| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| import "unsafe" |
| |
| type mOS struct { |
| machport uint32 // return address for mach ipc |
| waitsema uint32 // semaphore for parking on locks |
| } |
| |
| func bsdthread_create(stk, arg unsafe.Pointer, fn uintptr) int32 |
| func bsdthread_register() int32 |
| |
| //go:noescape |
| func mach_msg_trap(h unsafe.Pointer, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32 |
| |
| func mach_reply_port() uint32 |
| func mach_task_self() uint32 |
| func mach_thread_self() uint32 |
| |
| //go:noescape |
| func sysctl(mib *uint32, miblen uint32, out *byte, size *uintptr, dst *byte, ndst uintptr) int32 |
| |
| func unimplemented(name string) { |
| println(name, "not implemented") |
| *(*int)(unsafe.Pointer(uintptr(1231))) = 1231 |
| } |
| |
| //go:nosplit |
| func semawakeup(mp *m) { |
| mach_semrelease(mp.waitsema) |
| } |
| |
| //go:nosplit |
| func semacreate(mp *m) { |
| if mp.waitsema != 0 { |
| return |
| } |
| systemstack(func() { |
| mp.waitsema = mach_semcreate() |
| }) |
| } |
| |
| // BSD interface for threading. |
| func osinit() { |
| // bsdthread_register delayed until end of goenvs so that we |
| // can look at the environment first. |
| |
| ncpu = getncpu() |
| |
| physPageSize = getPageSize() |
| } |
| |
| const ( |
| _CTL_HW = 6 |
| _HW_NCPU = 3 |
| _HW_PAGESIZE = 7 |
| ) |
| |
| func getncpu() int32 { |
| // Use sysctl to fetch hw.ncpu. |
| mib := [2]uint32{_CTL_HW, _HW_NCPU} |
| out := uint32(0) |
| nout := unsafe.Sizeof(out) |
| ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) |
| if ret >= 0 && int32(out) > 0 { |
| return int32(out) |
| } |
| return 1 |
| } |
| |
| func getPageSize() uintptr { |
| // Use sysctl to fetch hw.pagesize. |
| mib := [2]uint32{_CTL_HW, _HW_PAGESIZE} |
| out := uint32(0) |
| nout := unsafe.Sizeof(out) |
| ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) |
| if ret >= 0 && int32(out) > 0 { |
| return uintptr(out) |
| } |
| return 0 |
| } |
| |
| var urandom_dev = []byte("/dev/urandom\x00") |
| |
| //go:nosplit |
| func getRandomData(r []byte) { |
| fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) |
| n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) |
| closefd(fd) |
| extendRandom(r, int(n)) |
| } |
| |
| func goenvs() { |
| goenvs_unix() |
| |
| // Register our thread-creation callback (see sys_darwin_{amd64,386}.s) |
| // but only if we're not using cgo. If we are using cgo we need |
| // to let the C pthread library install its own thread-creation callback. |
| if !iscgo { |
| if bsdthread_register() != 0 { |
| if gogetenv("DYLD_INSERT_LIBRARIES") != "" { |
| throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)") |
| } |
| throw("runtime: bsdthread_register error") |
| } |
| } |
| } |
| |
| // May run with m.p==nil, so write barriers are not allowed. |
| //go:nowritebarrier |
| func newosproc(mp *m, stk unsafe.Pointer) { |
| if false { |
| print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, " ostk=", &mp, "\n") |
| } |
| |
| var oset sigset |
| sigprocmask(_SIG_SETMASK, &sigset_all, &oset) |
| errno := bsdthread_create(stk, unsafe.Pointer(mp), funcPC(mstart)) |
| sigprocmask(_SIG_SETMASK, &oset, nil) |
| |
| if errno < 0 { |
| print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -errno, ")\n") |
| throw("runtime.newosproc") |
| } |
| } |
| |
| // newosproc0 is a version of newosproc that can be called before the runtime |
| // is initialized. |
| // |
| // As Go uses bsdthread_register when running without cgo, this function is |
| // not safe to use after initialization as it does not pass an M as fnarg. |
| // |
| //go:nosplit |
| func newosproc0(stacksize uintptr, fn unsafe.Pointer, fnarg uintptr) { |
| stack := sysAlloc(stacksize, &memstats.stacks_sys) |
| if stack == nil { |
| write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) |
| exit(1) |
| } |
| stk := unsafe.Pointer(uintptr(stack) + stacksize) |
| |
| var oset sigset |
| sigprocmask(_SIG_SETMASK, &sigset_all, &oset) |
| errno := bsdthread_create(stk, fn, fnarg) |
| sigprocmask(_SIG_SETMASK, &oset, nil) |
| |
| if errno < 0 { |
| write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) |
| exit(1) |
| } |
| } |
| |
| var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") |
| var failthreadcreate = []byte("runtime: failed to create new OS thread\n") |
| |
| // Called to do synchronous initialization of Go code built with |
| // -buildmode=c-archive or -buildmode=c-shared. |
| // None of the Go runtime is initialized. |
| //go:nosplit |
| //go:nowritebarrierrec |
| func libpreinit() { |
| initsig(true) |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the parent thread (main thread in case of bootstrap), can allocate memory. |
| func mpreinit(mp *m) { |
| mp.gsignal = malg(32 * 1024) // OS X wants >= 8K |
| mp.gsignal.m = mp |
| } |
| |
| // Called to initialize a new m (including the bootstrap m). |
| // Called on the new thread, cannot allocate memory. |
| func minit() { |
| // The alternate signal stack is buggy on arm and arm64. |
| // The signal handler handles it directly. |
| // The sigaltstack assembly function does nothing. |
| if GOARCH != "arm" && GOARCH != "arm64" { |
| minitSignalStack() |
| } |
| minitSignalMask() |
| } |
| |
| // Called from dropm to undo the effect of an minit. |
| //go:nosplit |
| func unminit() { |
| unminitSignals() |
| } |
| |
| // Mach IPC, to get at semaphores |
| // Definitions are in /usr/include/mach on a Mac. |
| |
| func macherror(r int32, fn string) { |
| print("mach error ", fn, ": ", r, "\n") |
| throw("mach error") |
| } |
| |
| const _DebugMach = false |
| |
| var zerondr machndr |
| |
| func mach_msgh_bits(a, b uint32) uint32 { |
| return a | b<<8 |
| } |
| |
| func mach_msg(h *machheader, op int32, send_size, rcv_size, rcv_name, timeout, notify uint32) int32 { |
| // TODO: Loop on interrupt. |
| return mach_msg_trap(unsafe.Pointer(h), op, send_size, rcv_size, rcv_name, timeout, notify) |
| } |
| |
| // Mach RPC (MIG) |
| const ( |
| _MinMachMsg = 48 |
| _MachReply = 100 |
| ) |
| |
| type codemsg struct { |
| h machheader |
| ndr machndr |
| code int32 |
| } |
| |
| func machcall(h *machheader, maxsize int32, rxsize int32) int32 { |
| _g_ := getg() |
| port := _g_.m.machport |
| if port == 0 { |
| port = mach_reply_port() |
| _g_.m.machport = port |
| } |
| |
| h.msgh_bits |= mach_msgh_bits(_MACH_MSG_TYPE_COPY_SEND, _MACH_MSG_TYPE_MAKE_SEND_ONCE) |
| h.msgh_local_port = port |
| h.msgh_reserved = 0 |
| id := h.msgh_id |
| |
| if _DebugMach { |
| p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h)) |
| print("send:\t") |
| var i uint32 |
| for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ { |
| print(" ", p[i]) |
| if i%8 == 7 { |
| print("\n\t") |
| } |
| } |
| if i%8 != 0 { |
| print("\n") |
| } |
| } |
| ret := mach_msg(h, _MACH_SEND_MSG|_MACH_RCV_MSG, h.msgh_size, uint32(maxsize), port, 0, 0) |
| if ret != 0 { |
| if _DebugMach { |
| print("mach_msg error ", ret, "\n") |
| } |
| return ret |
| } |
| if _DebugMach { |
| p := (*[10000]unsafe.Pointer)(unsafe.Pointer(h)) |
| var i uint32 |
| for i = 0; i < h.msgh_size/uint32(unsafe.Sizeof(p[0])); i++ { |
| print(" ", p[i]) |
| if i%8 == 7 { |
| print("\n\t") |
| } |
| } |
| if i%8 != 0 { |
| print("\n") |
| } |
| } |
| if h.msgh_id != id+_MachReply { |
| if _DebugMach { |
| print("mach_msg _MachReply id mismatch ", h.msgh_id, " != ", id+_MachReply, "\n") |
| } |
| return -303 // MIG_REPLY_MISMATCH |
| } |
| // Look for a response giving the return value. |
| // Any call can send this back with an error, |
| // and some calls only have return values so they |
| // send it back on success too. I don't quite see how |
| // you know it's one of these and not the full response |
| // format, so just look if the message is right. |
| c := (*codemsg)(unsafe.Pointer(h)) |
| if uintptr(h.msgh_size) == unsafe.Sizeof(*c) && h.msgh_bits&_MACH_MSGH_BITS_COMPLEX == 0 { |
| if _DebugMach { |
| print("mig result ", c.code, "\n") |
| } |
| return c.code |
| } |
| if h.msgh_size != uint32(rxsize) { |
| if _DebugMach { |
| print("mach_msg _MachReply size mismatch ", h.msgh_size, " != ", rxsize, "\n") |
| } |
| return -307 // MIG_ARRAY_TOO_LARGE |
| } |
| return 0 |
| } |
| |
| // Semaphores! |
| |
| const ( |
| tmach_semcreate = 3418 |
| rmach_semcreate = tmach_semcreate + _MachReply |
| |
| tmach_semdestroy = 3419 |
| rmach_semdestroy = tmach_semdestroy + _MachReply |
| |
| _KERN_ABORTED = 14 |
| _KERN_OPERATION_TIMED_OUT = 49 |
| ) |
| |
| type tmach_semcreatemsg struct { |
| h machheader |
| ndr machndr |
| policy int32 |
| value int32 |
| } |
| |
| type rmach_semcreatemsg struct { |
| h machheader |
| body machbody |
| semaphore machport |
| } |
| |
| type tmach_semdestroymsg struct { |
| h machheader |
| body machbody |
| semaphore machport |
| } |
| |
| func mach_semcreate() uint32 { |
| var m [256]uint8 |
| tx := (*tmach_semcreatemsg)(unsafe.Pointer(&m)) |
| rx := (*rmach_semcreatemsg)(unsafe.Pointer(&m)) |
| |
| tx.h.msgh_bits = 0 |
| tx.h.msgh_size = uint32(unsafe.Sizeof(*tx)) |
| tx.h.msgh_remote_port = mach_task_self() |
| tx.h.msgh_id = tmach_semcreate |
| tx.ndr = zerondr |
| |
| tx.policy = 0 // 0 = SYNC_POLICY_FIFO |
| tx.value = 0 |
| |
| for { |
| r := machcall(&tx.h, int32(unsafe.Sizeof(m)), int32(unsafe.Sizeof(*rx))) |
| if r == 0 { |
| break |
| } |
| if r == _KERN_ABORTED { // interrupted |
| continue |
| } |
| macherror(r, "semaphore_create") |
| } |
| if rx.body.msgh_descriptor_count != 1 { |
| unimplemented("mach_semcreate desc count") |
| } |
| return rx.semaphore.name |
| } |
| |
| func mach_semdestroy(sem uint32) { |
| var m [256]uint8 |
| tx := (*tmach_semdestroymsg)(unsafe.Pointer(&m)) |
| |
| tx.h.msgh_bits = _MACH_MSGH_BITS_COMPLEX |
| tx.h.msgh_size = uint32(unsafe.Sizeof(*tx)) |
| tx.h.msgh_remote_port = mach_task_self() |
| tx.h.msgh_id = tmach_semdestroy |
| tx.body.msgh_descriptor_count = 1 |
| tx.semaphore.name = sem |
| tx.semaphore.disposition = _MACH_MSG_TYPE_MOVE_SEND |
| tx.semaphore._type = 0 |
| |
| for { |
| r := machcall(&tx.h, int32(unsafe.Sizeof(m)), 0) |
| if r == 0 { |
| break |
| } |
| if r == _KERN_ABORTED { // interrupted |
| continue |
| } |
| macherror(r, "semaphore_destroy") |
| } |
| } |
| |
| // The other calls have simple system call traps in sys_darwin_{amd64,386}.s |
| |
| func mach_semaphore_wait(sema uint32) int32 |
| func mach_semaphore_timedwait(sema, sec, nsec uint32) int32 |
| func mach_semaphore_signal(sema uint32) int32 |
| func mach_semaphore_signal_all(sema uint32) int32 |
| |
| func semasleep1(ns int64) int32 { |
| _g_ := getg() |
| |
| if ns >= 0 { |
| var nsecs int32 |
| secs := timediv(ns, 1000000000, &nsecs) |
| r := mach_semaphore_timedwait(_g_.m.waitsema, uint32(secs), uint32(nsecs)) |
| if r == _KERN_ABORTED || r == _KERN_OPERATION_TIMED_OUT { |
| return -1 |
| } |
| if r != 0 { |
| macherror(r, "semaphore_wait") |
| } |
| return 0 |
| } |
| |
| for { |
| r := mach_semaphore_wait(_g_.m.waitsema) |
| if r == 0 { |
| break |
| } |
| if r == _KERN_ABORTED { // interrupted |
| continue |
| } |
| macherror(r, "semaphore_wait") |
| } |
| return 0 |
| } |
| |
| //go:nosplit |
| func semasleep(ns int64) int32 { |
| var r int32 |
| systemstack(func() { |
| r = semasleep1(ns) |
| }) |
| return r |
| } |
| |
| //go:nosplit |
| func mach_semrelease(sem uint32) { |
| for { |
| r := mach_semaphore_signal(sem) |
| if r == 0 { |
| break |
| } |
| if r == _KERN_ABORTED { // interrupted |
| continue |
| } |
| |
| // mach_semrelease must be completely nosplit, |
| // because it is called from Go code. |
| // If we're going to die, start that process on the system stack |
| // to avoid a Go stack split. |
| systemstack(func() { macherror(r, "semaphore_signal") }) |
| } |
| } |
| |
| //go:nosplit |
| func osyield() { |
| usleep(1) |
| } |
| |
| func memlimit() uintptr { |
| // NOTE(rsc): Could use getrlimit here, |
| // like on FreeBSD or Linux, but Darwin doesn't enforce |
| // ulimit -v, so it's unclear why we'd try to stay within |
| // the limit. |
| return 0 |
| } |
| |
| const ( |
| _NSIG = 32 |
| _SI_USER = 0 /* empirically true, but not what headers say */ |
| _SIG_BLOCK = 1 |
| _SIG_UNBLOCK = 2 |
| _SIG_SETMASK = 3 |
| _SS_DISABLE = 4 |
| ) |
| |
| //go:noescape |
| func sigprocmask(how int32, new, old *sigset) |
| |
| //go:noescape |
| func sigaction(mode uint32, new *sigactiont, old *usigactiont) |
| |
| //go:noescape |
| func sigaltstack(new, old *stackt) |
| |
| // darwin/arm64 uses registers instead of stack-based arguments. |
| // TODO: does this matter? |
| func sigtramp(fn uintptr, infostyle, sig uint32, info *siginfo, ctx unsafe.Pointer) |
| |
| //go:noescape |
| func setitimer(mode int32, new, old *itimerval) |
| |
| func raise(sig uint32) |
| func raiseproc(sig uint32) |
| |
| //extern SigTabTT runtimeĀ·sigtab[]; |
| |
| type sigset uint32 |
| |
| var sigset_all = ^sigset(0) |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsig(i uint32, fn uintptr) { |
| var sa sigactiont |
| sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTART |
| sa.sa_mask = ^uint32(0) |
| sa.sa_tramp = unsafe.Pointer(funcPC(sigtramp)) // runtimeĀ·sigtramp's job is to call into real handler |
| *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) = fn |
| sigaction(i, &sa, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func setsigstack(i uint32) { |
| var osa usigactiont |
| sigaction(i, nil, &osa) |
| handler := *(*uintptr)(unsafe.Pointer(&osa.__sigaction_u)) |
| if osa.sa_flags&_SA_ONSTACK != 0 { |
| return |
| } |
| var sa sigactiont |
| *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) = handler |
| sa.sa_tramp = unsafe.Pointer(funcPC(sigtramp)) |
| sa.sa_mask = osa.sa_mask |
| sa.sa_flags = osa.sa_flags | _SA_ONSTACK |
| sigaction(i, &sa, nil) |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func getsig(i uint32) uintptr { |
| var sa usigactiont |
| sigaction(i, nil, &sa) |
| return *(*uintptr)(unsafe.Pointer(&sa.__sigaction_u)) |
| } |
| |
| // setSignaltstackSP sets the ss_sp field of a stackt. |
| //go:nosplit |
| func setSignalstackSP(s *stackt, sp uintptr) { |
| *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp |
| } |
| |
| //go:nosplit |
| //go:nowritebarrierrec |
| func sigaddset(mask *sigset, i int) { |
| *mask |= 1 << (uint32(i) - 1) |
| } |
| |
| func sigdelset(mask *sigset, i int) { |
| *mask &^= 1 << (uint32(i) - 1) |
| } |