| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime |
| |
| // This file contains the implementation of Go's map type. |
| // |
| // A map is just a hash table. The data is arranged |
| // into an array of buckets. Each bucket contains up to |
| // 8 key/value pairs. The low-order bits of the hash are |
| // used to select a bucket. Each bucket contains a few |
| // high-order bits of each hash to distinguish the entries |
| // within a single bucket. |
| // |
| // If more than 8 keys hash to a bucket, we chain on |
| // extra buckets. |
| // |
| // When the hashtable grows, we allocate a new array |
| // of buckets twice as big. Buckets are incrementally |
| // copied from the old bucket array to the new bucket array. |
| // |
| // Map iterators walk through the array of buckets and |
| // return the keys in walk order (bucket #, then overflow |
| // chain order, then bucket index). To maintain iteration |
| // semantics, we never move keys within their bucket (if |
| // we did, keys might be returned 0 or 2 times). When |
| // growing the table, iterators remain iterating through the |
| // old table and must check the new table if the bucket |
| // they are iterating through has been moved ("evacuated") |
| // to the new table. |
| |
| // Picking loadFactor: too large and we have lots of overflow |
| // buckets, too small and we waste a lot of space. I wrote |
| // a simple program to check some stats for different loads: |
| // (64-bit, 8 byte keys and values) |
| // loadFactor %overflow bytes/entry hitprobe missprobe |
| // 4.00 2.13 20.77 3.00 4.00 |
| // 4.50 4.05 17.30 3.25 4.50 |
| // 5.00 6.85 14.77 3.50 5.00 |
| // 5.50 10.55 12.94 3.75 5.50 |
| // 6.00 15.27 11.67 4.00 6.00 |
| // 6.50 20.90 10.79 4.25 6.50 |
| // 7.00 27.14 10.15 4.50 7.00 |
| // 7.50 34.03 9.73 4.75 7.50 |
| // 8.00 41.10 9.40 5.00 8.00 |
| // |
| // %overflow = percentage of buckets which have an overflow bucket |
| // bytes/entry = overhead bytes used per key/value pair |
| // hitprobe = # of entries to check when looking up a present key |
| // missprobe = # of entries to check when looking up an absent key |
| // |
| // Keep in mind this data is for maximally loaded tables, i.e. just |
| // before the table grows. Typical tables will be somewhat less loaded. |
| |
| import ( |
| "unsafe" |
| ) |
| |
| const ( |
| // Maximum number of key/value pairs a bucket can hold. |
| bucketCntBits = 3 |
| bucketCnt = 1 << bucketCntBits |
| |
| // Maximum average load of a bucket that triggers growth. |
| loadFactor = 6.5 |
| |
| // Maximum key or value size to keep inline (instead of mallocing per element). |
| // Must fit in a uint8. |
| // Fast versions cannot handle big values - the cutoff size for |
| // fast versions in ../../cmd/internal/gc/walk.go must be at most this value. |
| maxKeySize = 128 |
| maxValueSize = 128 |
| |
| // data offset should be the size of the bmap struct, but needs to be |
| // aligned correctly. For amd64p32 this means 64-bit alignment |
| // even though pointers are 32 bit. |
| dataOffset = unsafe.Offsetof(struct { |
| b bmap |
| v int64 |
| }{}.v) |
| |
| // Possible tophash values. We reserve a few possibilities for special marks. |
| // Each bucket (including its overflow buckets, if any) will have either all or none of its |
| // entries in the evacuated* states (except during the evacuate() method, which only happens |
| // during map writes and thus no one else can observe the map during that time). |
| empty = 0 // cell is empty |
| evacuatedEmpty = 1 // cell is empty, bucket is evacuated. |
| evacuatedX = 2 // key/value is valid. Entry has been evacuated to first half of larger table. |
| evacuatedY = 3 // same as above, but evacuated to second half of larger table. |
| minTopHash = 4 // minimum tophash for a normal filled cell. |
| |
| // flags |
| iterator = 1 // there may be an iterator using buckets |
| oldIterator = 2 // there may be an iterator using oldbuckets |
| |
| // sentinel bucket ID for iterator checks |
| noCheck = 1<<(8*ptrSize) - 1 |
| |
| // trigger a garbage collection at every alloc called from this code |
| checkgc = false |
| ) |
| |
| // A header for a Go map. |
| type hmap struct { |
| // Note: the format of the Hmap is encoded in ../../cmd/internal/gc/reflect.go and |
| // ../reflect/type.go. Don't change this structure without also changing that code! |
| count int // # live cells == size of map. Must be first (used by len() builtin) |
| flags uint8 |
| B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items) |
| hash0 uint32 // hash seed |
| |
| buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0. |
| oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing |
| nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated) |
| |
| // If both key and value do not contain pointers and are inline, then we mark bucket |
| // type as containing no pointers. This avoids scanning such maps. |
| // However, bmap.overflow is a pointer. In order to keep overflow buckets |
| // alive, we store pointers to all overflow buckets in hmap.overflow. |
| // Overflow is used only if key and value do not contain pointers. |
| // overflow[0] contains overflow buckets for hmap.buckets. |
| // overflow[1] contains overflow buckets for hmap.oldbuckets. |
| // The first indirection allows us to reduce static size of hmap. |
| // The second indirection allows to store a pointer to the slice in hiter. |
| overflow *[2]*[]*bmap |
| } |
| |
| // A bucket for a Go map. |
| type bmap struct { |
| tophash [bucketCnt]uint8 |
| // Followed by bucketCnt keys and then bucketCnt values. |
| // NOTE: packing all the keys together and then all the values together makes the |
| // code a bit more complicated than alternating key/value/key/value/... but it allows |
| // us to eliminate padding which would be needed for, e.g., map[int64]int8. |
| // Followed by an overflow pointer. |
| } |
| |
| // A hash iteration structure. |
| // If you modify hiter, also change cmd/internal/gc/reflect.go to indicate |
| // the layout of this structure. |
| type hiter struct { |
| key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go). |
| value unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go). |
| t *maptype |
| h *hmap |
| buckets unsafe.Pointer // bucket ptr at hash_iter initialization time |
| bptr *bmap // current bucket |
| overflow [2]*[]*bmap // keeps overflow buckets alive |
| startBucket uintptr // bucket iteration started at |
| offset uint8 // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1) |
| wrapped bool // already wrapped around from end of bucket array to beginning |
| B uint8 |
| i uint8 |
| bucket uintptr |
| checkBucket uintptr |
| } |
| |
| func evacuated(b *bmap) bool { |
| h := b.tophash[0] |
| return h > empty && h < minTopHash |
| } |
| |
| func (b *bmap) overflow(t *maptype) *bmap { |
| return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-regSize)) |
| } |
| |
| func (h *hmap) setoverflow(t *maptype, b, ovf *bmap) { |
| if t.bucket.kind&kindNoPointers != 0 { |
| h.createOverflow() |
| *h.overflow[0] = append(*h.overflow[0], ovf) |
| } |
| *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-regSize)) = ovf |
| } |
| |
| func (h *hmap) createOverflow() { |
| if h.overflow == nil { |
| h.overflow = new([2]*[]*bmap) |
| } |
| if h.overflow[0] == nil { |
| h.overflow[0] = new([]*bmap) |
| } |
| } |
| |
| // makemap implements a Go map creation make(map[k]v, hint) |
| // If the compiler has determined that the map or the first bucket |
| // can be created on the stack, h and/or bucket may be non-nil. |
| // If h != nil, the map can be created directly in h. |
| // If bucket != nil, bucket can be used as the first bucket. |
| func makemap(t *maptype, hint int64, h *hmap, bucket unsafe.Pointer) *hmap { |
| if sz := unsafe.Sizeof(hmap{}); sz > 48 || sz != uintptr(t.hmap.size) { |
| println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size) |
| throw("bad hmap size") |
| } |
| |
| if hint < 0 || int64(int32(hint)) != hint { |
| panic("makemap: size out of range") |
| // TODO: make hint an int, then none of this nonsense |
| } |
| |
| if !ismapkey(t.key) { |
| throw("runtime.makemap: unsupported map key type") |
| } |
| |
| // check compiler's and reflect's math |
| if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(ptrSize)) || |
| t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) { |
| throw("key size wrong") |
| } |
| if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(ptrSize)) || |
| t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) { |
| throw("value size wrong") |
| } |
| |
| // invariants we depend on. We should probably check these at compile time |
| // somewhere, but for now we'll do it here. |
| if t.key.align > bucketCnt { |
| throw("key align too big") |
| } |
| if t.elem.align > bucketCnt { |
| throw("value align too big") |
| } |
| if uintptr(t.key.size)%uintptr(t.key.align) != 0 { |
| throw("key size not a multiple of key align") |
| } |
| if uintptr(t.elem.size)%uintptr(t.elem.align) != 0 { |
| throw("value size not a multiple of value align") |
| } |
| if bucketCnt < 8 { |
| throw("bucketsize too small for proper alignment") |
| } |
| if dataOffset%uintptr(t.key.align) != 0 { |
| throw("need padding in bucket (key)") |
| } |
| if dataOffset%uintptr(t.elem.align) != 0 { |
| throw("need padding in bucket (value)") |
| } |
| |
| // find size parameter which will hold the requested # of elements |
| B := uint8(0) |
| for ; hint > bucketCnt && float32(hint) > loadFactor*float32(uintptr(1)<<B); B++ { |
| } |
| |
| // allocate initial hash table |
| // if B == 0, the buckets field is allocated lazily later (in mapassign) |
| // If hint is large zeroing this memory could take a while. |
| buckets := bucket |
| if B != 0 { |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| buckets = newarray(t.bucket, uintptr(1)<<B) |
| } |
| |
| // initialize Hmap |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| if h == nil { |
| h = (*hmap)(newobject(t.hmap)) |
| } |
| h.count = 0 |
| h.B = B |
| h.flags = 0 |
| h.hash0 = fastrand1() |
| h.buckets = buckets |
| h.oldbuckets = nil |
| h.nevacuate = 0 |
| |
| return h |
| } |
| |
| // mapaccess1 returns a pointer to h[key]. Never returns nil, instead |
| // it will return a reference to the zero object for the value type if |
| // the key is not in the map. |
| // NOTE: The returned pointer may keep the whole map live, so don't |
| // hold onto it for very long. |
| func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc(unsafe.Pointer(&t)) |
| pc := funcPC(mapaccess1) |
| racereadpc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if h == nil || h.count == 0 { |
| return unsafe.Pointer(t.elem.zero) |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| m := uintptr(1)<<h.B - 1 |
| b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize))) |
| if c := h.oldbuckets; c != nil { |
| oldb := (*bmap)(add(c, (hash&(m>>1))*uintptr(t.bucketsize))) |
| if !evacuated(oldb) { |
| b = oldb |
| } |
| } |
| top := uint8(hash >> (ptrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| for { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if alg.equal(key, k) { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| return v |
| } |
| } |
| b = b.overflow(t) |
| if b == nil { |
| return unsafe.Pointer(t.elem.zero) |
| } |
| } |
| } |
| |
| func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc(unsafe.Pointer(&t)) |
| pc := funcPC(mapaccess2) |
| racereadpc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if h == nil || h.count == 0 { |
| return unsafe.Pointer(t.elem.zero), false |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| m := uintptr(1)<<h.B - 1 |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) |
| if c := h.oldbuckets; c != nil { |
| oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&(m>>1))*uintptr(t.bucketsize))) |
| if !evacuated(oldb) { |
| b = oldb |
| } |
| } |
| top := uint8(hash >> (ptrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| for { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if alg.equal(key, k) { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| return v, true |
| } |
| } |
| b = b.overflow(t) |
| if b == nil { |
| return unsafe.Pointer(t.elem.zero), false |
| } |
| } |
| } |
| |
| // returns both key and value. Used by map iterator |
| func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) { |
| if h == nil || h.count == 0 { |
| return nil, nil |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| m := uintptr(1)<<h.B - 1 |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize))) |
| if c := h.oldbuckets; c != nil { |
| oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&(m>>1))*uintptr(t.bucketsize))) |
| if !evacuated(oldb) { |
| b = oldb |
| } |
| } |
| top := uint8(hash >> (ptrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| for { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| if alg.equal(key, k) { |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| return k, v |
| } |
| } |
| b = b.overflow(t) |
| if b == nil { |
| return nil, nil |
| } |
| } |
| } |
| |
| func mapassign1(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) { |
| if h == nil { |
| panic("assignment to entry in nil map") |
| } |
| if raceenabled { |
| callerpc := getcallerpc(unsafe.Pointer(&t)) |
| pc := funcPC(mapassign1) |
| racewritepc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| raceReadObjectPC(t.elem, val, callerpc, pc) |
| } |
| |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| |
| if h.buckets == nil { |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| h.buckets = newarray(t.bucket, 1) |
| } |
| |
| again: |
| bucket := hash & (uintptr(1)<<h.B - 1) |
| if h.oldbuckets != nil { |
| growWork(t, h, bucket) |
| } |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) |
| top := uint8(hash >> (ptrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| |
| var inserti *uint8 |
| var insertk unsafe.Pointer |
| var insertv unsafe.Pointer |
| for { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| if b.tophash[i] == empty && inserti == nil { |
| inserti = &b.tophash[i] |
| insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| insertv = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| } |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| if !alg.equal(key, k2) { |
| continue |
| } |
| // already have a mapping for key. Update it. |
| typedmemmove(t.key, k2, key) |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize)) |
| v2 := v |
| if t.indirectvalue { |
| v2 = *((*unsafe.Pointer)(v2)) |
| } |
| typedmemmove(t.elem, v2, val) |
| return |
| } |
| ovf := b.overflow(t) |
| if ovf == nil { |
| break |
| } |
| b = ovf |
| } |
| |
| // did not find mapping for key. Allocate new cell & add entry. |
| if float32(h.count) >= loadFactor*float32((uintptr(1)<<h.B)) && h.count >= bucketCnt { |
| hashGrow(t, h) |
| goto again // Growing the table invalidates everything, so try again |
| } |
| |
| if inserti == nil { |
| // all current buckets are full, allocate a new one. |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| newb := (*bmap)(newobject(t.bucket)) |
| h.setoverflow(t, b, newb) |
| inserti = &newb.tophash[0] |
| insertk = add(unsafe.Pointer(newb), dataOffset) |
| insertv = add(insertk, bucketCnt*uintptr(t.keysize)) |
| } |
| |
| // store new key/value at insert position |
| if t.indirectkey { |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| kmem := newobject(t.key) |
| *(*unsafe.Pointer)(insertk) = kmem |
| insertk = kmem |
| } |
| if t.indirectvalue { |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| vmem := newobject(t.elem) |
| *(*unsafe.Pointer)(insertv) = vmem |
| insertv = vmem |
| } |
| typedmemmove(t.key, insertk, key) |
| typedmemmove(t.elem, insertv, val) |
| *inserti = top |
| h.count++ |
| } |
| |
| func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { |
| if raceenabled && h != nil { |
| callerpc := getcallerpc(unsafe.Pointer(&t)) |
| pc := funcPC(mapdelete) |
| racewritepc(unsafe.Pointer(h), callerpc, pc) |
| raceReadObjectPC(t.key, key, callerpc, pc) |
| } |
| if h == nil || h.count == 0 { |
| return |
| } |
| alg := t.key.alg |
| hash := alg.hash(key, uintptr(h.hash0)) |
| bucket := hash & (uintptr(1)<<h.B - 1) |
| if h.oldbuckets != nil { |
| growWork(t, h, bucket) |
| } |
| b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize))) |
| top := uint8(hash >> (ptrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| for { |
| for i := uintptr(0); i < bucketCnt; i++ { |
| if b.tophash[i] != top { |
| continue |
| } |
| k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize)) |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| if !alg.equal(key, k2) { |
| continue |
| } |
| memclr(k, uintptr(t.keysize)) |
| v := unsafe.Pointer(uintptr(unsafe.Pointer(b)) + dataOffset + bucketCnt*uintptr(t.keysize) + i*uintptr(t.valuesize)) |
| memclr(v, uintptr(t.valuesize)) |
| b.tophash[i] = empty |
| h.count-- |
| return |
| } |
| b = b.overflow(t) |
| if b == nil { |
| return |
| } |
| } |
| } |
| |
| func mapiterinit(t *maptype, h *hmap, it *hiter) { |
| // Clear pointer fields so garbage collector does not complain. |
| it.key = nil |
| it.value = nil |
| it.t = nil |
| it.h = nil |
| it.buckets = nil |
| it.bptr = nil |
| it.overflow[0] = nil |
| it.overflow[1] = nil |
| |
| if raceenabled && h != nil { |
| callerpc := getcallerpc(unsafe.Pointer(&t)) |
| racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit)) |
| } |
| |
| if h == nil || h.count == 0 { |
| it.key = nil |
| it.value = nil |
| return |
| } |
| |
| if unsafe.Sizeof(hiter{})/ptrSize != 12 { |
| throw("hash_iter size incorrect") // see ../../cmd/internal/gc/reflect.go |
| } |
| it.t = t |
| it.h = h |
| |
| // grab snapshot of bucket state |
| it.B = h.B |
| it.buckets = h.buckets |
| if t.bucket.kind&kindNoPointers != 0 { |
| // Allocate the current slice and remember pointers to both current and old. |
| // This preserves all relevant overflow buckets alive even if |
| // the table grows and/or overflow buckets are added to the table |
| // while we are iterating. |
| h.createOverflow() |
| it.overflow = *h.overflow |
| } |
| |
| // decide where to start |
| r := uintptr(fastrand1()) |
| if h.B > 31-bucketCntBits { |
| r += uintptr(fastrand1()) << 31 |
| } |
| it.startBucket = r & (uintptr(1)<<h.B - 1) |
| it.offset = uint8(r >> h.B & (bucketCnt - 1)) |
| |
| // iterator state |
| it.bucket = it.startBucket |
| it.wrapped = false |
| it.bptr = nil |
| |
| // Remember we have an iterator. |
| // Can run concurrently with another hash_iter_init(). |
| if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator { |
| atomicor8(&h.flags, iterator|oldIterator) |
| } |
| |
| mapiternext(it) |
| } |
| |
| func mapiternext(it *hiter) { |
| h := it.h |
| if raceenabled { |
| callerpc := getcallerpc(unsafe.Pointer(&it)) |
| racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext)) |
| } |
| t := it.t |
| bucket := it.bucket |
| b := it.bptr |
| i := it.i |
| checkBucket := it.checkBucket |
| alg := t.key.alg |
| |
| next: |
| if b == nil { |
| if bucket == it.startBucket && it.wrapped { |
| // end of iteration |
| it.key = nil |
| it.value = nil |
| return |
| } |
| if h.oldbuckets != nil && it.B == h.B { |
| // Iterator was started in the middle of a grow, and the grow isn't done yet. |
| // If the bucket we're looking at hasn't been filled in yet (i.e. the old |
| // bucket hasn't been evacuated) then we need to iterate through the old |
| // bucket and only return the ones that will be migrated to this bucket. |
| oldbucket := bucket & (uintptr(1)<<(it.B-1) - 1) |
| b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) |
| if !evacuated(b) { |
| checkBucket = bucket |
| } else { |
| b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) |
| checkBucket = noCheck |
| } |
| } else { |
| b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize))) |
| checkBucket = noCheck |
| } |
| bucket++ |
| if bucket == uintptr(1)<<it.B { |
| bucket = 0 |
| it.wrapped = true |
| } |
| i = 0 |
| } |
| for ; i < bucketCnt; i++ { |
| offi := (i + it.offset) & (bucketCnt - 1) |
| k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize)) |
| v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize)) |
| if b.tophash[offi] != empty && b.tophash[offi] != evacuatedEmpty { |
| if checkBucket != noCheck { |
| // Special case: iterator was started during a grow and the |
| // grow is not done yet. We're working on a bucket whose |
| // oldbucket has not been evacuated yet. Or at least, it wasn't |
| // evacuated when we started the bucket. So we're iterating |
| // through the oldbucket, skipping any keys that will go |
| // to the other new bucket (each oldbucket expands to two |
| // buckets during a grow). |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| if t.reflexivekey || alg.equal(k2, k2) { |
| // If the item in the oldbucket is not destined for |
| // the current new bucket in the iteration, skip it. |
| hash := alg.hash(k2, uintptr(h.hash0)) |
| if hash&(uintptr(1)<<it.B-1) != checkBucket { |
| continue |
| } |
| } else { |
| // Hash isn't repeatable if k != k (NaNs). We need a |
| // repeatable and randomish choice of which direction |
| // to send NaNs during evacuation. We'll use the low |
| // bit of tophash to decide which way NaNs go. |
| // NOTE: this case is why we need two evacuate tophash |
| // values, evacuatedX and evacuatedY, that differ in |
| // their low bit. |
| if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) { |
| continue |
| } |
| } |
| } |
| if b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY { |
| // this is the golden data, we can return it. |
| if t.indirectkey { |
| k = *((*unsafe.Pointer)(k)) |
| } |
| it.key = k |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| it.value = v |
| } else { |
| // The hash table has grown since the iterator was started. |
| // The golden data for this key is now somewhere else. |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| if t.reflexivekey || alg.equal(k2, k2) { |
| // Check the current hash table for the data. |
| // This code handles the case where the key |
| // has been deleted, updated, or deleted and reinserted. |
| // NOTE: we need to regrab the key as it has potentially been |
| // updated to an equal() but not identical key (e.g. +0.0 vs -0.0). |
| rk, rv := mapaccessK(t, h, k2) |
| if rk == nil { |
| continue // key has been deleted |
| } |
| it.key = rk |
| it.value = rv |
| } else { |
| // if key!=key then the entry can't be deleted or |
| // updated, so we can just return it. That's lucky for |
| // us because when key!=key we can't look it up |
| // successfully in the current table. |
| it.key = k2 |
| if t.indirectvalue { |
| v = *((*unsafe.Pointer)(v)) |
| } |
| it.value = v |
| } |
| } |
| it.bucket = bucket |
| it.bptr = b |
| it.i = i + 1 |
| it.checkBucket = checkBucket |
| return |
| } |
| } |
| b = b.overflow(t) |
| i = 0 |
| goto next |
| } |
| |
| func hashGrow(t *maptype, h *hmap) { |
| if h.oldbuckets != nil { |
| throw("evacuation not done in time") |
| } |
| oldbuckets := h.buckets |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| newbuckets := newarray(t.bucket, uintptr(1)<<(h.B+1)) |
| flags := h.flags &^ (iterator | oldIterator) |
| if h.flags&iterator != 0 { |
| flags |= oldIterator |
| } |
| // commit the grow (atomic wrt gc) |
| h.B++ |
| h.flags = flags |
| h.oldbuckets = oldbuckets |
| h.buckets = newbuckets |
| h.nevacuate = 0 |
| |
| if h.overflow != nil { |
| // Promote current overflow buckets to the old generation. |
| if h.overflow[1] != nil { |
| throw("overflow is not nil") |
| } |
| h.overflow[1] = h.overflow[0] |
| h.overflow[0] = nil |
| } |
| |
| // the actual copying of the hash table data is done incrementally |
| // by growWork() and evacuate(). |
| } |
| |
| func growWork(t *maptype, h *hmap, bucket uintptr) { |
| noldbuckets := uintptr(1) << (h.B - 1) |
| |
| // make sure we evacuate the oldbucket corresponding |
| // to the bucket we're about to use |
| evacuate(t, h, bucket&(noldbuckets-1)) |
| |
| // evacuate one more oldbucket to make progress on growing |
| if h.oldbuckets != nil { |
| evacuate(t, h, h.nevacuate) |
| } |
| } |
| |
| func evacuate(t *maptype, h *hmap, oldbucket uintptr) { |
| b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) |
| newbit := uintptr(1) << (h.B - 1) |
| alg := t.key.alg |
| if !evacuated(b) { |
| // TODO: reuse overflow buckets instead of using new ones, if there |
| // is no iterator using the old buckets. (If !oldIterator.) |
| |
| x := (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize))) |
| y := (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize))) |
| xi := 0 |
| yi := 0 |
| xk := add(unsafe.Pointer(x), dataOffset) |
| yk := add(unsafe.Pointer(y), dataOffset) |
| xv := add(xk, bucketCnt*uintptr(t.keysize)) |
| yv := add(yk, bucketCnt*uintptr(t.keysize)) |
| for ; b != nil; b = b.overflow(t) { |
| k := add(unsafe.Pointer(b), dataOffset) |
| v := add(k, bucketCnt*uintptr(t.keysize)) |
| for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) { |
| top := b.tophash[i] |
| if top == empty { |
| b.tophash[i] = evacuatedEmpty |
| continue |
| } |
| if top < minTopHash { |
| throw("bad map state") |
| } |
| k2 := k |
| if t.indirectkey { |
| k2 = *((*unsafe.Pointer)(k2)) |
| } |
| // Compute hash to make our evacuation decision (whether we need |
| // to send this key/value to bucket x or bucket y). |
| hash := alg.hash(k2, uintptr(h.hash0)) |
| if h.flags&iterator != 0 { |
| if !t.reflexivekey && !alg.equal(k2, k2) { |
| // If key != key (NaNs), then the hash could be (and probably |
| // will be) entirely different from the old hash. Moreover, |
| // it isn't reproducible. Reproducibility is required in the |
| // presence of iterators, as our evacuation decision must |
| // match whatever decision the iterator made. |
| // Fortunately, we have the freedom to send these keys either |
| // way. Also, tophash is meaningless for these kinds of keys. |
| // We let the low bit of tophash drive the evacuation decision. |
| // We recompute a new random tophash for the next level so |
| // these keys will get evenly distributed across all buckets |
| // after multiple grows. |
| if (top & 1) != 0 { |
| hash |= newbit |
| } else { |
| hash &^= newbit |
| } |
| top = uint8(hash >> (ptrSize*8 - 8)) |
| if top < minTopHash { |
| top += minTopHash |
| } |
| } |
| } |
| if (hash & newbit) == 0 { |
| b.tophash[i] = evacuatedX |
| if xi == bucketCnt { |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| newx := (*bmap)(newobject(t.bucket)) |
| h.setoverflow(t, x, newx) |
| x = newx |
| xi = 0 |
| xk = add(unsafe.Pointer(x), dataOffset) |
| xv = add(xk, bucketCnt*uintptr(t.keysize)) |
| } |
| x.tophash[xi] = top |
| if t.indirectkey { |
| *(*unsafe.Pointer)(xk) = k2 // copy pointer |
| } else { |
| typedmemmove(t.key, xk, k) // copy value |
| } |
| if t.indirectvalue { |
| *(*unsafe.Pointer)(xv) = *(*unsafe.Pointer)(v) |
| } else { |
| typedmemmove(t.elem, xv, v) |
| } |
| xi++ |
| xk = add(xk, uintptr(t.keysize)) |
| xv = add(xv, uintptr(t.valuesize)) |
| } else { |
| b.tophash[i] = evacuatedY |
| if yi == bucketCnt { |
| if checkgc { |
| memstats.next_gc = memstats.heap_alloc |
| } |
| newy := (*bmap)(newobject(t.bucket)) |
| h.setoverflow(t, y, newy) |
| y = newy |
| yi = 0 |
| yk = add(unsafe.Pointer(y), dataOffset) |
| yv = add(yk, bucketCnt*uintptr(t.keysize)) |
| } |
| y.tophash[yi] = top |
| if t.indirectkey { |
| *(*unsafe.Pointer)(yk) = k2 |
| } else { |
| typedmemmove(t.key, yk, k) |
| } |
| if t.indirectvalue { |
| *(*unsafe.Pointer)(yv) = *(*unsafe.Pointer)(v) |
| } else { |
| typedmemmove(t.elem, yv, v) |
| } |
| yi++ |
| yk = add(yk, uintptr(t.keysize)) |
| yv = add(yv, uintptr(t.valuesize)) |
| } |
| } |
| } |
| // Unlink the overflow buckets & clear key/value to help GC. |
| if h.flags&oldIterator == 0 { |
| b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))) |
| memclr(add(unsafe.Pointer(b), dataOffset), uintptr(t.bucketsize)-dataOffset) |
| } |
| } |
| |
| // Advance evacuation mark |
| if oldbucket == h.nevacuate { |
| h.nevacuate = oldbucket + 1 |
| if oldbucket+1 == newbit { // newbit == # of oldbuckets |
| // Growing is all done. Free old main bucket array. |
| h.oldbuckets = nil |
| // Can discard old overflow buckets as well. |
| // If they are still referenced by an iterator, |
| // then the iterator holds a pointers to the slice. |
| if h.overflow != nil { |
| h.overflow[1] = nil |
| } |
| } |
| } |
| } |
| |
| func ismapkey(t *_type) bool { |
| return t.alg.hash != nil |
| } |
| |
| // Reflect stubs. Called from ../reflect/asm_*.s |
| |
| //go:linkname reflect_makemap reflect.makemap |
| func reflect_makemap(t *maptype) *hmap { |
| return makemap(t, 0, nil, nil) |
| } |
| |
| //go:linkname reflect_mapaccess reflect.mapaccess |
| func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer { |
| val, ok := mapaccess2(t, h, key) |
| if !ok { |
| // reflect wants nil for a missing element |
| val = nil |
| } |
| return val |
| } |
| |
| //go:linkname reflect_mapassign reflect.mapassign |
| func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) { |
| mapassign1(t, h, key, val) |
| } |
| |
| //go:linkname reflect_mapdelete reflect.mapdelete |
| func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) { |
| mapdelete(t, h, key) |
| } |
| |
| //go:linkname reflect_mapiterinit reflect.mapiterinit |
| func reflect_mapiterinit(t *maptype, h *hmap) *hiter { |
| it := new(hiter) |
| mapiterinit(t, h, it) |
| return it |
| } |
| |
| //go:linkname reflect_mapiternext reflect.mapiternext |
| func reflect_mapiternext(it *hiter) { |
| mapiternext(it) |
| } |
| |
| //go:linkname reflect_mapiterkey reflect.mapiterkey |
| func reflect_mapiterkey(it *hiter) unsafe.Pointer { |
| return it.key |
| } |
| |
| //go:linkname reflect_maplen reflect.maplen |
| func reflect_maplen(h *hmap) int { |
| if h == nil { |
| return 0 |
| } |
| if raceenabled { |
| callerpc := getcallerpc(unsafe.Pointer(&h)) |
| racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen)) |
| } |
| return h.count |
| } |
| |
| //go:linkname reflect_ismapkey reflect.ismapkey |
| func reflect_ismapkey(t *_type) bool { |
| return ismapkey(t) |
| } |