| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs_GOOS_GOARCH.h" |
| #include "signals_GOOS.h" |
| #include "os_GOOS.h" |
| |
| void |
| runtime·dumpregs(Sigcontext *r) |
| { |
| runtime·printf("trap %x\n", r->trap_no); |
| runtime·printf("error %x\n", r->error_code); |
| runtime·printf("oldmask %x\n", r->oldmask); |
| runtime·printf("r0 %x\n", r->arm_r0); |
| runtime·printf("r1 %x\n", r->arm_r1); |
| runtime·printf("r2 %x\n", r->arm_r2); |
| runtime·printf("r3 %x\n", r->arm_r3); |
| runtime·printf("r4 %x\n", r->arm_r4); |
| runtime·printf("r5 %x\n", r->arm_r5); |
| runtime·printf("r6 %x\n", r->arm_r6); |
| runtime·printf("r7 %x\n", r->arm_r7); |
| runtime·printf("r8 %x\n", r->arm_r8); |
| runtime·printf("r9 %x\n", r->arm_r9); |
| runtime·printf("r10 %x\n", r->arm_r10); |
| runtime·printf("fp %x\n", r->arm_fp); |
| runtime·printf("ip %x\n", r->arm_ip); |
| runtime·printf("sp %x\n", r->arm_sp); |
| runtime·printf("lr %x\n", r->arm_lr); |
| runtime·printf("pc %x\n", r->arm_pc); |
| runtime·printf("cpsr %x\n", r->arm_cpsr); |
| runtime·printf("fault %x\n", r->fault_address); |
| } |
| |
| /* |
| * This assembler routine takes the args from registers, puts them on the stack, |
| * and calls sighandler(). |
| */ |
| extern void runtime·sigtramp(void); |
| extern void runtime·sigreturn(void); // calls runtime·sigreturn |
| |
| void |
| runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp) |
| { |
| Ucontext *uc; |
| Sigcontext *r; |
| SigTab *t; |
| |
| uc = context; |
| r = &uc->uc_mcontext; |
| |
| if(sig == SIGPROF) { |
| runtime·sigprof((uint8*)r->arm_pc, (uint8*)r->arm_sp, (uint8*)r->arm_lr, gp); |
| return; |
| } |
| |
| t = &runtime·sigtab[sig]; |
| if(info->si_code != SI_USER && (t->flags & SigPanic)) { |
| if(gp == nil) |
| goto Throw; |
| // Make it look like a call to the signal func. |
| // Have to pass arguments out of band since |
| // augmenting the stack frame would break |
| // the unwinding code. |
| gp->sig = sig; |
| gp->sigcode0 = info->si_code; |
| gp->sigcode1 = r->fault_address; |
| gp->sigpc = r->arm_pc; |
| |
| // If this is a leaf function, we do smash LR, |
| // but we're not going back there anyway. |
| // Don't bother smashing if r->arm_pc is 0, |
| // which is probably a call to a nil func: the |
| // old link register is more useful in the stack trace. |
| if(r->arm_pc != 0) |
| r->arm_lr = r->arm_pc; |
| // In case we are panicking from external C code |
| r->arm_r10 = (uintptr)gp; |
| r->arm_r9 = (uintptr)m; |
| r->arm_pc = (uintptr)runtime·sigpanic; |
| return; |
| } |
| |
| if(info->si_code == SI_USER || (t->flags & SigNotify)) |
| if(runtime·sigsend(sig)) |
| return; |
| if(t->flags & SigKill) |
| runtime·exit(2); |
| if(!(t->flags & SigThrow)) |
| return; |
| |
| Throw: |
| if(runtime·panicking) // traceback already printed |
| runtime·exit(2); |
| runtime·panicking = 1; |
| |
| if(sig < 0 || sig >= NSIG) |
| runtime·printf("Signal %d\n", sig); |
| else |
| runtime·printf("%s\n", runtime·sigtab[sig].name); |
| |
| runtime·printf("PC=%x\n", r->arm_pc); |
| runtime·printf("\n"); |
| |
| if(runtime·gotraceback()){ |
| runtime·traceback((void*)r->arm_pc, (void*)r->arm_sp, (void*)r->arm_lr, gp); |
| runtime·tracebackothers(gp); |
| runtime·printf("\n"); |
| runtime·dumpregs(r); |
| } |
| |
| // breakpoint(); |
| runtime·exit(2); |
| } |
| |
| void |
| runtime·signalstack(byte *p, int32 n) |
| { |
| Sigaltstack st; |
| |
| st.ss_sp = p; |
| st.ss_size = n; |
| st.ss_flags = 0; |
| runtime·sigaltstack(&st, nil); |
| } |
| |
| void |
| runtime·setsig(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER; |
| if(restart) |
| sa.sa_flags |= SA_RESTART; |
| sa.sa_mask = ~0ULL; |
| sa.sa_restorer = (void*)runtime·sigreturn; |
| if(fn == runtime·sighandler) |
| fn = (void*)runtime·sigtramp; |
| sa.sa_handler = fn; |
| if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0) |
| runtime·throw("rt_sigaction failure"); |
| } |
| |
| #define AT_NULL 0 |
| #define AT_PLATFORM 15 // introduced in at least 2.6.11 |
| #define AT_HWCAP 16 // introduced in at least 2.6.11 |
| #define AT_RANDOM 25 // introduced in 2.6.29 |
| #define HWCAP_VFP (1 << 6) // introduced in at least 2.6.11 |
| #define HWCAP_VFPv3 (1 << 13) // introduced in 2.6.30 |
| static uint32 runtime·randomNumber; |
| uint8 runtime·armArch = 6; // we default to ARMv6 |
| uint32 runtime·hwcap; // set by setup_auxv |
| uint8 runtime·goarm; // set by 5l |
| |
| void |
| runtime·checkgoarm(void) |
| { |
| if(runtime·goarm > 5 && !(runtime·hwcap & HWCAP_VFP)) { |
| runtime·printf("runtime: this CPU has no floating point hardware, so it cannot run\n"); |
| runtime·printf("this GOARM=%d binary. Recompile using GOARM=5.\n", runtime·goarm); |
| runtime·exit(1); |
| } |
| if(runtime·goarm > 6 && !(runtime·hwcap & HWCAP_VFPv3)) { |
| runtime·printf("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n"); |
| runtime·printf("this GOARM=%d binary. Recompile using GOARM=6.\n", runtime·goarm); |
| runtime·exit(1); |
| } |
| } |
| |
| #pragma textflag 7 |
| void |
| runtime·setup_auxv(int32 argc, void *argv_list) |
| { |
| byte **argv = &argv_list; |
| byte **envp; |
| uint32 *auxv; |
| uint32 t; |
| |
| // skip envp to get to ELF auxiliary vector. |
| for(envp = &argv[argc+1]; *envp != nil; envp++) |
| ; |
| envp++; |
| |
| for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) { |
| switch(auxv[0]) { |
| case AT_RANDOM: // kernel provided 16-byte worth of random data |
| if(auxv[1]) |
| runtime·randomNumber = *(uint32*)(auxv[1] + 4); |
| break; |
| case AT_PLATFORM: // v5l, v6l, v7l |
| if(auxv[1]) { |
| t = *(uint8*)(auxv[1]+1); |
| if(t >= '5' && t <= '7') |
| runtime·armArch = t - '0'; |
| } |
| break; |
| case AT_HWCAP: // CPU capability bit flags |
| runtime·hwcap = auxv[1]; |
| break; |
| } |
| } |
| } |
| |
| #pragma textflag 7 |
| int64 |
| runtime·cputicks() { |
| // Currently cputicks() is used in blocking profiler and to seed runtime·fastrand1(). |
| // runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler. |
| // runtime·randomNumber provides better seeding of fastrand1. |
| return runtime·nanotime() + runtime·randomNumber; |
| } |