| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package bytes implements functions for the manipulation of byte slices. |
| // It is analogous to the facilities of the strings package. |
| package bytes |
| |
| import ( |
| "internal/bytealg" |
| "unicode" |
| "unicode/utf8" |
| ) |
| |
| // Equal reports whether a and b |
| // are the same length and contain the same bytes. |
| // A nil argument is equivalent to an empty slice. |
| func Equal(a, b []byte) bool { |
| // Neither cmd/compile nor gccgo allocates for these string conversions. |
| return string(a) == string(b) |
| } |
| |
| // Compare returns an integer comparing two byte slices lexicographically. |
| // The result will be 0 if a==b, -1 if a < b, and +1 if a > b. |
| // A nil argument is equivalent to an empty slice. |
| func Compare(a, b []byte) int { |
| return bytealg.Compare(a, b) |
| } |
| |
| // explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes), |
| // up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes. |
| func explode(s []byte, n int) [][]byte { |
| if n <= 0 { |
| n = len(s) |
| } |
| a := make([][]byte, n) |
| var size int |
| na := 0 |
| for len(s) > 0 { |
| if na+1 >= n { |
| a[na] = s |
| na++ |
| break |
| } |
| _, size = utf8.DecodeRune(s) |
| a[na] = s[0:size:size] |
| s = s[size:] |
| na++ |
| } |
| return a[0:na] |
| } |
| |
| // Count counts the number of non-overlapping instances of sep in s. |
| // If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s. |
| func Count(s, sep []byte) int { |
| // special case |
| if len(sep) == 0 { |
| return utf8.RuneCount(s) + 1 |
| } |
| if len(sep) == 1 { |
| return bytealg.Count(s, sep[0]) |
| } |
| n := 0 |
| for { |
| i := Index(s, sep) |
| if i == -1 { |
| return n |
| } |
| n++ |
| s = s[i+len(sep):] |
| } |
| } |
| |
| // Contains reports whether subslice is within b. |
| func Contains(b, subslice []byte) bool { |
| return Index(b, subslice) != -1 |
| } |
| |
| // ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b. |
| func ContainsAny(b []byte, chars string) bool { |
| return IndexAny(b, chars) >= 0 |
| } |
| |
| // ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b. |
| func ContainsRune(b []byte, r rune) bool { |
| return IndexRune(b, r) >= 0 |
| } |
| |
| // IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b. |
| func IndexByte(b []byte, c byte) int { |
| return bytealg.IndexByte(b, c) |
| } |
| |
| func indexBytePortable(s []byte, c byte) int { |
| for i, b := range s { |
| if b == c { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. |
| func LastIndex(s, sep []byte) int { |
| n := len(sep) |
| switch { |
| case n == 0: |
| return len(s) |
| case n == 1: |
| return LastIndexByte(s, sep[0]) |
| case n == len(s): |
| if Equal(s, sep) { |
| return 0 |
| } |
| return -1 |
| case n > len(s): |
| return -1 |
| } |
| // Rabin-Karp search from the end of the string |
| hashss, pow := hashStrRev(sep) |
| last := len(s) - n |
| var h uint32 |
| for i := len(s) - 1; i >= last; i-- { |
| h = h*primeRK + uint32(s[i]) |
| } |
| if h == hashss && Equal(s[last:], sep) { |
| return last |
| } |
| for i := last - 1; i >= 0; i-- { |
| h *= primeRK |
| h += uint32(s[i]) |
| h -= pow * uint32(s[i+n]) |
| if h == hashss && Equal(s[i:i+n], sep) { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. |
| func LastIndexByte(s []byte, c byte) int { |
| for i := len(s) - 1; i >= 0; i-- { |
| if s[i] == c { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // IndexRune interprets s as a sequence of UTF-8-encoded code points. |
| // It returns the byte index of the first occurrence in s of the given rune. |
| // It returns -1 if rune is not present in s. |
| // If r is utf8.RuneError, it returns the first instance of any |
| // invalid UTF-8 byte sequence. |
| func IndexRune(s []byte, r rune) int { |
| switch { |
| case 0 <= r && r < utf8.RuneSelf: |
| return IndexByte(s, byte(r)) |
| case r == utf8.RuneError: |
| for i := 0; i < len(s); { |
| r1, n := utf8.DecodeRune(s[i:]) |
| if r1 == utf8.RuneError { |
| return i |
| } |
| i += n |
| } |
| return -1 |
| case !utf8.ValidRune(r): |
| return -1 |
| default: |
| var b [utf8.UTFMax]byte |
| n := utf8.EncodeRune(b[:], r) |
| return Index(s, b[:n]) |
| } |
| } |
| |
| // IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points. |
| // It returns the byte index of the first occurrence in s of any of the Unicode |
| // code points in chars. It returns -1 if chars is empty or if there is no code |
| // point in common. |
| func IndexAny(s []byte, chars string) int { |
| if chars == "" { |
| // Avoid scanning all of s. |
| return -1 |
| } |
| if len(s) > 8 { |
| if as, isASCII := makeASCIISet(chars); isASCII { |
| for i, c := range s { |
| if as.contains(c) { |
| return i |
| } |
| } |
| return -1 |
| } |
| } |
| var width int |
| for i := 0; i < len(s); i += width { |
| r := rune(s[i]) |
| if r < utf8.RuneSelf { |
| width = 1 |
| } else { |
| r, width = utf8.DecodeRune(s[i:]) |
| } |
| for _, ch := range chars { |
| if r == ch { |
| return i |
| } |
| } |
| } |
| return -1 |
| } |
| |
| // LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code |
| // points. It returns the byte index of the last occurrence in s of any of |
| // the Unicode code points in chars. It returns -1 if chars is empty or if |
| // there is no code point in common. |
| func LastIndexAny(s []byte, chars string) int { |
| if chars == "" { |
| // Avoid scanning all of s. |
| return -1 |
| } |
| if len(s) > 8 { |
| if as, isASCII := makeASCIISet(chars); isASCII { |
| for i := len(s) - 1; i >= 0; i-- { |
| if as.contains(s[i]) { |
| return i |
| } |
| } |
| return -1 |
| } |
| } |
| for i := len(s); i > 0; { |
| r, size := utf8.DecodeLastRune(s[:i]) |
| i -= size |
| for _, c := range chars { |
| if r == c { |
| return i |
| } |
| } |
| } |
| return -1 |
| } |
| |
| // Generic split: splits after each instance of sep, |
| // including sepSave bytes of sep in the subslices. |
| func genSplit(s, sep []byte, sepSave, n int) [][]byte { |
| if n == 0 { |
| return nil |
| } |
| if len(sep) == 0 { |
| return explode(s, n) |
| } |
| if n < 0 { |
| n = Count(s, sep) + 1 |
| } |
| |
| a := make([][]byte, n) |
| n-- |
| i := 0 |
| for i < n { |
| m := Index(s, sep) |
| if m < 0 { |
| break |
| } |
| a[i] = s[: m+sepSave : m+sepSave] |
| s = s[m+len(sep):] |
| i++ |
| } |
| a[i] = s |
| return a[:i+1] |
| } |
| |
| // SplitN slices s into subslices separated by sep and returns a slice of |
| // the subslices between those separators. |
| // If sep is empty, SplitN splits after each UTF-8 sequence. |
| // The count determines the number of subslices to return: |
| // n > 0: at most n subslices; the last subslice will be the unsplit remainder. |
| // n == 0: the result is nil (zero subslices) |
| // n < 0: all subslices |
| func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) } |
| |
| // SplitAfterN slices s into subslices after each instance of sep and |
| // returns a slice of those subslices. |
| // If sep is empty, SplitAfterN splits after each UTF-8 sequence. |
| // The count determines the number of subslices to return: |
| // n > 0: at most n subslices; the last subslice will be the unsplit remainder. |
| // n == 0: the result is nil (zero subslices) |
| // n < 0: all subslices |
| func SplitAfterN(s, sep []byte, n int) [][]byte { |
| return genSplit(s, sep, len(sep), n) |
| } |
| |
| // Split slices s into all subslices separated by sep and returns a slice of |
| // the subslices between those separators. |
| // If sep is empty, Split splits after each UTF-8 sequence. |
| // It is equivalent to SplitN with a count of -1. |
| func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) } |
| |
| // SplitAfter slices s into all subslices after each instance of sep and |
| // returns a slice of those subslices. |
| // If sep is empty, SplitAfter splits after each UTF-8 sequence. |
| // It is equivalent to SplitAfterN with a count of -1. |
| func SplitAfter(s, sep []byte) [][]byte { |
| return genSplit(s, sep, len(sep), -1) |
| } |
| |
| var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} |
| |
| // Fields interprets s as a sequence of UTF-8-encoded code points. |
| // It splits the slice s around each instance of one or more consecutive white space |
| // characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an |
| // empty slice if s contains only white space. |
| func Fields(s []byte) [][]byte { |
| // First count the fields. |
| // This is an exact count if s is ASCII, otherwise it is an approximation. |
| n := 0 |
| wasSpace := 1 |
| // setBits is used to track which bits are set in the bytes of s. |
| setBits := uint8(0) |
| for i := 0; i < len(s); i++ { |
| r := s[i] |
| setBits |= r |
| isSpace := int(asciiSpace[r]) |
| n += wasSpace & ^isSpace |
| wasSpace = isSpace |
| } |
| |
| if setBits >= utf8.RuneSelf { |
| // Some runes in the input slice are not ASCII. |
| return FieldsFunc(s, unicode.IsSpace) |
| } |
| |
| // ASCII fast path |
| a := make([][]byte, n) |
| na := 0 |
| fieldStart := 0 |
| i := 0 |
| // Skip spaces in the front of the input. |
| for i < len(s) && asciiSpace[s[i]] != 0 { |
| i++ |
| } |
| fieldStart = i |
| for i < len(s) { |
| if asciiSpace[s[i]] == 0 { |
| i++ |
| continue |
| } |
| a[na] = s[fieldStart:i:i] |
| na++ |
| i++ |
| // Skip spaces in between fields. |
| for i < len(s) && asciiSpace[s[i]] != 0 { |
| i++ |
| } |
| fieldStart = i |
| } |
| if fieldStart < len(s) { // Last field might end at EOF. |
| a[na] = s[fieldStart:len(s):len(s)] |
| } |
| return a |
| } |
| |
| // FieldsFunc interprets s as a sequence of UTF-8-encoded code points. |
| // It splits the slice s at each run of code points c satisfying f(c) and |
| // returns a slice of subslices of s. If all code points in s satisfy f(c), or |
| // len(s) == 0, an empty slice is returned. |
| // FieldsFunc makes no guarantees about the order in which it calls f(c). |
| // If f does not return consistent results for a given c, FieldsFunc may crash. |
| func FieldsFunc(s []byte, f func(rune) bool) [][]byte { |
| // A span is used to record a slice of s of the form s[start:end]. |
| // The start index is inclusive and the end index is exclusive. |
| type span struct { |
| start int |
| end int |
| } |
| spans := make([]span, 0, 32) |
| |
| // Find the field start and end indices. |
| wasField := false |
| fromIndex := 0 |
| for i := 0; i < len(s); { |
| size := 1 |
| r := rune(s[i]) |
| if r >= utf8.RuneSelf { |
| r, size = utf8.DecodeRune(s[i:]) |
| } |
| if f(r) { |
| if wasField { |
| spans = append(spans, span{start: fromIndex, end: i}) |
| wasField = false |
| } |
| } else { |
| if !wasField { |
| fromIndex = i |
| wasField = true |
| } |
| } |
| i += size |
| } |
| |
| // Last field might end at EOF. |
| if wasField { |
| spans = append(spans, span{fromIndex, len(s)}) |
| } |
| |
| // Create subslices from recorded field indices. |
| a := make([][]byte, len(spans)) |
| for i, span := range spans { |
| a[i] = s[span.start:span.end:span.end] |
| } |
| |
| return a |
| } |
| |
| // Join concatenates the elements of s to create a new byte slice. The separator |
| // sep is placed between elements in the resulting slice. |
| func Join(s [][]byte, sep []byte) []byte { |
| if len(s) == 0 { |
| return []byte{} |
| } |
| if len(s) == 1 { |
| // Just return a copy. |
| return append([]byte(nil), s[0]...) |
| } |
| n := len(sep) * (len(s) - 1) |
| for _, v := range s { |
| n += len(v) |
| } |
| |
| b := make([]byte, n) |
| bp := copy(b, s[0]) |
| for _, v := range s[1:] { |
| bp += copy(b[bp:], sep) |
| bp += copy(b[bp:], v) |
| } |
| return b |
| } |
| |
| // HasPrefix tests whether the byte slice s begins with prefix. |
| func HasPrefix(s, prefix []byte) bool { |
| return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix) |
| } |
| |
| // HasSuffix tests whether the byte slice s ends with suffix. |
| func HasSuffix(s, suffix []byte) bool { |
| return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix) |
| } |
| |
| // Map returns a copy of the byte slice s with all its characters modified |
| // according to the mapping function. If mapping returns a negative value, the character is |
| // dropped from the byte slice with no replacement. The characters in s and the |
| // output are interpreted as UTF-8-encoded code points. |
| func Map(mapping func(r rune) rune, s []byte) []byte { |
| // In the worst case, the slice can grow when mapped, making |
| // things unpleasant. But it's so rare we barge in assuming it's |
| // fine. It could also shrink but that falls out naturally. |
| maxbytes := len(s) // length of b |
| nbytes := 0 // number of bytes encoded in b |
| b := make([]byte, maxbytes) |
| for i := 0; i < len(s); { |
| wid := 1 |
| r := rune(s[i]) |
| if r >= utf8.RuneSelf { |
| r, wid = utf8.DecodeRune(s[i:]) |
| } |
| r = mapping(r) |
| if r >= 0 { |
| rl := utf8.RuneLen(r) |
| if rl < 0 { |
| rl = len(string(utf8.RuneError)) |
| } |
| if nbytes+rl > maxbytes { |
| // Grow the buffer. |
| maxbytes = maxbytes*2 + utf8.UTFMax |
| nb := make([]byte, maxbytes) |
| copy(nb, b[0:nbytes]) |
| b = nb |
| } |
| nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) |
| } |
| i += wid |
| } |
| return b[0:nbytes] |
| } |
| |
| // Repeat returns a new byte slice consisting of count copies of b. |
| // |
| // It panics if count is negative or if |
| // the result of (len(b) * count) overflows. |
| func Repeat(b []byte, count int) []byte { |
| if count == 0 { |
| return []byte{} |
| } |
| // Since we cannot return an error on overflow, |
| // we should panic if the repeat will generate |
| // an overflow. |
| // See Issue golang.org/issue/16237. |
| if count < 0 { |
| panic("bytes: negative Repeat count") |
| } else if len(b)*count/count != len(b) { |
| panic("bytes: Repeat count causes overflow") |
| } |
| |
| nb := make([]byte, len(b)*count) |
| bp := copy(nb, b) |
| for bp < len(nb) { |
| copy(nb[bp:], nb[:bp]) |
| bp *= 2 |
| } |
| return nb |
| } |
| |
| // ToUpper returns a copy of the byte slice s with all Unicode letters mapped to |
| // their upper case. |
| func ToUpper(s []byte) []byte { |
| isASCII, hasLower := true, false |
| for i := 0; i < len(s); i++ { |
| c := s[i] |
| if c >= utf8.RuneSelf { |
| isASCII = false |
| break |
| } |
| hasLower = hasLower || ('a' <= c && c <= 'z') |
| } |
| |
| if isASCII { // optimize for ASCII-only byte slices. |
| if !hasLower { |
| // Just return a copy. |
| return append([]byte(""), s...) |
| } |
| b := make([]byte, len(s)) |
| for i := 0; i < len(s); i++ { |
| c := s[i] |
| if 'a' <= c && c <= 'z' { |
| c -= 'a' - 'A' |
| } |
| b[i] = c |
| } |
| return b |
| } |
| return Map(unicode.ToUpper, s) |
| } |
| |
| // ToLower returns a copy of the byte slice s with all Unicode letters mapped to |
| // their lower case. |
| func ToLower(s []byte) []byte { |
| isASCII, hasUpper := true, false |
| for i := 0; i < len(s); i++ { |
| c := s[i] |
| if c >= utf8.RuneSelf { |
| isASCII = false |
| break |
| } |
| hasUpper = hasUpper || ('A' <= c && c <= 'Z') |
| } |
| |
| if isASCII { // optimize for ASCII-only byte slices. |
| if !hasUpper { |
| return append([]byte(""), s...) |
| } |
| b := make([]byte, len(s)) |
| for i := 0; i < len(s); i++ { |
| c := s[i] |
| if 'A' <= c && c <= 'Z' { |
| c += 'a' - 'A' |
| } |
| b[i] = c |
| } |
| return b |
| } |
| return Map(unicode.ToLower, s) |
| } |
| |
| // ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case. |
| func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) } |
| |
| // ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their |
| // upper case, giving priority to the special casing rules. |
| func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte { |
| return Map(c.ToUpper, s) |
| } |
| |
| // ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their |
| // lower case, giving priority to the special casing rules. |
| func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte { |
| return Map(c.ToLower, s) |
| } |
| |
| // ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their |
| // title case, giving priority to the special casing rules. |
| func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte { |
| return Map(c.ToTitle, s) |
| } |
| |
| // ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes |
| // representing invalid UTF-8 replaced with the bytes in replacement, which may be empty. |
| func ToValidUTF8(s, replacement []byte) []byte { |
| b := make([]byte, 0, len(s)+len(replacement)) |
| invalid := false // previous byte was from an invalid UTF-8 sequence |
| for i := 0; i < len(s); { |
| c := s[i] |
| if c < utf8.RuneSelf { |
| i++ |
| invalid = false |
| b = append(b, byte(c)) |
| continue |
| } |
| _, wid := utf8.DecodeRune(s[i:]) |
| if wid == 1 { |
| i++ |
| if !invalid { |
| invalid = true |
| b = append(b, replacement...) |
| } |
| continue |
| } |
| invalid = false |
| b = append(b, s[i:i+wid]...) |
| i += wid |
| } |
| return b |
| } |
| |
| // isSeparator reports whether the rune could mark a word boundary. |
| // TODO: update when package unicode captures more of the properties. |
| func isSeparator(r rune) bool { |
| // ASCII alphanumerics and underscore are not separators |
| if r <= 0x7F { |
| switch { |
| case '0' <= r && r <= '9': |
| return false |
| case 'a' <= r && r <= 'z': |
| return false |
| case 'A' <= r && r <= 'Z': |
| return false |
| case r == '_': |
| return false |
| } |
| return true |
| } |
| // Letters and digits are not separators |
| if unicode.IsLetter(r) || unicode.IsDigit(r) { |
| return false |
| } |
| // Otherwise, all we can do for now is treat spaces as separators. |
| return unicode.IsSpace(r) |
| } |
| |
| // Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin |
| // words mapped to their title case. |
| // |
| // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly. |
| func Title(s []byte) []byte { |
| // Use a closure here to remember state. |
| // Hackish but effective. Depends on Map scanning in order and calling |
| // the closure once per rune. |
| prev := ' ' |
| return Map( |
| func(r rune) rune { |
| if isSeparator(prev) { |
| prev = r |
| return unicode.ToTitle(r) |
| } |
| prev = r |
| return r |
| }, |
| s) |
| } |
| |
| // TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off |
| // all leading UTF-8-encoded code points c that satisfy f(c). |
| func TrimLeftFunc(s []byte, f func(r rune) bool) []byte { |
| i := indexFunc(s, f, false) |
| if i == -1 { |
| return nil |
| } |
| return s[i:] |
| } |
| |
| // TrimRightFunc returns a subslice of s by slicing off all trailing |
| // UTF-8-encoded code points c that satisfy f(c). |
| func TrimRightFunc(s []byte, f func(r rune) bool) []byte { |
| i := lastIndexFunc(s, f, false) |
| if i >= 0 && s[i] >= utf8.RuneSelf { |
| _, wid := utf8.DecodeRune(s[i:]) |
| i += wid |
| } else { |
| i++ |
| } |
| return s[0:i] |
| } |
| |
| // TrimFunc returns a subslice of s by slicing off all leading and trailing |
| // UTF-8-encoded code points c that satisfy f(c). |
| func TrimFunc(s []byte, f func(r rune) bool) []byte { |
| return TrimRightFunc(TrimLeftFunc(s, f), f) |
| } |
| |
| // TrimPrefix returns s without the provided leading prefix string. |
| // If s doesn't start with prefix, s is returned unchanged. |
| func TrimPrefix(s, prefix []byte) []byte { |
| if HasPrefix(s, prefix) { |
| return s[len(prefix):] |
| } |
| return s |
| } |
| |
| // TrimSuffix returns s without the provided trailing suffix string. |
| // If s doesn't end with suffix, s is returned unchanged. |
| func TrimSuffix(s, suffix []byte) []byte { |
| if HasSuffix(s, suffix) { |
| return s[:len(s)-len(suffix)] |
| } |
| return s |
| } |
| |
| // IndexFunc interprets s as a sequence of UTF-8-encoded code points. |
| // It returns the byte index in s of the first Unicode |
| // code point satisfying f(c), or -1 if none do. |
| func IndexFunc(s []byte, f func(r rune) bool) int { |
| return indexFunc(s, f, true) |
| } |
| |
| // LastIndexFunc interprets s as a sequence of UTF-8-encoded code points. |
| // It returns the byte index in s of the last Unicode |
| // code point satisfying f(c), or -1 if none do. |
| func LastIndexFunc(s []byte, f func(r rune) bool) int { |
| return lastIndexFunc(s, f, true) |
| } |
| |
| // indexFunc is the same as IndexFunc except that if |
| // truth==false, the sense of the predicate function is |
| // inverted. |
| func indexFunc(s []byte, f func(r rune) bool, truth bool) int { |
| start := 0 |
| for start < len(s) { |
| wid := 1 |
| r := rune(s[start]) |
| if r >= utf8.RuneSelf { |
| r, wid = utf8.DecodeRune(s[start:]) |
| } |
| if f(r) == truth { |
| return start |
| } |
| start += wid |
| } |
| return -1 |
| } |
| |
| // lastIndexFunc is the same as LastIndexFunc except that if |
| // truth==false, the sense of the predicate function is |
| // inverted. |
| func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int { |
| for i := len(s); i > 0; { |
| r, size := rune(s[i-1]), 1 |
| if r >= utf8.RuneSelf { |
| r, size = utf8.DecodeLastRune(s[0:i]) |
| } |
| i -= size |
| if f(r) == truth { |
| return i |
| } |
| } |
| return -1 |
| } |
| |
| // asciiSet is a 32-byte value, where each bit represents the presence of a |
| // given ASCII character in the set. The 128-bits of the lower 16 bytes, |
| // starting with the least-significant bit of the lowest word to the |
| // most-significant bit of the highest word, map to the full range of all |
| // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, |
| // ensuring that any non-ASCII character will be reported as not in the set. |
| type asciiSet [8]uint32 |
| |
| // makeASCIISet creates a set of ASCII characters and reports whether all |
| // characters in chars are ASCII. |
| func makeASCIISet(chars string) (as asciiSet, ok bool) { |
| for i := 0; i < len(chars); i++ { |
| c := chars[i] |
| if c >= utf8.RuneSelf { |
| return as, false |
| } |
| as[c>>5] |= 1 << uint(c&31) |
| } |
| return as, true |
| } |
| |
| // contains reports whether c is inside the set. |
| func (as *asciiSet) contains(c byte) bool { |
| return (as[c>>5] & (1 << uint(c&31))) != 0 |
| } |
| |
| func makeCutsetFunc(cutset string) func(r rune) bool { |
| if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { |
| return func(r rune) bool { |
| return r == rune(cutset[0]) |
| } |
| } |
| if as, isASCII := makeASCIISet(cutset); isASCII { |
| return func(r rune) bool { |
| return r < utf8.RuneSelf && as.contains(byte(r)) |
| } |
| } |
| return func(r rune) bool { |
| for _, c := range cutset { |
| if c == r { |
| return true |
| } |
| } |
| return false |
| } |
| } |
| |
| // Trim returns a subslice of s by slicing off all leading and |
| // trailing UTF-8-encoded code points contained in cutset. |
| func Trim(s []byte, cutset string) []byte { |
| return TrimFunc(s, makeCutsetFunc(cutset)) |
| } |
| |
| // TrimLeft returns a subslice of s by slicing off all leading |
| // UTF-8-encoded code points contained in cutset. |
| func TrimLeft(s []byte, cutset string) []byte { |
| return TrimLeftFunc(s, makeCutsetFunc(cutset)) |
| } |
| |
| // TrimRight returns a subslice of s by slicing off all trailing |
| // UTF-8-encoded code points that are contained in cutset. |
| func TrimRight(s []byte, cutset string) []byte { |
| return TrimRightFunc(s, makeCutsetFunc(cutset)) |
| } |
| |
| // TrimSpace returns a subslice of s by slicing off all leading and |
| // trailing white space, as defined by Unicode. |
| func TrimSpace(s []byte) []byte { |
| // Fast path for ASCII: look for the first ASCII non-space byte |
| start := 0 |
| for ; start < len(s); start++ { |
| c := s[start] |
| if c >= utf8.RuneSelf { |
| // If we run into a non-ASCII byte, fall back to the |
| // slower unicode-aware method on the remaining bytes |
| return TrimFunc(s[start:], unicode.IsSpace) |
| } |
| if asciiSpace[c] == 0 { |
| break |
| } |
| } |
| |
| // Now look for the first ASCII non-space byte from the end |
| stop := len(s) |
| for ; stop > start; stop-- { |
| c := s[stop-1] |
| if c >= utf8.RuneSelf { |
| return TrimFunc(s[start:stop], unicode.IsSpace) |
| } |
| if asciiSpace[c] == 0 { |
| break |
| } |
| } |
| |
| // At this point s[start:stop] starts and ends with an ASCII |
| // non-space bytes, so we're done. Non-ASCII cases have already |
| // been handled above. |
| if start == stop { |
| // Special case to preserve previous TrimLeftFunc behavior, |
| // returning nil instead of empty slice if all spaces. |
| return nil |
| } |
| return s[start:stop] |
| } |
| |
| // Runes interprets s as a sequence of UTF-8-encoded code points. |
| // It returns a slice of runes (Unicode code points) equivalent to s. |
| func Runes(s []byte) []rune { |
| t := make([]rune, utf8.RuneCount(s)) |
| i := 0 |
| for len(s) > 0 { |
| r, l := utf8.DecodeRune(s) |
| t[i] = r |
| i++ |
| s = s[l:] |
| } |
| return t |
| } |
| |
| // Replace returns a copy of the slice s with the first n |
| // non-overlapping instances of old replaced by new. |
| // If old is empty, it matches at the beginning of the slice |
| // and after each UTF-8 sequence, yielding up to k+1 replacements |
| // for a k-rune slice. |
| // If n < 0, there is no limit on the number of replacements. |
| func Replace(s, old, new []byte, n int) []byte { |
| m := 0 |
| if n != 0 { |
| // Compute number of replacements. |
| m = Count(s, old) |
| } |
| if m == 0 { |
| // Just return a copy. |
| return append([]byte(nil), s...) |
| } |
| if n < 0 || m < n { |
| n = m |
| } |
| |
| // Apply replacements to buffer. |
| t := make([]byte, len(s)+n*(len(new)-len(old))) |
| w := 0 |
| start := 0 |
| for i := 0; i < n; i++ { |
| j := start |
| if len(old) == 0 { |
| if i > 0 { |
| _, wid := utf8.DecodeRune(s[start:]) |
| j += wid |
| } |
| } else { |
| j += Index(s[start:], old) |
| } |
| w += copy(t[w:], s[start:j]) |
| w += copy(t[w:], new) |
| start = j + len(old) |
| } |
| w += copy(t[w:], s[start:]) |
| return t[0:w] |
| } |
| |
| // ReplaceAll returns a copy of the slice s with all |
| // non-overlapping instances of old replaced by new. |
| // If old is empty, it matches at the beginning of the slice |
| // and after each UTF-8 sequence, yielding up to k+1 replacements |
| // for a k-rune slice. |
| func ReplaceAll(s, old, new []byte) []byte { |
| return Replace(s, old, new, -1) |
| } |
| |
| // EqualFold reports whether s and t, interpreted as UTF-8 strings, |
| // are equal under Unicode case-folding, which is a more general |
| // form of case-insensitivity. |
| func EqualFold(s, t []byte) bool { |
| for len(s) != 0 && len(t) != 0 { |
| // Extract first rune from each. |
| var sr, tr rune |
| if s[0] < utf8.RuneSelf { |
| sr, s = rune(s[0]), s[1:] |
| } else { |
| r, size := utf8.DecodeRune(s) |
| sr, s = r, s[size:] |
| } |
| if t[0] < utf8.RuneSelf { |
| tr, t = rune(t[0]), t[1:] |
| } else { |
| r, size := utf8.DecodeRune(t) |
| tr, t = r, t[size:] |
| } |
| |
| // If they match, keep going; if not, return false. |
| |
| // Easy case. |
| if tr == sr { |
| continue |
| } |
| |
| // Make sr < tr to simplify what follows. |
| if tr < sr { |
| tr, sr = sr, tr |
| } |
| // Fast check for ASCII. |
| if tr < utf8.RuneSelf { |
| // ASCII only, sr/tr must be upper/lower case |
| if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { |
| continue |
| } |
| return false |
| } |
| |
| // General case. SimpleFold(x) returns the next equivalent rune > x |
| // or wraps around to smaller values. |
| r := unicode.SimpleFold(sr) |
| for r != sr && r < tr { |
| r = unicode.SimpleFold(r) |
| } |
| if r == tr { |
| continue |
| } |
| return false |
| } |
| |
| // One string is empty. Are both? |
| return len(s) == len(t) |
| } |
| |
| // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. |
| func Index(s, sep []byte) int { |
| n := len(sep) |
| switch { |
| case n == 0: |
| return 0 |
| case n == 1: |
| return IndexByte(s, sep[0]) |
| case n == len(s): |
| if Equal(sep, s) { |
| return 0 |
| } |
| return -1 |
| case n > len(s): |
| return -1 |
| case n <= bytealg.MaxLen: |
| // Use brute force when s and sep both are small |
| if len(s) <= bytealg.MaxBruteForce { |
| return bytealg.Index(s, sep) |
| } |
| c0 := sep[0] |
| c1 := sep[1] |
| i := 0 |
| t := len(s) - n + 1 |
| fails := 0 |
| for i < t { |
| if s[i] != c0 { |
| // IndexByte is faster than bytealg.Index, so use it as long as |
| // we're not getting lots of false positives. |
| o := IndexByte(s[i:t], c0) |
| if o < 0 { |
| return -1 |
| } |
| i += o |
| } |
| if s[i+1] == c1 && Equal(s[i:i+n], sep) { |
| return i |
| } |
| fails++ |
| i++ |
| // Switch to bytealg.Index when IndexByte produces too many false positives. |
| if fails > bytealg.Cutover(i) { |
| r := bytealg.Index(s[i:], sep) |
| if r >= 0 { |
| return r + i |
| } |
| return -1 |
| } |
| } |
| return -1 |
| } |
| c0 := sep[0] |
| c1 := sep[1] |
| i := 0 |
| fails := 0 |
| t := len(s) - n + 1 |
| for i < t { |
| if s[i] != c0 { |
| o := IndexByte(s[i:t], c0) |
| if o < 0 { |
| break |
| } |
| i += o |
| } |
| if s[i+1] == c1 && Equal(s[i:i+n], sep) { |
| return i |
| } |
| i++ |
| fails++ |
| if fails >= 4+i>>4 && i < t { |
| // Give up on IndexByte, it isn't skipping ahead |
| // far enough to be better than Rabin-Karp. |
| // Experiments (using IndexPeriodic) suggest |
| // the cutover is about 16 byte skips. |
| // TODO: if large prefixes of sep are matching |
| // we should cutover at even larger average skips, |
| // because Equal becomes that much more expensive. |
| // This code does not take that effect into account. |
| j := indexRabinKarp(s[i:], sep) |
| if j < 0 { |
| return -1 |
| } |
| return i + j |
| } |
| } |
| return -1 |
| } |
| |
| func indexRabinKarp(s, sep []byte) int { |
| // Rabin-Karp search |
| hashsep, pow := hashStr(sep) |
| n := len(sep) |
| var h uint32 |
| for i := 0; i < n; i++ { |
| h = h*primeRK + uint32(s[i]) |
| } |
| if h == hashsep && Equal(s[:n], sep) { |
| return 0 |
| } |
| for i := n; i < len(s); { |
| h *= primeRK |
| h += uint32(s[i]) |
| h -= pow * uint32(s[i-n]) |
| i++ |
| if h == hashsep && Equal(s[i-n:i], sep) { |
| return i - n |
| } |
| } |
| return -1 |
| } |
| |
| // primeRK is the prime base used in Rabin-Karp algorithm. |
| const primeRK = 16777619 |
| |
| // hashStr returns the hash and the appropriate multiplicative |
| // factor for use in Rabin-Karp algorithm. |
| func hashStr(sep []byte) (uint32, uint32) { |
| hash := uint32(0) |
| for i := 0; i < len(sep); i++ { |
| hash = hash*primeRK + uint32(sep[i]) |
| } |
| var pow, sq uint32 = 1, primeRK |
| for i := len(sep); i > 0; i >>= 1 { |
| if i&1 != 0 { |
| pow *= sq |
| } |
| sq *= sq |
| } |
| return hash, pow |
| } |
| |
| // hashStrRev returns the hash of the reverse of sep and the |
| // appropriate multiplicative factor for use in Rabin-Karp algorithm. |
| func hashStrRev(sep []byte) (uint32, uint32) { |
| hash := uint32(0) |
| for i := len(sep) - 1; i >= 0; i-- { |
| hash = hash*primeRK + uint32(sep[i]) |
| } |
| var pow, sq uint32 = 1, primeRK |
| for i := len(sep); i > 0; i >>= 1 { |
| if i&1 != 0 { |
| pow *= sq |
| } |
| sq *= sq |
| } |
| return hash, pow |
| } |