodes
Type *types.Type
Orig *Node // original form, for printing, and tracking copies of ONAMEs
// func
Func *Func
// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
Name *Name
Sym *types.Sym // various
E interface{} // Opt or Val, see methods below
// Various. Usually an offset into a struct. For example:
// - ONAME nodes that refer to local variables use it to identify their stack frame position.
// - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address.
// - OSTRUCTKEY uses it to store the named field's offset.
// - OXCASE and OXFALL use it to validate the use of fallthrough.
// - Named OLITERALs use it to to store their ambient iota value.
// Possibly still more uses. If you find any, document them.
Xoffset int64
Pos src.XPos
flags bitset32
Esc uint16 // EscXXX
Op Op
Etype types.EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS
Class Class // PPARAM, PAUTO, PEXTERN, etc
Embedded uint8 // ODCLFIELD embedded type
Walkdef uint8 // tracks state during typecheckdef; 2 == loop detected
Typecheck uint8 // tracks state during typechecking; 2 == loop detected
Initorder uint8
Likely int8 // likeliness of if statement
hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set
}
// IsAutoTmp indicates if n was created by the compiler as a temporary,
// based on the setting of the .AutoTemp flag in n's Name.
func (n *Node) IsAutoTmp() bool {
if n == nil || n.Op != ONAME {
return false
}
return n.Name.AutoTemp()
}
const (
nodeHasBreak = 1 << iota
nodeIsClosureVar
nodeIsOutputParamHeapAddr
nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
nodeAssigned // is the variable ever assigned to
nodeAddrtaken // address taken, even if not moved to heap
nodeImplicit
nodeIsddd // is the argument variadic
nodeLocal // type created in this file (see also Type.Local)
nodeDiag // already printed error about this
nodeColas // OAS resulting from :=
nodeNonNil // guaranteed to be non-nil
nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
nodeBounded // bounds check unnecessary
nodeAddable // addressable
nodeUsed // for variable/label declared and not used error
nodeHasCall // expression contains a function call
)
func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 }
func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 }
func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 }
func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 }
func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 }
func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 }
func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 }
func (n *Node) Isddd() bool { return n.flags&nodeIsddd != 0 }
func (n *Node) Local() bool { return n.flags&nodeLocal != 0 }
func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 }
func (n *Node) Colas() bool { return n.flags&nodeColas != 0 }
func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 }
func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 }
func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 }
func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 }
func (n *Node) Used() bool { return n.flags&nodeUsed != 0 }
func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 }
func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) }
func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) }
func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) }
func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) }
func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) }
func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) }
func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) }
func (n *Node) SetIsddd(b bool) { n.flags.set(nodeIsddd, b) }
func (n *Node) SetLocal(b bool) { n.flags.set(nodeLocal, b) }
func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) }
func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) }
func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) }
func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) }
func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) }
func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) }
func (n *Node) SetUsed(b bool) { n.flags.set(nodeUsed, b) }
func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) }
// Val returns the Val for the node.
func (n *Node) Val() Val {
if n.hasVal != +1 {
return Val{}
}
return Val{n.E}
}
// SetVal sets the Val for the node, which must not have been used with SetOpt.
func (n *Node) SetVal(v Val) {
if n.hasVal == -1 {
Debug['h'] = 1
Dump("have Opt", n)
Fatalf("have Opt")
}
n.hasVal = +1
n.E = v.U
}
// Opt returns the optimizer data for the node.
func (n *Node) Opt() interface{} {
if n.hasVal != -1 {
return nil
}
return n.E
}
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
func (n *Node) SetOpt(x interface{}) {
if x == nil && n.hasVal >= 0 {
return
}
if n.hasVal == +1 {
Debug['h'] = 1
Dump("have Val", n)
Fatalf("have Val")
}
n.hasVal = -1
n.E = x
}
func (n *Node) Iota() int64 {
return n.Xoffset
}
func (n *Node) SetIota(x int64) {
n.Xoffset = x
}
// mayBeShared reports whether n may occur in multiple places in the AST.
// Extra care must be taken when mutating such a node.
func (n *Node) mayBeShared() bool {
switch n.Op {
case ONAME, OLITERAL, OTYPE:
return true
}
return false
}
// Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
type Name struct {
Pack *Node // real package for import . names
Pkg *types.Pkg // pkg for OPACK nodes
Defn *Node // initializing assignment
Curfn *Node // function for local variables
Param *Param // additional fields for ONAME, OTYPE
Decldepth int32 // declaration loop depth, increased for every loop or label
Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one.
Funcdepth int32
flags bitset8
}
const (
nameCaptured = 1 << iota // is the variable captured by a closure
nameReadonly
nameByval // is the variable captured by value or by reference
nameNeedzero // if it contains pointers, needs to be zeroed on function entry
nameKeepalive // mark value live across unknown assembly call
nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
)
func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 }
func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 }
func (n *Name) Byval() bool { return n.flags&nameByval != 0 }
func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 }
func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 }
func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) }
func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) }
func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) }
func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) }
func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) }
type Param struct {
Ntype *Node
Heapaddr *Node // temp holding heap address of param
// ONAME PAUTOHEAP
Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
// ONAME PPARAM
Field *types.Field // TFIELD in arg struct
// ONAME closure linkage
// Consider:
//
// func f() {
// x := 1 // x1
// func() {
// use(x) // x2
// func() {
// use(x) // x3
// --- parser is here ---
// }()
// }()
// }
//
// There is an original declaration of x and then a chain of mentions of x
// leading into the current function. Each time x is mentioned in a new closure,
// we create a variable representing x for use in that specific closure,
// since the way you get to x is different in each closure.
//
// Let's number the specific variables as shown in the code:
// x1 is the original x, x2 is when mentioned in the closure,
// and x3 is when mentioned in the closure in the closure.
//
// We keep these linked (assume N > 1):
//
// - x1.Defn = original declaration statement for x (like most variables)
// - x1.Innermost = current innermost closure x (in this case x3), or nil for none
// - x1.IsClosureVar() = false
//
// - xN.Defn = x1, N > 1
// - xN.IsClosureVar() = true, N > 1
// - x2.Outer = nil
// - xN.Outer = x(N-1), N > 2
//
//
// When we look up x in the symbol table, we always get x1.
// Then we can use x1.Innermost (if not nil) to get the x
// for the innermost known closure function,
// but the first reference in a closure will find either no x1.Innermost
// or an x1.Innermost with .Funcdepth < Funcdepth.
// In that case, a new xN must be created, linked in with:
//
// xN.Defn = x1
// xN.Outer = x1.Innermost
// x1.Innermost = xN
//
// When we finish the function, we'll process its closure variables
// and find xN and pop it off the list using:
//
// x1 := xN.Defn
// x1.Innermost = xN.Outer
//
// We leave xN.Innermost set so that we can still get to the original
// variable quickly. Not shown here, but once we're
// done parsing a function and no longer need xN.Outer for the
// lexical x reference links as described above, closurebody
// recomputes xN.Outer as the semantic x reference link tree,
// even filling in x in intermediate closures that might not
// have mentioned it along the way to inner closures that did.
// See closurebody for details.
//
// During the eventual compilation, then, for closure variables we have:
//
// xN.Defn = original variable
// xN.Outer = variable captured in next outward scope
// to make closure where xN appears
//
// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
Innermost *Node
Outer *Node
// OTYPE
//
// TODO: Should Func pragmas also be stored on the Name?
Pragma syntax.Pragma
Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
}
// Func holds Node fields used only with function-like nodes.
type Func struct {
Shortname *types.Sym
Enter Nodes // for example, allocate and initialize memory for escaping parameters
Exit Nodes
Cvars Nodes // closure params
Dcl []*Node // autodcl for this func/closure
Inldcl Nodes // copy of dcl for use in inlining
Closgen int
Outerfunc *Node // outer function (for closure)
FieldTrack map[*types.Sym]struct{}
Ntype *Node // signature
Top int // top context (Ecall, Eproc, etc)
Closure *Node // OCLOSURE <-> ODCLFUNC
Nname *Node
lsym *obj.LSym
Inl Nodes // copy of the body for use in inlining
InlCost int32
Depth int32
Label int32 // largest auto-generated label in this function
Endlineno src.XPos
WBPos src.XPos // position of first write barrier
Pragma syntax.Pragma // go:xxx function annotations
flags bitset8
}
const (
funcDupok = 1 << iota // duplicate definitions ok
funcWrapper // is method wrapper
funcNeedctxt // function uses context register (has closure variables)
funcReflectMethod // function calls reflect.Type.Method or MethodByName
funcIsHiddenClosure
funcNoFramePointer // Must not use a frame pointer for this function
funcHasDefer // contains a defer statement
)
func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 }
func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 }
func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 }
func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 }
func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 }
func (f *Func) NoFramePointer() bool { return f.flags&funcNoFramePointer != 0 }
func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 }
func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) }
func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) }
func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) }
func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) }
func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) }
func (f *Func) SetNoFramePointer(b bool) { f.flags.set(funcNoFramePointer, b) }
func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) }
type Op uint8
// Node ops.
const (
OXXX = Op(iota)
// names
ONAME // var, const or func name
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
OTYPE // type name
OPACK // import
OLITERAL // literal
// expressions
OADD // Left + Right
OSUB // Left - Right
OOR // Left | Right
OXOR // Left ^ Right
OADDSTR // +{List} (string addition, list elements are strings)
OADDR // &Left
OANDAND // Left && Right
OAPPEND // append(List); after walk, Left may contain elem type descriptor
OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte)
OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune)
OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string)
OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string)
OAS // Left = Right or (if Colas=true) Left := Right
OAS2 // List = Rlist (x, y, z = a, b, c)
OAS2FUNC // List = Rlist (x, y = f())
OAS2RECV // List = Rlist (x, ok = <-c)
OAS2MAPR // List = Rlist (x, ok = m["foo"])
OAS2DOTTYPE // List = Rlist (x, ok = I.(int))
OASOP // Left Etype= Right (x += y)
OCALL // Left(List) (function call, method call or type conversion)
OCALLFUNC // Left(List) (function call f(args))
OCALLMETH // Left(List) (direct method call x.Method(args))
OCALLINTER // Left(List) (interface method call x.Method(args))
OCALLPART // Left.Right (method expression x.Method, not called)
OCAP // cap(Left)
OCLOSE // close(Left)
OCLOSURE // func Type { Body } (func literal)
OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y)
OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc)
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array)
OSLICELIT // Type{List} (composite literal, Type is slice)
OPTRLIT // &Left (left is composite literal)
OCONV // Type(Left) (type conversion)
OCONVIFACE // Type(Left) (type conversion, to interface)
OCONVNOP // Type(Left) (type conversion, no effect)
OCOPY // copy(Left, Right)
ODCL // var Left (declares Left of type Left.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLFIELD // struct field, interface field, or func/method argument/return value.
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int or type Int = int
ODELETE // delete(Left, Right)
ODOT // Left.Sym (Left is of struct type)
ODOTPTR // Left.Sym (Left is of pointer to struct type)
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
ODOTINTER // Left.Sym (Left is interface, Right is method name)
OXDOT // Left.Sym (before rewrite to one of the preceding)
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
OEQ // Left == Right
ONE // Left != Right
OLT // Left < Right
OLE // Left <= Right
OGE // Left >= Right
OGT // Left > Right
OIND // *Left
OINDEX // Left[Right] (index of array or slice)
OINDEXMAP // Left[Right] (index of map)
OKEY // Left:Right (key:value in struct/array/map literal)
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
OLEN // len(Left)
OMAKE // make(List) (before type checking converts to one of the following)
OMAKECHAN // make(Type, Left) (type is chan)
OMAKEMAP // make(Type, Left) (type is map)
OMAKESLICE // make(Type, Left, Right) (type is slice)
OMUL // Left * Right
ODIV // Left / Right
OMOD // Left % Right
OLSH // Left << Right
ORSH // Left >> Right
OAND // Left & Right
OANDNOT // Left &^ Right
ONEW // new(Left)
ONOT // !Left
OCOM // ^Left
OPLUS // +Left
OMINUS // -Left
OOROR // Left || Right
OPANIC // panic(Left)
OPRINT // print(List)
OPRINTN // println(List)
OPAREN // (Left)
OSEND // Left <- Right
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
OSLICEARR // Left[List[0] : List[1]] (Left is array)
OSLICESTR // Left[List[0] : List[1]] (Left is string)
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
ORECOVER // recover()
ORECV // <-Left
ORUNESTR // Type(Left) (Type is string, Left is rune)
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
OIOTA // iota
OREAL // real(Left)
OIMAG // imag(Left)
OCOMPLEX // complex(Left, Right)
OALIGNOF // unsafe.Alignof(Left)
OOFFSETOF // unsafe.Offsetof(Left)
OSIZEOF // unsafe.Sizeof(Left)
// statements
OBLOCK // { List } (block of code)
OBREAK // break
OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default)
OXCASE // case List: Nbody (select case before processing; List==nil means default)
OCONTINUE // continue
ODEFER // defer Left (Left must be call)
OEMPTY // no-op (empty statement)
OFALL // fallthrough (after processing)
OXFALL // fallthrough (before processing)
OFOR // for Ninit; Left; Right { Nbody }
OFORUNTIL // for Ninit; Left; Right { Nbody } ; test applied after executing body, not before
OGOTO // goto Left
OIF // if Ninit; Left { Nbody } else { Rlist }
OLABEL // Left:
OPROC // go Left (Left must be call)
ORANGE // for List = range Right { Nbody }
ORETURN // return List
OSELECT // select { List } (List is list of OXCASE or OCASE)
OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
OTYPESW // List = Left.(type) (appears as .Left of OSWITCH)
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
OTFUNC // func()
OTARRAY // []int, [8]int, [N]int or [...]int
// misc
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
ODDDARG // func f(args ...int), introduced by escape analysis.
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OIDATA // data word of an interface value in Left
OSPTR // base pointer of a slice or string.
OCLOSUREVAR // variable reference at beginning of closure function
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARKILL // variable is dead
OVARLIVE // variable is alive
OINDREGSP // offset plus indirect of REGSP, such as 8(SP).
// arch-specific opcodes
ORETJMP // return to other function
OGETG // runtime.getg() (read g pointer)
OEND
)
// Nodes is a pointer to a slice of *Node.
// For fields that are not used in most nodes, this is used instead of
// a slice to save space.
type Nodes struct{ slice *[]*Node }
// Slice returns the entries in Nodes as a slice.
// Changes to the slice entries (as in s[i] = n) will be reflected in
// the Nodes.
func (n Nodes) Slice() []*Node {
if n.slice == nil {
return nil
}
return *n.slice
}
// Len returns the number of entries in Nodes.
func (n Nodes) Len() int {
if n.slice == nil {
return 0
}
return len(*n.slice)
}
// Index returns the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n Nodes) Index(i int) *Node {
return (*n.slice)[i]
}
// First returns the first element of Nodes (same as n.Index(0)).
// It panics if n has no elements.
func (n Nodes) First() *Node {
return (*n.slice)[0]
}
// Second returns the second element of Nodes (same as n.Index(1)).
// It panics if n has fewer than two elements.
func (n Nodes) Second() *Node {
return (*n.slice)[1]
}
// Set sets n to a slice.
// This takes ownership of the slice.
func (n *Nodes) Set(s []*Node) {
if len(s) == 0 {
n.slice = nil
} else {
// Copy s and take address of t rather than s to avoid
// allocation in the case where len(s) == 0 (which is
// over 3x more common, dynamically, for make.bash).
t := s
n.slice = &t
}
}
// Set1 sets n to a slice containing a single node.
func (n *Nodes) Set1(n1 *Node) {
n.slice = &[]*Node{n1}
}
// Set2 sets n to a slice containing two nodes.
func (n *Nodes) Set2(n1, n2 *Node) {
n.slice = &[]*Node{n1, n2}
}
// Set3 sets n to a slice containing three nodes.
func (n *Nodes) Set3(n1, n2, n3 *Node) {
n.slice = &[]*Node{n1, n2, n3}
}
// MoveNodes sets n to the contents of n2, then clears n2.
func (n *Nodes) MoveNodes(n2 *Nodes) {
n.slice = n2.slice
n2.slice = nil
}
// SetIndex sets the i'th element of Nodes to node.
// It panics if n does not have at least i+1 elements.
func (n Nodes) SetIndex(i int, node *Node) {
(*n.slice)[i] = node
}
// SetFirst sets the first element of Nodes to node.
// It panics if n does not have at least one elements.
func (n Nodes) SetFirst(node *Node) {
(*n.slice)[0] = node
}
// SetSecond sets the second element of Nodes to node.
// It panics if n does not have at least two elements.
func (n Nodes) SetSecond(node *Node) {
(*n.slice)[1] = node
}
// Addr returns the address of the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n Nodes) Addr(i int) **Node {
return &(*n.slice)[i]
}
// Append appends entries to Nodes.
func (n *Nodes) Append(a ...*Node) {
if len(a) == 0 {
return
}
if n.slice == nil {
s := make([]*Node, len(a))
copy(s, a)
n.slice = &s
return
}
*n.slice = append(*n.slice, a...)
}
// Prepend prepends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Prepend(a ...*Node) {
if len(a) == 0 {
return
}
if n.slice == nil {
n.slice = &a
} else {
*n.slice = append(a, *n.slice...)
}
}
// AppendNodes appends the contents of *n2 to n, then clears n2.
func (n *Nodes) AppendNodes(n2 *Nodes) {
switch {
case n2.slice == nil:
case n.slice == nil:
n.slice = n2.slice
default:
*n.slice = append(*n.slice, *n2.slice...)
}
n2.slice = nil
}