blob: 814250c2ec3dd50b130d4f29d35a59087848d589 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"debug/elf"
"debug/macho"
"debug/pe"
"fmt"
"go/ast"
"go/printer"
"go/token"
"os"
"strings"
)
var conf = printer.Config{Mode: printer.SourcePos, Tabwidth: 8}
// writeDefs creates output files to be compiled by 6g, 6c, and gcc.
// (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.)
func (p *Package) writeDefs() {
fgo2 := creat(*objDir + "_cgo_gotypes.go")
fc := creat(*objDir + "_cgo_defun.c")
fm := creat(*objDir + "_cgo_main.c")
fflg := creat(*objDir + "_cgo_flags")
for k, v := range p.CgoFlags {
fmt.Fprintf(fflg, "_CGO_%s=%s\n", k, v)
}
fflg.Close()
// Write C main file for using gcc to resolve imports.
fmt.Fprintf(fm, "int main() { return 0; }\n")
if *importRuntimeCgo {
fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*, int), void *a, int c) { }\n")
} else {
// If we're not importing runtime/cgo, we *are* runtime/cgo,
// which provides crosscall2. We just need a prototype.
fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*, int), void *a, int c);")
}
fmt.Fprintf(fm, "void _cgo_allocate(void *a, int c) { }\n")
fmt.Fprintf(fm, "void _cgo_panic(void *a, int c) { }\n")
// Write second Go output: definitions of _C_xxx.
// In a separate file so that the import of "unsafe" does not
// pollute the original file.
fmt.Fprintf(fgo2, "// Created by cgo - DO NOT EDIT\n\n")
fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName)
fmt.Fprintf(fgo2, "import \"unsafe\"\n\n")
fmt.Fprintf(fgo2, "import \"syscall\"\n\n")
if !*gccgo && *importRuntimeCgo {
fmt.Fprintf(fgo2, "import _ \"runtime/cgo\"\n\n")
}
fmt.Fprintf(fgo2, "type _ unsafe.Pointer\n\n")
fmt.Fprintf(fgo2, "func _Cerrno(dst *error, x int) { *dst = syscall.Errno(x) }\n")
for name, def := range typedef {
fmt.Fprintf(fgo2, "type %s ", name)
conf.Fprint(fgo2, fset, def.Go)
fmt.Fprintf(fgo2, "\n\n")
}
fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n")
if *gccgo {
fmt.Fprintf(fc, cPrologGccgo)
} else {
fmt.Fprintf(fc, cProlog)
}
cVars := make(map[string]bool)
for _, n := range p.Name {
if n.Kind != "var" {
continue
}
if !cVars[n.C] {
fmt.Fprintf(fm, "extern char %s[];\n", n.C)
fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C)
fmt.Fprintf(fc, "extern byte *%s;\n", n.C)
cVars[n.C] = true
}
fmt.Fprintf(fc, "void *·%s = &%s;\n", n.Mangle, n.C)
fmt.Fprintf(fc, "\n")
fmt.Fprintf(fgo2, "var %s ", n.Mangle)
conf.Fprint(fgo2, fset, &ast.StarExpr{X: n.Type.Go})
fmt.Fprintf(fgo2, "\n")
}
fmt.Fprintf(fc, "\n")
for _, n := range p.Name {
if n.Const != "" {
fmt.Fprintf(fgo2, "const _Cconst_%s = %s\n", n.Go, n.Const)
}
}
fmt.Fprintf(fgo2, "\n")
for _, n := range p.Name {
if n.FuncType != nil {
p.writeDefsFunc(fc, fgo2, n)
}
}
if *gccgo {
p.writeGccgoExports(fgo2, fc, fm)
} else {
p.writeExports(fgo2, fc, fm)
}
fgo2.Close()
fc.Close()
}
func dynimport(obj string) {
stdout := os.Stdout
if *dynout != "" {
f, err := os.Create(*dynout)
if err != nil {
fatalf("%s", err)
}
stdout = f
}
if f, err := elf.Open(obj); err == nil {
sym, err := f.ImportedSymbols()
if err != nil {
fatalf("cannot load imported symbols from ELF file %s: %v", obj, err)
}
for _, s := range sym {
targ := s.Name
if s.Version != "" {
targ += "@" + s.Version
}
fmt.Fprintf(stdout, "#pragma dynimport %s %s %q\n", s.Name, targ, s.Library)
}
lib, err := f.ImportedLibraries()
if err != nil {
fatalf("cannot load imported libraries from ELF file %s: %v", obj, err)
}
for _, l := range lib {
fmt.Fprintf(stdout, "#pragma dynimport _ _ %q\n", l)
}
return
}
if f, err := macho.Open(obj); err == nil {
sym, err := f.ImportedSymbols()
if err != nil {
fatalf("cannot load imported symbols from Mach-O file %s: %v", obj, err)
}
for _, s := range sym {
if len(s) > 0 && s[0] == '_' {
s = s[1:]
}
fmt.Fprintf(stdout, "#pragma dynimport %s %s %q\n", s, s, "")
}
lib, err := f.ImportedLibraries()
if err != nil {
fatalf("cannot load imported libraries from Mach-O file %s: %v", obj, err)
}
for _, l := range lib {
fmt.Fprintf(stdout, "#pragma dynimport _ _ %q\n", l)
}
return
}
if f, err := pe.Open(obj); err == nil {
sym, err := f.ImportedSymbols()
if err != nil {
fatalf("cannot load imported symbols from PE file %s: %v", obj, err)
}
for _, s := range sym {
ss := strings.Split(s, ":")
fmt.Fprintf(stdout, "#pragma dynimport %s %s %q\n", ss[0], ss[0], strings.ToLower(ss[1]))
}
return
}
fatalf("cannot parse %s as ELF, Mach-O or PE", obj)
}
// Construct a gcc struct matching the 6c argument frame.
// Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes.
// These assumptions are checked by the gccProlog.
// Also assumes that 6c convention is to word-align the
// input and output parameters.
func (p *Package) structType(n *Name) (string, int64) {
var buf bytes.Buffer
fmt.Fprint(&buf, "struct {\n")
off := int64(0)
for i, t := range n.FuncType.Params {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
c := t.Typedef
if c == "" {
c = t.C.String()
}
fmt.Fprintf(&buf, "\t\t%s p%d;\n", c, i)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
if t := n.FuncType.Result; t != nil {
if off%t.Align != 0 {
pad := t.Align - off%t.Align
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
qual := ""
if c := t.C.String(); c[len(c)-1] == '*' {
qual = "const "
}
fmt.Fprintf(&buf, "\t\t%s%s r;\n", qual, t.C)
off += t.Size
}
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad)
off += pad
}
if n.AddError {
fmt.Fprint(&buf, "\t\tvoid *e[2]; /* error */\n")
off += 2 * p.PtrSize
}
if off == 0 {
fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct
}
fmt.Fprintf(&buf, "\t}")
return buf.String(), off
}
func (p *Package) writeDefsFunc(fc, fgo2 *os.File, n *Name) {
name := n.Go
gtype := n.FuncType.Go
if n.AddError {
// Add "error" to return type list.
// Type list is known to be 0 or 1 element - it's a C function.
err := &ast.Field{Type: ast.NewIdent("error")}
l := gtype.Results.List
if len(l) == 0 {
l = []*ast.Field{err}
} else {
l = []*ast.Field{l[0], err}
}
t := new(ast.FuncType)
*t = *gtype
t.Results = &ast.FieldList{List: l}
gtype = t
}
// Go func declaration.
d := &ast.FuncDecl{
Name: ast.NewIdent(n.Mangle),
Type: gtype,
}
if *gccgo {
// Gccgo style hooks.
// we hook directly into C. gccgo goes not support cgocall yet.
if !n.AddError {
fmt.Fprintf(fgo2, "//extern %s\n", n.C)
conf.Fprint(fgo2, fset, d)
fmt.Fprint(fgo2, "\n")
} else {
// write a small wrapper to retrieve errno.
cname := fmt.Sprintf("_cgo%s%s", cPrefix, n.Mangle)
paramnames := []string(nil)
for i, param := range d.Type.Params.List {
paramName := fmt.Sprintf("p%d", i)
param.Names = []*ast.Ident{ast.NewIdent(paramName)}
paramnames = append(paramnames, paramName)
}
conf.Fprint(fgo2, fset, d)
fmt.Fprintf(fgo2, "{\n")
fmt.Fprintf(fgo2, "\tsyscall.SetErrno(0)\n")
fmt.Fprintf(fgo2, "\tr := %s(%s)\n", cname, strings.Join(paramnames, ", "))
fmt.Fprintf(fgo2, "\te := syscall.GetErrno()\n")
fmt.Fprintf(fgo2, "\tif e != 0 {\n")
fmt.Fprintf(fgo2, "\t\treturn r, e\n")
fmt.Fprintf(fgo2, "\t}\n")
fmt.Fprintf(fgo2, "\treturn r, nil\n")
fmt.Fprintf(fgo2, "}\n")
// declare the C function.
fmt.Fprintf(fgo2, "//extern %s\n", n.C)
d.Name = ast.NewIdent(cname)
l := d.Type.Results.List
d.Type.Results.List = l[:len(l)-1]
conf.Fprint(fgo2, fset, d)
fmt.Fprint(fgo2, "\n")
}
return
}
conf.Fprint(fgo2, fset, d)
fmt.Fprint(fgo2, "\n")
if name == "CString" || name == "GoString" || name == "GoStringN" || name == "GoBytes" {
// The builtins are already defined in the C prolog.
return
}
var argSize int64
_, argSize = p.structType(n)
// C wrapper calls into gcc, passing a pointer to the argument frame.
fmt.Fprintf(fc, "void _cgo%s%s(void*);\n", cPrefix, n.Mangle)
fmt.Fprintf(fc, "\n")
fmt.Fprintf(fc, "void\n")
if argSize == 0 {
argSize++
}
fmt.Fprintf(fc, "·%s(struct{uint8 x[%d];}p)\n", n.Mangle, argSize)
fmt.Fprintf(fc, "{\n")
fmt.Fprintf(fc, "\truntime·cgocall(_cgo%s%s, &p);\n", cPrefix, n.Mangle)
if n.AddError {
// gcc leaves errno in first word of interface at end of p.
// check whether it is zero; if so, turn interface into nil.
// if not, turn interface into errno.
// Go init function initializes ·_Cerrno with an os.Errno
// for us to copy.
fmt.Fprintln(fc, ` {
int32 e;
void **v;
v = (void**)(&p+1) - 2; /* v = final two void* of p */
e = *(int32*)v;
v[0] = (void*)0xdeadbeef;
v[1] = (void*)0xdeadbeef;
if(e == 0) {
/* nil interface */
v[0] = 0;
v[1] = 0;
} else {
·_Cerrno(v, e); /* fill in v as error for errno e */
}
}`)
}
fmt.Fprintf(fc, "}\n")
fmt.Fprintf(fc, "\n")
}
// writeOutput creates stubs for a specific source file to be compiled by 6g
// (The comments here say 6g and 6c but the code applies to the 8 and 5 tools too.)
func (p *Package) writeOutput(f *File, srcfile string) {
base := srcfile
if strings.HasSuffix(base, ".go") {
base = base[0 : len(base)-3]
}
base = strings.Map(slashToUnderscore, base)
fgo1 := creat(*objDir + base + ".cgo1.go")
fgcc := creat(*objDir + base + ".cgo2.c")
p.GoFiles = append(p.GoFiles, base+".cgo1.go")
p.GccFiles = append(p.GccFiles, base+".cgo2.c")
// Write Go output: Go input with rewrites of C.xxx to _C_xxx.
fmt.Fprintf(fgo1, "// Created by cgo - DO NOT EDIT\n\n")
conf.Fprint(fgo1, fset, f.AST)
// While we process the vars and funcs, also write 6c and gcc output.
// Gcc output starts with the preamble.
fmt.Fprintf(fgcc, "%s\n", f.Preamble)
fmt.Fprintf(fgcc, "%s\n", gccProlog)
for _, n := range f.Name {
if n.FuncType != nil {
p.writeOutputFunc(fgcc, n)
}
}
fgo1.Close()
fgcc.Close()
}
func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) {
name := n.Mangle
if name == "_Cfunc_CString" || name == "_Cfunc_GoString" || name == "_Cfunc_GoStringN" || name == "_Cfunc_GoBytes" || p.Written[name] {
// The builtins are already defined in the C prolog, and we don't
// want to duplicate function definitions we've already done.
return
}
p.Written[name] = true
if *gccgo {
// we don't use wrappers with gccgo.
return
}
ctype, _ := p.structType(n)
// Gcc wrapper unpacks the C argument struct
// and calls the actual C function.
fmt.Fprintf(fgcc, "void\n")
fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle)
fmt.Fprintf(fgcc, "{\n")
if n.AddError {
fmt.Fprintf(fgcc, "\tint e;\n") // assuming 32 bit (see comment above structType)
fmt.Fprintf(fgcc, "\terrno = 0;\n")
}
// We're trying to write a gcc struct that matches 6c/8c/5c's layout.
// Use packed attribute to force no padding in this struct in case
// gcc has different packing requirements. For example,
// on 386 Windows, gcc wants to 8-align int64s, but 8c does not.
fmt.Fprintf(fgcc, "\t%s __attribute__((__packed__)) *a = v;\n", ctype)
fmt.Fprintf(fgcc, "\t")
if t := n.FuncType.Result; t != nil {
fmt.Fprintf(fgcc, "a->r = ")
if c := t.C.String(); c[len(c)-1] == '*' {
fmt.Fprintf(fgcc, "(const %s) ", t.C)
}
}
fmt.Fprintf(fgcc, "%s(", n.C)
for i, t := range n.FuncType.Params {
if i > 0 {
fmt.Fprintf(fgcc, ", ")
}
// We know the type params are correct, because
// the Go equivalents had good type params.
// However, our version of the type omits the magic
// words const and volatile, which can provoke
// C compiler warnings. Silence them by casting
// all pointers to void*. (Eventually that will produce
// other warnings.)
if c := t.C.String(); c[len(c)-1] == '*' {
fmt.Fprintf(fgcc, "(void*)")
}
fmt.Fprintf(fgcc, "a->p%d", i)
}
fmt.Fprintf(fgcc, ");\n")
if n.AddError {
fmt.Fprintf(fgcc, "\t*(int*)(a->e) = errno;\n")
}
fmt.Fprintf(fgcc, "}\n")
fmt.Fprintf(fgcc, "\n")
}
// Write out the various stubs we need to support functions exported
// from Go so that they are callable from C.
func (p *Package) writeExports(fgo2, fc, fm *os.File) {
fgcc := creat(*objDir + "_cgo_export.c")
fgcch := creat(*objDir + "_cgo_export.h")
fmt.Fprintf(fgcch, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcch, "%s\n", p.Preamble)
fmt.Fprintf(fgcch, "%s\n", gccExportHeaderProlog)
fmt.Fprintf(fgcc, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n")
for _, exp := range p.ExpFunc {
fn := exp.Func
// Construct a gcc struct matching the 6c argument and
// result frame. The gcc struct will be compiled with
// __attribute__((packed)) so all padding must be accounted
// for explicitly.
ctype := "struct {\n"
off := int64(0)
npad := 0
if fn.Recv != nil {
t := p.cgoType(fn.Recv.List[0].Type)
ctype += fmt.Sprintf("\t\t%s recv;\n", t.C)
off += t.Size
}
fntype := fn.Type
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
if off%t.Align != 0 {
pad := t.Align - off%t.Align
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
ctype += fmt.Sprintf("\t\t%s p%d;\n", t.C, i)
off += t.Size
})
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
if off%t.Align != 0 {
pad := t.Align - off%t.Align
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
ctype += fmt.Sprintf("\t\t%s r%d;\n", t.C, i)
off += t.Size
})
if off%p.PtrSize != 0 {
pad := p.PtrSize - off%p.PtrSize
ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad)
off += pad
npad++
}
if ctype == "struct {\n" {
ctype += "\t\tchar unused;\n" // avoid empty struct
}
ctype += "\t}"
// Get the return type of the wrapper function
// compiled by gcc.
gccResult := ""
if fntype.Results == nil || len(fntype.Results.List) == 0 {
gccResult = "void"
} else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 {
gccResult = p.cgoType(fntype.Results.List[0].Type).C.String()
} else {
fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName)
fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName)
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgcch, "\t%s r%d;\n", p.cgoType(atype).C, i)
})
fmt.Fprintf(fgcch, "};\n")
gccResult = "struct " + exp.ExpName + "_return"
}
// Build the wrapper function compiled by gcc.
s := fmt.Sprintf("%s %s(", gccResult, exp.ExpName)
if fn.Recv != nil {
s += p.cgoType(fn.Recv.List[0].Type).C.String()
s += " recv"
}
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 || fn.Recv != nil {
s += ", "
}
s += fmt.Sprintf("%s p%d", p.cgoType(atype).C, i)
})
s += ")"
fmt.Fprintf(fgcch, "\nextern %s;\n", s)
fmt.Fprintf(fgcc, "extern _cgoexp%s_%s(void *, int);\n", cPrefix, exp.ExpName)
fmt.Fprintf(fgcc, "\n%s\n", s)
fmt.Fprintf(fgcc, "{\n")
fmt.Fprintf(fgcc, "\t%s __attribute__((packed)) a;\n", ctype)
if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) {
fmt.Fprintf(fgcc, "\t%s r;\n", gccResult)
}
if fn.Recv != nil {
fmt.Fprintf(fgcc, "\ta.recv = recv;\n")
}
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgcc, "\ta.p%d = p%d;\n", i, i)
})
fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &a, %d);\n", cPrefix, exp.ExpName, off)
if gccResult != "void" {
if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 {
fmt.Fprintf(fgcc, "\treturn a.r0;\n")
} else {
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgcc, "\tr.r%d = a.r%d;\n", i, i)
})
fmt.Fprintf(fgcc, "\treturn r;\n")
}
}
fmt.Fprintf(fgcc, "}\n")
// Build the wrapper function compiled by 6c/8c
goname := exp.Func.Name.Name
if fn.Recv != nil {
goname = "_cgoexpwrap" + cPrefix + "_" + fn.Recv.List[0].Names[0].Name + "_" + goname
}
fmt.Fprintf(fc, "#pragma dynexport %s %s\n", goname, goname)
fmt.Fprintf(fc, "extern void ·%s();\n\n", goname)
fmt.Fprintf(fc, "#pragma textflag 7\n") // no split stack, so no use of m or g
fmt.Fprintf(fc, "void\n")
fmt.Fprintf(fc, "_cgoexp%s_%s(void *a, int32 n)\n", cPrefix, exp.ExpName)
fmt.Fprintf(fc, "{\n")
fmt.Fprintf(fc, "\truntime·cgocallback(·%s, a, n);\n", goname)
fmt.Fprintf(fc, "}\n")
fmt.Fprintf(fm, "int _cgoexp%s_%s;\n", cPrefix, exp.ExpName)
// Calling a function with a receiver from C requires
// a Go wrapper function.
if fn.Recv != nil {
fmt.Fprintf(fgo2, "func %s(recv ", goname)
conf.Fprint(fgo2, fset, fn.Recv.List[0].Type)
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
fmt.Fprintf(fgo2, ", p%d ", i)
conf.Fprint(fgo2, fset, atype)
})
fmt.Fprintf(fgo2, ")")
if gccResult != "void" {
fmt.Fprint(fgo2, " (")
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprint(fgo2, ", ")
}
conf.Fprint(fgo2, fset, atype)
})
fmt.Fprint(fgo2, ")")
}
fmt.Fprint(fgo2, " {\n")
fmt.Fprint(fgo2, "\t")
if gccResult != "void" {
fmt.Fprint(fgo2, "return ")
}
fmt.Fprintf(fgo2, "recv.%s(", exp.Func.Name)
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprint(fgo2, ", ")
}
fmt.Fprintf(fgo2, "p%d", i)
})
fmt.Fprint(fgo2, ")\n")
fmt.Fprint(fgo2, "}\n")
}
}
}
// Write out the C header allowing C code to call exported gccgo functions.
func (p *Package) writeGccgoExports(fgo2, fc, fm *os.File) {
fgcc := creat(*objDir + "_cgo_export.c")
fgcch := creat(*objDir + "_cgo_export.h")
_ = fgcc
fmt.Fprintf(fgcch, "/* Created by cgo - DO NOT EDIT. */\n")
fmt.Fprintf(fgcch, "%s\n", p.Preamble)
fmt.Fprintf(fgcch, "%s\n", gccExportHeaderProlog)
fmt.Fprintf(fm, "#include \"_cgo_export.h\"\n")
clean := func(r rune) rune {
switch {
case 'A' <= r && r <= 'Z', 'a' <= r && r <= 'z',
'0' <= r && r <= '9':
return r
}
return '_'
}
gccgoSymbolPrefix := strings.Map(clean, *gccgoprefix)
for _, exp := range p.ExpFunc {
// TODO: support functions with receivers.
fn := exp.Func
fntype := fn.Type
if !ast.IsExported(fn.Name.Name) {
fatalf("cannot export unexported function %s with gccgo", fn.Name)
}
cdeclBuf := new(bytes.Buffer)
resultCount := 0
forFieldList(fntype.Results,
func(i int, atype ast.Expr) { resultCount++ })
switch resultCount {
case 0:
fmt.Fprintf(cdeclBuf, "void")
case 1:
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
fmt.Fprintf(cdeclBuf, "%s", t.C)
})
default:
// Declare a result struct.
fmt.Fprintf(fgcch, "struct %s_result {\n", exp.ExpName)
forFieldList(fntype.Results,
func(i int, atype ast.Expr) {
t := p.cgoType(atype)
fmt.Fprintf(fgcch, "\t%s r%d;\n", t.C, i)
})
fmt.Fprintf(fgcch, "};\n")
fmt.Fprintf(cdeclBuf, "struct %s_result", exp.ExpName)
}
// The function name.
fmt.Fprintf(cdeclBuf, " "+exp.ExpName)
gccgoSymbol := fmt.Sprintf("%s.%s.%s", gccgoSymbolPrefix, p.PackageName, exp.Func.Name)
fmt.Fprintf(cdeclBuf, " (")
// Function parameters.
forFieldList(fntype.Params,
func(i int, atype ast.Expr) {
if i > 0 {
fmt.Fprintf(cdeclBuf, ", ")
}
t := p.cgoType(atype)
fmt.Fprintf(cdeclBuf, "%s p%d", t.C, i)
})
fmt.Fprintf(cdeclBuf, ")")
cdecl := cdeclBuf.String()
fmt.Fprintf(fgcch, "extern %s __asm__(\"%s\");\n", cdecl, gccgoSymbol)
// Dummy declaration for _cgo_main.c
fmt.Fprintf(fm, "%s {}\n", cdecl)
}
}
// Call a function for each entry in an ast.FieldList, passing the
// index into the list and the type.
func forFieldList(fl *ast.FieldList, fn func(int, ast.Expr)) {
if fl == nil {
return
}
i := 0
for _, r := range fl.List {
if r.Names == nil {
fn(i, r.Type)
i++
} else {
for _ = range r.Names {
fn(i, r.Type)
i++
}
}
}
}
func c(repr string, args ...interface{}) *TypeRepr {
return &TypeRepr{repr, args}
}
// Map predeclared Go types to Type.
var goTypes = map[string]*Type{
"bool": {Size: 1, Align: 1, C: c("uchar")},
"byte": {Size: 1, Align: 1, C: c("uchar")},
"int": {Size: 4, Align: 4, C: c("int")},
"uint": {Size: 4, Align: 4, C: c("uint")},
"rune": {Size: 4, Align: 4, C: c("int")},
"int8": {Size: 1, Align: 1, C: c("schar")},
"uint8": {Size: 1, Align: 1, C: c("uchar")},
"int16": {Size: 2, Align: 2, C: c("short")},
"uint16": {Size: 2, Align: 2, C: c("ushort")},
"int32": {Size: 4, Align: 4, C: c("int")},
"uint32": {Size: 4, Align: 4, C: c("uint")},
"int64": {Size: 8, Align: 8, C: c("int64")},
"uint64": {Size: 8, Align: 8, C: c("uint64")},
"float": {Size: 4, Align: 4, C: c("float")},
"float32": {Size: 4, Align: 4, C: c("float")},
"float64": {Size: 8, Align: 8, C: c("double")},
"complex": {Size: 8, Align: 8, C: c("__complex float")},
"complex64": {Size: 8, Align: 8, C: c("__complex float")},
"complex128": {Size: 16, Align: 16, C: c("__complex double")},
}
// Map an ast type to a Type.
func (p *Package) cgoType(e ast.Expr) *Type {
switch t := e.(type) {
case *ast.StarExpr:
x := p.cgoType(t.X)
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("%s*", x.C)}
case *ast.ArrayType:
if t.Len == nil {
return &Type{Size: p.PtrSize + 8, Align: p.PtrSize, C: c("GoSlice")}
}
case *ast.StructType:
// TODO
case *ast.FuncType:
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")}
case *ast.InterfaceType:
return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")}
case *ast.MapType:
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoMap")}
case *ast.ChanType:
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoChan")}
case *ast.Ident:
// Look up the type in the top level declarations.
// TODO: Handle types defined within a function.
for _, d := range p.Decl {
gd, ok := d.(*ast.GenDecl)
if !ok || gd.Tok != token.TYPE {
continue
}
for _, spec := range gd.Specs {
ts, ok := spec.(*ast.TypeSpec)
if !ok {
continue
}
if ts.Name.Name == t.Name {
return p.cgoType(ts.Type)
}
}
}
if def := typedef[t.Name]; def != nil {
return def
}
if t.Name == "uintptr" {
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("uintptr")}
}
if t.Name == "string" {
return &Type{Size: p.PtrSize + 4, Align: p.PtrSize, C: c("GoString")}
}
if t.Name == "error" {
return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")}
}
if r, ok := goTypes[t.Name]; ok {
if r.Align > p.PtrSize {
r.Align = p.PtrSize
}
return r
}
error_(e.Pos(), "unrecognized Go type %s", t.Name)
return &Type{Size: 4, Align: 4, C: c("int")}
case *ast.SelectorExpr:
id, ok := t.X.(*ast.Ident)
if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" {
return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")}
}
}
error_(e.Pos(), "Go type not supported in export: %s", gofmt(e))
return &Type{Size: 4, Align: 4, C: c("int")}
}
const gccProlog = `
// Usual nonsense: if x and y are not equal, the type will be invalid
// (have a negative array count) and an inscrutable error will come
// out of the compiler and hopefully mention "name".
#define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2+1];
// Check at compile time that the sizes we use match our expectations.
#define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), n, _cgo_sizeof_##t##_is_not_##n)
__cgo_size_assert(char, 1)
__cgo_size_assert(short, 2)
__cgo_size_assert(int, 4)
typedef long long __cgo_long_long;
__cgo_size_assert(__cgo_long_long, 8)
__cgo_size_assert(float, 4)
__cgo_size_assert(double, 8)
#include <errno.h>
#include <string.h>
`
const builtinProlog = `
typedef struct { char *p; int n; } _GoString_;
typedef struct { char *p; int n; int c; } _GoBytes_;
_GoString_ GoString(char *p);
_GoString_ GoStringN(char *p, int l);
_GoBytes_ GoBytes(void *p, int n);
char *CString(_GoString_);
`
const cProlog = `
#include "runtime.h"
#include "cgocall.h"
void ·_Cerrno(void*, int32);
void
·_Cfunc_GoString(int8 *p, String s)
{
s = runtime·gostring((byte*)p);
FLUSH(&s);
}
void
·_Cfunc_GoStringN(int8 *p, int32 l, String s)
{
s = runtime·gostringn((byte*)p, l);
FLUSH(&s);
}
void
·_Cfunc_GoBytes(int8 *p, int32 l, Slice s)
{
s = runtime·gobytes((byte*)p, l);
FLUSH(&s);
}
void
·_Cfunc_CString(String s, int8 *p)
{
p = runtime·cmalloc(s.len+1);
runtime·memmove((byte*)p, s.str, s.len);
p[s.len] = 0;
FLUSH(&p);
}
`
const cPrologGccgo = `
#include <stdint.h>
#include <string.h>
struct __go_string {
const unsigned char *__data;
int __length;
};
typedef struct __go_open_array {
void* __values;
int __count;
int __capacity;
} Slice;
struct __go_string __go_byte_array_to_string(const void* p, int len);
struct __go_open_array __go_string_to_byte_array (struct __go_string str);
const char *CString(struct __go_string s) {
return strndup((const char*)s.__data, s.__length);
}
struct __go_string GoString(char *p) {
int len = (p != NULL) ? strlen(p) : 0;
return __go_byte_array_to_string(p, len);
}
struct __go_string GoStringN(char *p, int n) {
return __go_byte_array_to_string(p, n);
}
Slice GoBytes(char *p, int n) {
struct __go_string s = { (const unsigned char *)p, n };
return __go_string_to_byte_array(s);
}
`
const gccExportHeaderProlog = `
typedef unsigned int uint;
typedef signed char schar;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef long long int64;
typedef unsigned long long uint64;
typedef __SIZE_TYPE__ uintptr;
typedef struct { char *p; int n; } GoString;
typedef void *GoMap;
typedef void *GoChan;
typedef struct { void *t; void *v; } GoInterface;
`