| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "go_asm.h" |
| #include "go_tls.h" |
| #include "tls_arm64.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| |
| TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 |
| // SP = stack; R0 = argc; R1 = argv |
| |
| SUB $32, RSP |
| MOVW R0, 8(RSP) // argc |
| MOVD R1, 16(RSP) // argv |
| |
| #ifdef TLS_darwin |
| // Initialize TLS. |
| MOVD ZR, g // clear g, make sure it's not junk. |
| SUB $32, RSP |
| MRS_TPIDR_R0 |
| AND $~7, R0 |
| MOVD R0, 16(RSP) // arg2: TLS base |
| MOVD $runtime·tls_g(SB), R2 |
| MOVD R2, 8(RSP) // arg1: &tlsg |
| BL ·tlsinit(SB) |
| ADD $32, RSP |
| #endif |
| |
| // create istack out of the given (operating system) stack. |
| // _cgo_init may update stackguard. |
| MOVD $runtime·g0(SB), g |
| MOVD RSP, R7 |
| MOVD $(-64*1024)(R7), R0 |
| MOVD R0, g_stackguard0(g) |
| MOVD R0, g_stackguard1(g) |
| MOVD R0, (g_stack+stack_lo)(g) |
| MOVD R7, (g_stack+stack_hi)(g) |
| |
| // if there is a _cgo_init, call it using the gcc ABI. |
| MOVD _cgo_init(SB), R12 |
| CBZ R12, nocgo |
| |
| #ifdef GOOS_android |
| MRS_TPIDR_R0 // load TLS base pointer |
| MOVD R0, R3 // arg 3: TLS base pointer |
| MOVD $runtime·tls_g(SB), R2 // arg 2: &tls_g |
| #else |
| MOVD $0, R2 // arg 2: not used when using platform's TLS |
| #endif |
| MOVD $setg_gcc<>(SB), R1 // arg 1: setg |
| MOVD g, R0 // arg 0: G |
| SUB $16, RSP // reserve 16 bytes for sp-8 where fp may be saved. |
| BL (R12) |
| ADD $16, RSP |
| |
| nocgo: |
| BL runtime·save_g(SB) |
| // update stackguard after _cgo_init |
| MOVD (g_stack+stack_lo)(g), R0 |
| ADD $const_stackGuard, R0 |
| MOVD R0, g_stackguard0(g) |
| MOVD R0, g_stackguard1(g) |
| |
| // set the per-goroutine and per-mach "registers" |
| MOVD $runtime·m0(SB), R0 |
| |
| // save m->g0 = g0 |
| MOVD g, m_g0(R0) |
| // save m0 to g0->m |
| MOVD R0, g_m(g) |
| |
| BL runtime·check(SB) |
| |
| #ifdef GOOS_windows |
| BL runtime·wintls(SB) |
| #endif |
| |
| MOVW 8(RSP), R0 // copy argc |
| MOVW R0, -8(RSP) |
| MOVD 16(RSP), R0 // copy argv |
| MOVD R0, 0(RSP) |
| BL runtime·args(SB) |
| BL runtime·osinit(SB) |
| BL runtime·schedinit(SB) |
| |
| // create a new goroutine to start program |
| MOVD $runtime·mainPC(SB), R0 // entry |
| SUB $16, RSP |
| MOVD R0, 8(RSP) // arg |
| MOVD $0, 0(RSP) // dummy LR |
| BL runtime·newproc(SB) |
| ADD $16, RSP |
| |
| // start this M |
| BL runtime·mstart(SB) |
| |
| // Prevent dead-code elimination of debugCallV2, which is |
| // intended to be called by debuggers. |
| MOVD $runtime·debugCallV2<ABIInternal>(SB), R0 |
| |
| MOVD $0, R0 |
| MOVD R0, (R0) // boom |
| UNDEF |
| |
| DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB) |
| GLOBL runtime·mainPC(SB),RODATA,$8 |
| |
| // Windows ARM64 needs an immediate 0xf000 argument. |
| // See go.dev/issues/53837. |
| #define BREAK \ |
| #ifdef GOOS_windows \ |
| BRK $0xf000 \ |
| #else \ |
| BRK \ |
| #endif \ |
| |
| |
| TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 |
| BREAK |
| RET |
| |
| TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 |
| RET |
| |
| TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 |
| BL runtime·mstart0(SB) |
| RET // not reached |
| |
| /* |
| * go-routine |
| */ |
| |
| // void gogo(Gobuf*) |
| // restore state from Gobuf; longjmp |
| TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 |
| MOVD buf+0(FP), R5 |
| MOVD gobuf_g(R5), R6 |
| MOVD 0(R6), R4 // make sure g != nil |
| B gogo<>(SB) |
| |
| TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0 |
| MOVD R6, g |
| BL runtime·save_g(SB) |
| |
| MOVD gobuf_sp(R5), R0 |
| MOVD R0, RSP |
| MOVD gobuf_bp(R5), R29 |
| MOVD gobuf_lr(R5), LR |
| MOVD gobuf_ret(R5), R0 |
| MOVD gobuf_ctxt(R5), R26 |
| MOVD $0, gobuf_sp(R5) |
| MOVD $0, gobuf_bp(R5) |
| MOVD $0, gobuf_ret(R5) |
| MOVD $0, gobuf_lr(R5) |
| MOVD $0, gobuf_ctxt(R5) |
| CMP ZR, ZR // set condition codes for == test, needed by stack split |
| MOVD gobuf_pc(R5), R6 |
| B (R6) |
| |
| // void mcall(fn func(*g)) |
| // Switch to m->g0's stack, call fn(g). |
| // Fn must never return. It should gogo(&g->sched) |
| // to keep running g. |
| TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8 |
| MOVD R0, R26 // context |
| |
| // Save caller state in g->sched |
| MOVD RSP, R0 |
| MOVD R0, (g_sched+gobuf_sp)(g) |
| MOVD R29, (g_sched+gobuf_bp)(g) |
| MOVD LR, (g_sched+gobuf_pc)(g) |
| MOVD $0, (g_sched+gobuf_lr)(g) |
| |
| // Switch to m->g0 & its stack, call fn. |
| MOVD g, R3 |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), g |
| BL runtime·save_g(SB) |
| CMP g, R3 |
| BNE 2(PC) |
| B runtime·badmcall(SB) |
| |
| MOVD (g_sched+gobuf_sp)(g), R0 |
| MOVD R0, RSP // sp = m->g0->sched.sp |
| MOVD (g_sched+gobuf_bp)(g), R29 |
| MOVD R3, R0 // arg = g |
| MOVD $0, -16(RSP) // dummy LR |
| SUB $16, RSP |
| MOVD 0(R26), R4 // code pointer |
| BL (R4) |
| B runtime·badmcall2(SB) |
| |
| // systemstack_switch is a dummy routine that systemstack leaves at the bottom |
| // of the G stack. We need to distinguish the routine that |
| // lives at the bottom of the G stack from the one that lives |
| // at the top of the system stack because the one at the top of |
| // the system stack terminates the stack walk (see topofstack()). |
| TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 |
| UNDEF |
| BL (LR) // make sure this function is not leaf |
| RET |
| |
| // func systemstack(fn func()) |
| TEXT runtime·systemstack(SB), NOSPLIT, $0-8 |
| MOVD fn+0(FP), R3 // R3 = fn |
| MOVD R3, R26 // context |
| MOVD g_m(g), R4 // R4 = m |
| |
| MOVD m_gsignal(R4), R5 // R5 = gsignal |
| CMP g, R5 |
| BEQ noswitch |
| |
| MOVD m_g0(R4), R5 // R5 = g0 |
| CMP g, R5 |
| BEQ noswitch |
| |
| MOVD m_curg(R4), R6 |
| CMP g, R6 |
| BEQ switch |
| |
| // Bad: g is not gsignal, not g0, not curg. What is it? |
| // Hide call from linker nosplit analysis. |
| MOVD $runtime·badsystemstack(SB), R3 |
| BL (R3) |
| B runtime·abort(SB) |
| |
| switch: |
| // save our state in g->sched. Pretend to |
| // be systemstack_switch if the G stack is scanned. |
| BL gosave_systemstack_switch<>(SB) |
| |
| // switch to g0 |
| MOVD R5, g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R3 |
| MOVD R3, RSP |
| MOVD (g_sched+gobuf_bp)(g), R29 |
| |
| // call target function |
| MOVD 0(R26), R3 // code pointer |
| BL (R3) |
| |
| // switch back to g |
| MOVD g_m(g), R3 |
| MOVD m_curg(R3), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R0 |
| MOVD R0, RSP |
| MOVD (g_sched+gobuf_bp)(g), R29 |
| MOVD $0, (g_sched+gobuf_sp)(g) |
| MOVD $0, (g_sched+gobuf_bp)(g) |
| RET |
| |
| noswitch: |
| // already on m stack, just call directly |
| // Using a tail call here cleans up tracebacks since we won't stop |
| // at an intermediate systemstack. |
| MOVD 0(R26), R3 // code pointer |
| MOVD.P 16(RSP), R30 // restore LR |
| SUB $8, RSP, R29 // restore FP |
| B (R3) |
| |
| /* |
| * support for morestack |
| */ |
| |
| // Called during function prolog when more stack is needed. |
| // Caller has already loaded: |
| // R3 prolog's LR (R30) |
| // |
| // The traceback routines see morestack on a g0 as being |
| // the top of a stack (for example, morestack calling newstack |
| // calling the scheduler calling newm calling gc), so we must |
| // record an argument size. For that purpose, it has no arguments. |
| TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 |
| // Cannot grow scheduler stack (m->g0). |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), R4 |
| CMP g, R4 |
| BNE 3(PC) |
| BL runtime·badmorestackg0(SB) |
| B runtime·abort(SB) |
| |
| // Cannot grow signal stack (m->gsignal). |
| MOVD m_gsignal(R8), R4 |
| CMP g, R4 |
| BNE 3(PC) |
| BL runtime·badmorestackgsignal(SB) |
| B runtime·abort(SB) |
| |
| // Called from f. |
| // Set g->sched to context in f |
| MOVD RSP, R0 |
| MOVD R0, (g_sched+gobuf_sp)(g) |
| MOVD R29, (g_sched+gobuf_bp)(g) |
| MOVD LR, (g_sched+gobuf_pc)(g) |
| MOVD R3, (g_sched+gobuf_lr)(g) |
| MOVD R26, (g_sched+gobuf_ctxt)(g) |
| |
| // Called from f. |
| // Set m->morebuf to f's callers. |
| MOVD R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC |
| MOVD RSP, R0 |
| MOVD R0, (m_morebuf+gobuf_sp)(R8) // f's caller's RSP |
| MOVD g, (m_morebuf+gobuf_g)(R8) |
| |
| // Call newstack on m->g0's stack. |
| MOVD m_g0(R8), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R0 |
| MOVD R0, RSP |
| MOVD (g_sched+gobuf_bp)(g), R29 |
| MOVD.W $0, -16(RSP) // create a call frame on g0 (saved LR; keep 16-aligned) |
| BL runtime·newstack(SB) |
| |
| // Not reached, but make sure the return PC from the call to newstack |
| // is still in this function, and not the beginning of the next. |
| UNDEF |
| |
| TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 |
| // Force SPWRITE. This function doesn't actually write SP, |
| // but it is called with a special calling convention where |
| // the caller doesn't save LR on stack but passes it as a |
| // register (R3), and the unwinder currently doesn't understand. |
| // Make it SPWRITE to stop unwinding. (See issue 54332) |
| MOVD RSP, RSP |
| |
| MOVW $0, R26 |
| B runtime·morestack(SB) |
| |
| // spillArgs stores return values from registers to a *internal/abi.RegArgs in R20. |
| TEXT ·spillArgs(SB),NOSPLIT,$0-0 |
| STP (R0, R1), (0*8)(R20) |
| STP (R2, R3), (2*8)(R20) |
| STP (R4, R5), (4*8)(R20) |
| STP (R6, R7), (6*8)(R20) |
| STP (R8, R9), (8*8)(R20) |
| STP (R10, R11), (10*8)(R20) |
| STP (R12, R13), (12*8)(R20) |
| STP (R14, R15), (14*8)(R20) |
| FSTPD (F0, F1), (16*8)(R20) |
| FSTPD (F2, F3), (18*8)(R20) |
| FSTPD (F4, F5), (20*8)(R20) |
| FSTPD (F6, F7), (22*8)(R20) |
| FSTPD (F8, F9), (24*8)(R20) |
| FSTPD (F10, F11), (26*8)(R20) |
| FSTPD (F12, F13), (28*8)(R20) |
| FSTPD (F14, F15), (30*8)(R20) |
| RET |
| |
| // unspillArgs loads args into registers from a *internal/abi.RegArgs in R20. |
| TEXT ·unspillArgs(SB),NOSPLIT,$0-0 |
| LDP (0*8)(R20), (R0, R1) |
| LDP (2*8)(R20), (R2, R3) |
| LDP (4*8)(R20), (R4, R5) |
| LDP (6*8)(R20), (R6, R7) |
| LDP (8*8)(R20), (R8, R9) |
| LDP (10*8)(R20), (R10, R11) |
| LDP (12*8)(R20), (R12, R13) |
| LDP (14*8)(R20), (R14, R15) |
| FLDPD (16*8)(R20), (F0, F1) |
| FLDPD (18*8)(R20), (F2, F3) |
| FLDPD (20*8)(R20), (F4, F5) |
| FLDPD (22*8)(R20), (F6, F7) |
| FLDPD (24*8)(R20), (F8, F9) |
| FLDPD (26*8)(R20), (F10, F11) |
| FLDPD (28*8)(R20), (F12, F13) |
| FLDPD (30*8)(R20), (F14, F15) |
| RET |
| |
| // reflectcall: call a function with the given argument list |
| // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). |
| // we don't have variable-sized frames, so we use a small number |
| // of constant-sized-frame functions to encode a few bits of size in the pc. |
| // Caution: ugly multiline assembly macros in your future! |
| |
| #define DISPATCH(NAME,MAXSIZE) \ |
| MOVD $MAXSIZE, R27; \ |
| CMP R27, R16; \ |
| BGT 3(PC); \ |
| MOVD $NAME(SB), R27; \ |
| B (R27) |
| // Note: can't just "B NAME(SB)" - bad inlining results. |
| |
| TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48 |
| MOVWU frameSize+32(FP), R16 |
| DISPATCH(runtime·call16, 16) |
| DISPATCH(runtime·call32, 32) |
| DISPATCH(runtime·call64, 64) |
| DISPATCH(runtime·call128, 128) |
| DISPATCH(runtime·call256, 256) |
| DISPATCH(runtime·call512, 512) |
| DISPATCH(runtime·call1024, 1024) |
| DISPATCH(runtime·call2048, 2048) |
| DISPATCH(runtime·call4096, 4096) |
| DISPATCH(runtime·call8192, 8192) |
| DISPATCH(runtime·call16384, 16384) |
| DISPATCH(runtime·call32768, 32768) |
| DISPATCH(runtime·call65536, 65536) |
| DISPATCH(runtime·call131072, 131072) |
| DISPATCH(runtime·call262144, 262144) |
| DISPATCH(runtime·call524288, 524288) |
| DISPATCH(runtime·call1048576, 1048576) |
| DISPATCH(runtime·call2097152, 2097152) |
| DISPATCH(runtime·call4194304, 4194304) |
| DISPATCH(runtime·call8388608, 8388608) |
| DISPATCH(runtime·call16777216, 16777216) |
| DISPATCH(runtime·call33554432, 33554432) |
| DISPATCH(runtime·call67108864, 67108864) |
| DISPATCH(runtime·call134217728, 134217728) |
| DISPATCH(runtime·call268435456, 268435456) |
| DISPATCH(runtime·call536870912, 536870912) |
| DISPATCH(runtime·call1073741824, 1073741824) |
| MOVD $runtime·badreflectcall(SB), R0 |
| B (R0) |
| |
| #define CALLFN(NAME,MAXSIZE) \ |
| TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ |
| NO_LOCAL_POINTERS; \ |
| /* copy arguments to stack */ \ |
| MOVD stackArgs+16(FP), R3; \ |
| MOVWU stackArgsSize+24(FP), R4; \ |
| ADD $8, RSP, R5; \ |
| BIC $0xf, R4, R6; \ |
| CBZ R6, 6(PC); \ |
| /* if R6=(argsize&~15) != 0 */ \ |
| ADD R6, R5, R6; \ |
| /* copy 16 bytes a time */ \ |
| LDP.P 16(R3), (R7, R8); \ |
| STP.P (R7, R8), 16(R5); \ |
| CMP R5, R6; \ |
| BNE -3(PC); \ |
| AND $0xf, R4, R6; \ |
| CBZ R6, 6(PC); \ |
| /* if R6=(argsize&15) != 0 */ \ |
| ADD R6, R5, R6; \ |
| /* copy 1 byte a time for the rest */ \ |
| MOVBU.P 1(R3), R7; \ |
| MOVBU.P R7, 1(R5); \ |
| CMP R5, R6; \ |
| BNE -3(PC); \ |
| /* set up argument registers */ \ |
| MOVD regArgs+40(FP), R20; \ |
| CALL ·unspillArgs(SB); \ |
| /* call function */ \ |
| MOVD f+8(FP), R26; \ |
| MOVD (R26), R20; \ |
| PCDATA $PCDATA_StackMapIndex, $0; \ |
| BL (R20); \ |
| /* copy return values back */ \ |
| MOVD regArgs+40(FP), R20; \ |
| CALL ·spillArgs(SB); \ |
| MOVD stackArgsType+0(FP), R7; \ |
| MOVD stackArgs+16(FP), R3; \ |
| MOVWU stackArgsSize+24(FP), R4; \ |
| MOVWU stackRetOffset+28(FP), R6; \ |
| ADD $8, RSP, R5; \ |
| ADD R6, R5; \ |
| ADD R6, R3; \ |
| SUB R6, R4; \ |
| BL callRet<>(SB); \ |
| RET |
| |
| // callRet copies return values back at the end of call*. This is a |
| // separate function so it can allocate stack space for the arguments |
| // to reflectcallmove. It does not follow the Go ABI; it expects its |
| // arguments in registers. |
| TEXT callRet<>(SB), NOSPLIT, $48-0 |
| NO_LOCAL_POINTERS |
| STP (R7, R3), 8(RSP) |
| STP (R5, R4), 24(RSP) |
| MOVD R20, 40(RSP) |
| BL runtime·reflectcallmove(SB) |
| RET |
| |
| CALLFN(·call16, 16) |
| CALLFN(·call32, 32) |
| CALLFN(·call64, 64) |
| CALLFN(·call128, 128) |
| CALLFN(·call256, 256) |
| CALLFN(·call512, 512) |
| CALLFN(·call1024, 1024) |
| CALLFN(·call2048, 2048) |
| CALLFN(·call4096, 4096) |
| CALLFN(·call8192, 8192) |
| CALLFN(·call16384, 16384) |
| CALLFN(·call32768, 32768) |
| CALLFN(·call65536, 65536) |
| CALLFN(·call131072, 131072) |
| CALLFN(·call262144, 262144) |
| CALLFN(·call524288, 524288) |
| CALLFN(·call1048576, 1048576) |
| CALLFN(·call2097152, 2097152) |
| CALLFN(·call4194304, 4194304) |
| CALLFN(·call8388608, 8388608) |
| CALLFN(·call16777216, 16777216) |
| CALLFN(·call33554432, 33554432) |
| CALLFN(·call67108864, 67108864) |
| CALLFN(·call134217728, 134217728) |
| CALLFN(·call268435456, 268435456) |
| CALLFN(·call536870912, 536870912) |
| CALLFN(·call1073741824, 1073741824) |
| |
| // func memhash32(p unsafe.Pointer, h uintptr) uintptr |
| TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24 |
| MOVB runtime·useAeshash(SB), R10 |
| CBZ R10, noaes |
| MOVD $runtime·aeskeysched+0(SB), R3 |
| |
| VEOR V0.B16, V0.B16, V0.B16 |
| VLD1 (R3), [V2.B16] |
| VLD1 (R0), V0.S[1] |
| VMOV R1, V0.S[0] |
| |
| AESE V2.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V2.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V2.B16, V0.B16 |
| |
| VMOV V0.D[0], R0 |
| RET |
| noaes: |
| B runtime·memhash32Fallback<ABIInternal>(SB) |
| |
| // func memhash64(p unsafe.Pointer, h uintptr) uintptr |
| TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24 |
| MOVB runtime·useAeshash(SB), R10 |
| CBZ R10, noaes |
| MOVD $runtime·aeskeysched+0(SB), R3 |
| |
| VEOR V0.B16, V0.B16, V0.B16 |
| VLD1 (R3), [V2.B16] |
| VLD1 (R0), V0.D[1] |
| VMOV R1, V0.D[0] |
| |
| AESE V2.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V2.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V2.B16, V0.B16 |
| |
| VMOV V0.D[0], R0 |
| RET |
| noaes: |
| B runtime·memhash64Fallback<ABIInternal>(SB) |
| |
| // func memhash(p unsafe.Pointer, h, size uintptr) uintptr |
| TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32 |
| MOVB runtime·useAeshash(SB), R10 |
| CBZ R10, noaes |
| B aeshashbody<>(SB) |
| noaes: |
| B runtime·memhashFallback<ABIInternal>(SB) |
| |
| // func strhash(p unsafe.Pointer, h uintptr) uintptr |
| TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24 |
| MOVB runtime·useAeshash(SB), R10 |
| CBZ R10, noaes |
| LDP (R0), (R0, R2) // string data / length |
| B aeshashbody<>(SB) |
| noaes: |
| B runtime·strhashFallback<ABIInternal>(SB) |
| |
| // R0: data |
| // R1: seed data |
| // R2: length |
| // At return, R0 = return value |
| TEXT aeshashbody<>(SB),NOSPLIT|NOFRAME,$0 |
| VEOR V30.B16, V30.B16, V30.B16 |
| VMOV R1, V30.D[0] |
| VMOV R2, V30.D[1] // load length into seed |
| |
| MOVD $runtime·aeskeysched+0(SB), R4 |
| VLD1.P 16(R4), [V0.B16] |
| AESE V30.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| CMP $16, R2 |
| BLO aes0to15 |
| BEQ aes16 |
| CMP $32, R2 |
| BLS aes17to32 |
| CMP $64, R2 |
| BLS aes33to64 |
| CMP $128, R2 |
| BLS aes65to128 |
| B aes129plus |
| |
| aes0to15: |
| CBZ R2, aes0 |
| VEOR V2.B16, V2.B16, V2.B16 |
| TBZ $3, R2, less_than_8 |
| VLD1.P 8(R0), V2.D[0] |
| |
| less_than_8: |
| TBZ $2, R2, less_than_4 |
| VLD1.P 4(R0), V2.S[2] |
| |
| less_than_4: |
| TBZ $1, R2, less_than_2 |
| VLD1.P 2(R0), V2.H[6] |
| |
| less_than_2: |
| TBZ $0, R2, done |
| VLD1 (R0), V2.B[14] |
| done: |
| AESE V0.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V0.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V0.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| |
| VMOV V2.D[0], R0 |
| RET |
| |
| aes0: |
| VMOV V0.D[0], R0 |
| RET |
| |
| aes16: |
| VLD1 (R0), [V2.B16] |
| B done |
| |
| aes17to32: |
| // make second seed |
| VLD1 (R4), [V1.B16] |
| AESE V30.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| SUB $16, R2, R10 |
| VLD1.P (R0)(R10), [V2.B16] |
| VLD1 (R0), [V3.B16] |
| |
| AESE V0.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V1.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| |
| AESE V0.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V1.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| |
| AESE V0.B16, V2.B16 |
| AESE V1.B16, V3.B16 |
| |
| VEOR V3.B16, V2.B16, V2.B16 |
| |
| VMOV V2.D[0], R0 |
| RET |
| |
| aes33to64: |
| VLD1 (R4), [V1.B16, V2.B16, V3.B16] |
| AESE V30.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V30.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V30.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| SUB $32, R2, R10 |
| |
| VLD1.P (R0)(R10), [V4.B16, V5.B16] |
| VLD1 (R0), [V6.B16, V7.B16] |
| |
| AESE V0.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V1.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V2.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V3.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| |
| AESE V0.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V1.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V2.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V3.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| |
| AESE V0.B16, V4.B16 |
| AESE V1.B16, V5.B16 |
| AESE V2.B16, V6.B16 |
| AESE V3.B16, V7.B16 |
| |
| VEOR V6.B16, V4.B16, V4.B16 |
| VEOR V7.B16, V5.B16, V5.B16 |
| VEOR V5.B16, V4.B16, V4.B16 |
| |
| VMOV V4.D[0], R0 |
| RET |
| |
| aes65to128: |
| VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16] |
| VLD1 (R4), [V5.B16, V6.B16, V7.B16] |
| AESE V30.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V30.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V30.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| AESE V30.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V30.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V30.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V30.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| |
| SUB $64, R2, R10 |
| VLD1.P (R0)(R10), [V8.B16, V9.B16, V10.B16, V11.B16] |
| VLD1 (R0), [V12.B16, V13.B16, V14.B16, V15.B16] |
| AESE V0.B16, V8.B16 |
| AESMC V8.B16, V8.B16 |
| AESE V1.B16, V9.B16 |
| AESMC V9.B16, V9.B16 |
| AESE V2.B16, V10.B16 |
| AESMC V10.B16, V10.B16 |
| AESE V3.B16, V11.B16 |
| AESMC V11.B16, V11.B16 |
| AESE V4.B16, V12.B16 |
| AESMC V12.B16, V12.B16 |
| AESE V5.B16, V13.B16 |
| AESMC V13.B16, V13.B16 |
| AESE V6.B16, V14.B16 |
| AESMC V14.B16, V14.B16 |
| AESE V7.B16, V15.B16 |
| AESMC V15.B16, V15.B16 |
| |
| AESE V0.B16, V8.B16 |
| AESMC V8.B16, V8.B16 |
| AESE V1.B16, V9.B16 |
| AESMC V9.B16, V9.B16 |
| AESE V2.B16, V10.B16 |
| AESMC V10.B16, V10.B16 |
| AESE V3.B16, V11.B16 |
| AESMC V11.B16, V11.B16 |
| AESE V4.B16, V12.B16 |
| AESMC V12.B16, V12.B16 |
| AESE V5.B16, V13.B16 |
| AESMC V13.B16, V13.B16 |
| AESE V6.B16, V14.B16 |
| AESMC V14.B16, V14.B16 |
| AESE V7.B16, V15.B16 |
| AESMC V15.B16, V15.B16 |
| |
| AESE V0.B16, V8.B16 |
| AESE V1.B16, V9.B16 |
| AESE V2.B16, V10.B16 |
| AESE V3.B16, V11.B16 |
| AESE V4.B16, V12.B16 |
| AESE V5.B16, V13.B16 |
| AESE V6.B16, V14.B16 |
| AESE V7.B16, V15.B16 |
| |
| VEOR V12.B16, V8.B16, V8.B16 |
| VEOR V13.B16, V9.B16, V9.B16 |
| VEOR V14.B16, V10.B16, V10.B16 |
| VEOR V15.B16, V11.B16, V11.B16 |
| VEOR V10.B16, V8.B16, V8.B16 |
| VEOR V11.B16, V9.B16, V9.B16 |
| VEOR V9.B16, V8.B16, V8.B16 |
| |
| VMOV V8.D[0], R0 |
| RET |
| |
| aes129plus: |
| PRFM (R0), PLDL1KEEP |
| VLD1.P 64(R4), [V1.B16, V2.B16, V3.B16, V4.B16] |
| VLD1 (R4), [V5.B16, V6.B16, V7.B16] |
| AESE V30.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V30.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V30.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| AESE V30.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V30.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V30.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V30.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| ADD R0, R2, R10 |
| SUB $128, R10, R10 |
| VLD1.P 64(R10), [V8.B16, V9.B16, V10.B16, V11.B16] |
| VLD1 (R10), [V12.B16, V13.B16, V14.B16, V15.B16] |
| SUB $1, R2, R2 |
| LSR $7, R2, R2 |
| |
| aesloop: |
| AESE V8.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V9.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V10.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V11.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| AESE V12.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V13.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V14.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V15.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| |
| VLD1.P 64(R0), [V8.B16, V9.B16, V10.B16, V11.B16] |
| AESE V8.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V9.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V10.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V11.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| |
| VLD1.P 64(R0), [V12.B16, V13.B16, V14.B16, V15.B16] |
| AESE V12.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V13.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V14.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V15.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| SUB $1, R2, R2 |
| CBNZ R2, aesloop |
| |
| AESE V8.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V9.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V10.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V11.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| AESE V12.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V13.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V14.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V15.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| |
| AESE V8.B16, V0.B16 |
| AESMC V0.B16, V0.B16 |
| AESE V9.B16, V1.B16 |
| AESMC V1.B16, V1.B16 |
| AESE V10.B16, V2.B16 |
| AESMC V2.B16, V2.B16 |
| AESE V11.B16, V3.B16 |
| AESMC V3.B16, V3.B16 |
| AESE V12.B16, V4.B16 |
| AESMC V4.B16, V4.B16 |
| AESE V13.B16, V5.B16 |
| AESMC V5.B16, V5.B16 |
| AESE V14.B16, V6.B16 |
| AESMC V6.B16, V6.B16 |
| AESE V15.B16, V7.B16 |
| AESMC V7.B16, V7.B16 |
| |
| AESE V8.B16, V0.B16 |
| AESE V9.B16, V1.B16 |
| AESE V10.B16, V2.B16 |
| AESE V11.B16, V3.B16 |
| AESE V12.B16, V4.B16 |
| AESE V13.B16, V5.B16 |
| AESE V14.B16, V6.B16 |
| AESE V15.B16, V7.B16 |
| |
| VEOR V0.B16, V1.B16, V0.B16 |
| VEOR V2.B16, V3.B16, V2.B16 |
| VEOR V4.B16, V5.B16, V4.B16 |
| VEOR V6.B16, V7.B16, V6.B16 |
| VEOR V0.B16, V2.B16, V0.B16 |
| VEOR V4.B16, V6.B16, V4.B16 |
| VEOR V4.B16, V0.B16, V0.B16 |
| |
| VMOV V0.D[0], R0 |
| RET |
| |
| TEXT runtime·procyield(SB),NOSPLIT,$0-0 |
| MOVWU cycles+0(FP), R0 |
| again: |
| YIELD |
| SUBW $1, R0 |
| CBNZ R0, again |
| RET |
| |
| // Save state of caller into g->sched, |
| // but using fake PC from systemstack_switch. |
| // Must only be called from functions with no locals ($0) |
| // or else unwinding from systemstack_switch is incorrect. |
| // Smashes R0. |
| TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0 |
| MOVD $runtime·systemstack_switch(SB), R0 |
| ADD $8, R0 // get past prologue |
| MOVD R0, (g_sched+gobuf_pc)(g) |
| MOVD RSP, R0 |
| MOVD R0, (g_sched+gobuf_sp)(g) |
| MOVD R29, (g_sched+gobuf_bp)(g) |
| MOVD $0, (g_sched+gobuf_lr)(g) |
| MOVD $0, (g_sched+gobuf_ret)(g) |
| // Assert ctxt is zero. See func save. |
| MOVD (g_sched+gobuf_ctxt)(g), R0 |
| CBZ R0, 2(PC) |
| CALL runtime·abort(SB) |
| RET |
| |
| // func asmcgocall_no_g(fn, arg unsafe.Pointer) |
| // Call fn(arg) aligned appropriately for the gcc ABI. |
| // Called on a system stack, and there may be no g yet (during needm). |
| TEXT ·asmcgocall_no_g(SB),NOSPLIT,$0-16 |
| MOVD fn+0(FP), R1 |
| MOVD arg+8(FP), R0 |
| SUB $16, RSP // skip over saved frame pointer below RSP |
| BL (R1) |
| ADD $16, RSP // skip over saved frame pointer below RSP |
| RET |
| |
| // func asmcgocall(fn, arg unsafe.Pointer) int32 |
| // Call fn(arg) on the scheduler stack, |
| // aligned appropriately for the gcc ABI. |
| // See cgocall.go for more details. |
| TEXT ·asmcgocall(SB),NOSPLIT,$0-20 |
| MOVD fn+0(FP), R1 |
| MOVD arg+8(FP), R0 |
| |
| MOVD RSP, R2 // save original stack pointer |
| CBZ g, nosave |
| MOVD g, R4 |
| |
| // Figure out if we need to switch to m->g0 stack. |
| // We get called to create new OS threads too, and those |
| // come in on the m->g0 stack already. Or we might already |
| // be on the m->gsignal stack. |
| MOVD g_m(g), R8 |
| MOVD m_gsignal(R8), R3 |
| CMP R3, g |
| BEQ nosave |
| MOVD m_g0(R8), R3 |
| CMP R3, g |
| BEQ nosave |
| |
| // Switch to system stack. |
| MOVD R0, R9 // gosave_systemstack_switch<> and save_g might clobber R0 |
| BL gosave_systemstack_switch<>(SB) |
| MOVD R3, g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R0 |
| MOVD R0, RSP |
| MOVD (g_sched+gobuf_bp)(g), R29 |
| MOVD R9, R0 |
| |
| // Now on a scheduling stack (a pthread-created stack). |
| // Save room for two of our pointers /*, plus 32 bytes of callee |
| // save area that lives on the caller stack. */ |
| MOVD RSP, R13 |
| SUB $16, R13 |
| MOVD R13, RSP |
| MOVD R4, 0(RSP) // save old g on stack |
| MOVD (g_stack+stack_hi)(R4), R4 |
| SUB R2, R4 |
| MOVD R4, 8(RSP) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) |
| BL (R1) |
| MOVD R0, R9 |
| |
| // Restore g, stack pointer. R0 is errno, so don't touch it |
| MOVD 0(RSP), g |
| BL runtime·save_g(SB) |
| MOVD (g_stack+stack_hi)(g), R5 |
| MOVD 8(RSP), R6 |
| SUB R6, R5 |
| MOVD R9, R0 |
| MOVD R5, RSP |
| |
| MOVW R0, ret+16(FP) |
| RET |
| |
| nosave: |
| // Running on a system stack, perhaps even without a g. |
| // Having no g can happen during thread creation or thread teardown |
| // (see needm/dropm on Solaris, for example). |
| // This code is like the above sequence but without saving/restoring g |
| // and without worrying about the stack moving out from under us |
| // (because we're on a system stack, not a goroutine stack). |
| // The above code could be used directly if already on a system stack, |
| // but then the only path through this code would be a rare case on Solaris. |
| // Using this code for all "already on system stack" calls exercises it more, |
| // which should help keep it correct. |
| MOVD RSP, R13 |
| SUB $16, R13 |
| MOVD R13, RSP |
| MOVD $0, R4 |
| MOVD R4, 0(RSP) // Where above code stores g, in case someone looks during debugging. |
| MOVD R2, 8(RSP) // Save original stack pointer. |
| BL (R1) |
| // Restore stack pointer. |
| MOVD 8(RSP), R2 |
| MOVD R2, RSP |
| MOVD R0, ret+16(FP) |
| RET |
| |
| // cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) |
| // See cgocall.go for more details. |
| TEXT ·cgocallback(SB),NOSPLIT,$24-24 |
| NO_LOCAL_POINTERS |
| |
| // Skip cgocallbackg, just dropm when fn is nil, and frame is the saved g. |
| // It is used to dropm while thread is exiting. |
| MOVD fn+0(FP), R1 |
| CBNZ R1, loadg |
| // Restore the g from frame. |
| MOVD frame+8(FP), g |
| B dropm |
| |
| loadg: |
| // Load g from thread-local storage. |
| BL runtime·load_g(SB) |
| |
| // If g is nil, Go did not create the current thread, |
| // or if this thread never called into Go on pthread platforms. |
| // Call needm to obtain one for temporary use. |
| // In this case, we're running on the thread stack, so there's |
| // lots of space, but the linker doesn't know. Hide the call from |
| // the linker analysis by using an indirect call. |
| CBZ g, needm |
| |
| MOVD g_m(g), R8 |
| MOVD R8, savedm-8(SP) |
| B havem |
| |
| needm: |
| MOVD g, savedm-8(SP) // g is zero, so is m. |
| MOVD $runtime·needAndBindM(SB), R0 |
| BL (R0) |
| |
| // Set m->g0->sched.sp = SP, so that if a panic happens |
| // during the function we are about to execute, it will |
| // have a valid SP to run on the g0 stack. |
| // The next few lines (after the havem label) |
| // will save this SP onto the stack and then write |
| // the same SP back to m->sched.sp. That seems redundant, |
| // but if an unrecovered panic happens, unwindm will |
| // restore the g->sched.sp from the stack location |
| // and then systemstack will try to use it. If we don't set it here, |
| // that restored SP will be uninitialized (typically 0) and |
| // will not be usable. |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), R3 |
| MOVD RSP, R0 |
| MOVD R0, (g_sched+gobuf_sp)(R3) |
| MOVD R29, (g_sched+gobuf_bp)(R3) |
| |
| havem: |
| // Now there's a valid m, and we're running on its m->g0. |
| // Save current m->g0->sched.sp on stack and then set it to SP. |
| // Save current sp in m->g0->sched.sp in preparation for |
| // switch back to m->curg stack. |
| // NOTE: unwindm knows that the saved g->sched.sp is at 16(RSP) aka savedsp-16(SP). |
| // Beware that the frame size is actually 32+16. |
| MOVD m_g0(R8), R3 |
| MOVD (g_sched+gobuf_sp)(R3), R4 |
| MOVD R4, savedsp-16(SP) |
| MOVD RSP, R0 |
| MOVD R0, (g_sched+gobuf_sp)(R3) |
| |
| // Switch to m->curg stack and call runtime.cgocallbackg. |
| // Because we are taking over the execution of m->curg |
| // but *not* resuming what had been running, we need to |
| // save that information (m->curg->sched) so we can restore it. |
| // We can restore m->curg->sched.sp easily, because calling |
| // runtime.cgocallbackg leaves SP unchanged upon return. |
| // To save m->curg->sched.pc, we push it onto the curg stack and |
| // open a frame the same size as cgocallback's g0 frame. |
| // Once we switch to the curg stack, the pushed PC will appear |
| // to be the return PC of cgocallback, so that the traceback |
| // will seamlessly trace back into the earlier calls. |
| MOVD m_curg(R8), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 |
| MOVD (g_sched+gobuf_pc)(g), R5 |
| MOVD R5, -48(R4) |
| MOVD (g_sched+gobuf_bp)(g), R5 |
| MOVD R5, -56(R4) |
| // Gather our arguments into registers. |
| MOVD fn+0(FP), R1 |
| MOVD frame+8(FP), R2 |
| MOVD ctxt+16(FP), R3 |
| MOVD $-48(R4), R0 // maintain 16-byte SP alignment |
| MOVD R0, RSP // switch stack |
| MOVD R1, 8(RSP) |
| MOVD R2, 16(RSP) |
| MOVD R3, 24(RSP) |
| MOVD $runtime·cgocallbackg(SB), R0 |
| CALL (R0) // indirect call to bypass nosplit check. We're on a different stack now. |
| |
| // Restore g->sched (== m->curg->sched) from saved values. |
| MOVD 0(RSP), R5 |
| MOVD R5, (g_sched+gobuf_pc)(g) |
| MOVD RSP, R4 |
| ADD $48, R4, R4 |
| MOVD R4, (g_sched+gobuf_sp)(g) |
| |
| // Switch back to m->g0's stack and restore m->g0->sched.sp. |
| // (Unlike m->curg, the g0 goroutine never uses sched.pc, |
| // so we do not have to restore it.) |
| MOVD g_m(g), R8 |
| MOVD m_g0(R8), g |
| BL runtime·save_g(SB) |
| MOVD (g_sched+gobuf_sp)(g), R0 |
| MOVD R0, RSP |
| MOVD savedsp-16(SP), R4 |
| MOVD R4, (g_sched+gobuf_sp)(g) |
| |
| // If the m on entry was nil, we called needm above to borrow an m, |
| // 1. for the duration of the call on non-pthread platforms, |
| // 2. or the duration of the C thread alive on pthread platforms. |
| // If the m on entry wasn't nil, |
| // 1. the thread might be a Go thread, |
| // 2. or it wasn't the first call from a C thread on pthread platforms, |
| // since then we skip dropm to reuse the m in the first call. |
| MOVD savedm-8(SP), R6 |
| CBNZ R6, droppedm |
| |
| // Skip dropm to reuse it in the next call, when a pthread key has been created. |
| MOVD _cgo_pthread_key_created(SB), R6 |
| // It means cgo is disabled when _cgo_pthread_key_created is a nil pointer, need dropm. |
| CBZ R6, dropm |
| MOVD (R6), R6 |
| CBNZ R6, droppedm |
| |
| dropm: |
| MOVD $runtime·dropm(SB), R0 |
| BL (R0) |
| droppedm: |
| |
| // Done! |
| RET |
| |
| // Called from cgo wrappers, this function returns g->m->curg.stack.hi. |
| // Must obey the gcc calling convention. |
| TEXT _cgo_topofstack(SB),NOSPLIT,$24 |
| // g (R28) and REGTMP (R27) might be clobbered by load_g. They |
| // are callee-save in the gcc calling convention, so save them. |
| MOVD R27, savedR27-8(SP) |
| MOVD g, saveG-16(SP) |
| |
| BL runtime·load_g(SB) |
| MOVD g_m(g), R0 |
| MOVD m_curg(R0), R0 |
| MOVD (g_stack+stack_hi)(R0), R0 |
| |
| MOVD saveG-16(SP), g |
| MOVD savedR28-8(SP), R27 |
| RET |
| |
| // void setg(G*); set g. for use by needm. |
| TEXT runtime·setg(SB), NOSPLIT, $0-8 |
| MOVD gg+0(FP), g |
| // This only happens if iscgo, so jump straight to save_g |
| BL runtime·save_g(SB) |
| RET |
| |
| // void setg_gcc(G*); set g called from gcc |
| TEXT setg_gcc<>(SB),NOSPLIT,$8 |
| MOVD R0, g |
| MOVD R27, savedR27-8(SP) |
| BL runtime·save_g(SB) |
| MOVD savedR27-8(SP), R27 |
| RET |
| |
| TEXT runtime·emptyfunc(SB),0,$0-0 |
| RET |
| |
| TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 |
| MOVD ZR, R0 |
| MOVD (R0), R0 |
| UNDEF |
| |
| TEXT runtime·return0(SB), NOSPLIT, $0 |
| MOVW $0, R0 |
| RET |
| |
| // The top-most function running on a goroutine |
| // returns to goexit+PCQuantum. |
| TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 |
| MOVD R0, R0 // NOP |
| BL runtime·goexit1(SB) // does not return |
| |
| // This is called from .init_array and follows the platform, not Go, ABI. |
| TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 |
| SUB $0x10, RSP |
| MOVD R27, 8(RSP) // The access to global variables below implicitly uses R27, which is callee-save |
| MOVD runtime·lastmoduledatap(SB), R1 |
| MOVD R0, moduledata_next(R1) |
| MOVD R0, runtime·lastmoduledatap(SB) |
| MOVD 8(RSP), R27 |
| ADD $0x10, RSP |
| RET |
| |
| TEXT ·checkASM(SB),NOSPLIT,$0-1 |
| MOVW $1, R3 |
| MOVB R3, ret+0(FP) |
| RET |
| |
| // gcWriteBarrier informs the GC about heap pointer writes. |
| // |
| // gcWriteBarrier does NOT follow the Go ABI. It accepts the |
| // number of bytes of buffer needed in R25, and returns a pointer |
| // to the buffer space in R25. |
| // It clobbers condition codes. |
| // It does not clobber any general-purpose registers except R27, |
| // but may clobber others (e.g., floating point registers) |
| // The act of CALLing gcWriteBarrier will clobber R30 (LR). |
| TEXT gcWriteBarrier<>(SB),NOSPLIT,$200 |
| // Save the registers clobbered by the fast path. |
| STP (R0, R1), 184(RSP) |
| retry: |
| MOVD g_m(g), R0 |
| MOVD m_p(R0), R0 |
| MOVD (p_wbBuf+wbBuf_next)(R0), R1 |
| MOVD (p_wbBuf+wbBuf_end)(R0), R27 |
| // Increment wbBuf.next position. |
| ADD R25, R1 |
| // Is the buffer full? |
| CMP R27, R1 |
| BHI flush |
| // Commit to the larger buffer. |
| MOVD R1, (p_wbBuf+wbBuf_next)(R0) |
| // Make return value (the original next position) |
| SUB R25, R1, R25 |
| // Restore registers. |
| LDP 184(RSP), (R0, R1) |
| RET |
| |
| flush: |
| // Save all general purpose registers since these could be |
| // clobbered by wbBufFlush and were not saved by the caller. |
| // R0 and R1 already saved |
| STP (R2, R3), 1*8(RSP) |
| STP (R4, R5), 3*8(RSP) |
| STP (R6, R7), 5*8(RSP) |
| STP (R8, R9), 7*8(RSP) |
| STP (R10, R11), 9*8(RSP) |
| STP (R12, R13), 11*8(RSP) |
| STP (R14, R15), 13*8(RSP) |
| // R16, R17 may be clobbered by linker trampoline |
| // R18 is unused. |
| STP (R19, R20), 15*8(RSP) |
| STP (R21, R22), 17*8(RSP) |
| STP (R23, R24), 19*8(RSP) |
| STP (R25, R26), 21*8(RSP) |
| // R27 is temp register. |
| // R28 is g. |
| // R29 is frame pointer (unused). |
| // R30 is LR, which was saved by the prologue. |
| // R31 is SP. |
| |
| CALL runtime·wbBufFlush(SB) |
| LDP 1*8(RSP), (R2, R3) |
| LDP 3*8(RSP), (R4, R5) |
| LDP 5*8(RSP), (R6, R7) |
| LDP 7*8(RSP), (R8, R9) |
| LDP 9*8(RSP), (R10, R11) |
| LDP 11*8(RSP), (R12, R13) |
| LDP 13*8(RSP), (R14, R15) |
| LDP 15*8(RSP), (R19, R20) |
| LDP 17*8(RSP), (R21, R22) |
| LDP 19*8(RSP), (R23, R24) |
| LDP 21*8(RSP), (R25, R26) |
| JMP retry |
| |
| TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $8, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $16, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $24, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $32, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $40, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $48, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $56, R25 |
| JMP gcWriteBarrier<>(SB) |
| TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0 |
| MOVD $64, R25 |
| JMP gcWriteBarrier<>(SB) |
| |
| DATA debugCallFrameTooLarge<>+0x00(SB)/20, $"call frame too large" |
| GLOBL debugCallFrameTooLarge<>(SB), RODATA, $20 // Size duplicated below |
| |
| // debugCallV2 is the entry point for debugger-injected function |
| // calls on running goroutines. It informs the runtime that a |
| // debug call has been injected and creates a call frame for the |
| // debugger to fill in. |
| // |
| // To inject a function call, a debugger should: |
| // 1. Check that the goroutine is in state _Grunning and that |
| // there are at least 288 bytes free on the stack. |
| // 2. Set SP as SP-16. |
| // 3. Store the current LR in (SP) (using the SP after step 2). |
| // 4. Store the current PC in the LR register. |
| // 5. Write the desired argument frame size at SP-16 |
| // 6. Save all machine registers (including flags and fpsimd registers) |
| // so they can be restored later by the debugger. |
| // 7. Set the PC to debugCallV2 and resume execution. |
| // |
| // If the goroutine is in state _Grunnable, then it's not generally |
| // safe to inject a call because it may return out via other runtime |
| // operations. Instead, the debugger should unwind the stack to find |
| // the return to non-runtime code, add a temporary breakpoint there, |
| // and inject the call once that breakpoint is hit. |
| // |
| // If the goroutine is in any other state, it's not safe to inject a call. |
| // |
| // This function communicates back to the debugger by setting R20 and |
| // invoking BRK to raise a breakpoint signal. Note that the signal PC of |
| // the signal triggered by the BRK instruction is the PC where the signal |
| // is trapped, not the next PC, so to resume execution, the debugger needs |
| // to set the signal PC to PC+4. See the comments in the implementation for |
| // the protocol the debugger is expected to follow. InjectDebugCall in the |
| // runtime tests demonstrates this protocol. |
| // |
| // The debugger must ensure that any pointers passed to the function |
| // obey escape analysis requirements. Specifically, it must not pass |
| // a stack pointer to an escaping argument. debugCallV2 cannot check |
| // this invariant. |
| // |
| // This is ABIInternal because Go code injects its PC directly into new |
| // goroutine stacks. |
| TEXT runtime·debugCallV2<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-0 |
| STP (R29, R30), -280(RSP) |
| SUB $272, RSP, RSP |
| SUB $8, RSP, R29 |
| // Save all registers that may contain pointers so they can be |
| // conservatively scanned. |
| // |
| // We can't do anything that might clobber any of these |
| // registers before this. |
| STP (R27, g), (30*8)(RSP) |
| STP (R25, R26), (28*8)(RSP) |
| STP (R23, R24), (26*8)(RSP) |
| STP (R21, R22), (24*8)(RSP) |
| STP (R19, R20), (22*8)(RSP) |
| STP (R16, R17), (20*8)(RSP) |
| STP (R14, R15), (18*8)(RSP) |
| STP (R12, R13), (16*8)(RSP) |
| STP (R10, R11), (14*8)(RSP) |
| STP (R8, R9), (12*8)(RSP) |
| STP (R6, R7), (10*8)(RSP) |
| STP (R4, R5), (8*8)(RSP) |
| STP (R2, R3), (6*8)(RSP) |
| STP (R0, R1), (4*8)(RSP) |
| |
| // Perform a safe-point check. |
| MOVD R30, 8(RSP) // Caller's PC |
| CALL runtime·debugCallCheck(SB) |
| MOVD 16(RSP), R0 |
| CBZ R0, good |
| |
| // The safety check failed. Put the reason string at the top |
| // of the stack. |
| MOVD R0, 8(RSP) |
| MOVD 24(RSP), R0 |
| MOVD R0, 16(RSP) |
| |
| // Set R20 to 8 and invoke BRK. The debugger should get the |
| // reason a call can't be injected from SP+8 and resume execution. |
| MOVD $8, R20 |
| BREAK |
| JMP restore |
| |
| good: |
| // Registers are saved and it's safe to make a call. |
| // Open up a call frame, moving the stack if necessary. |
| // |
| // Once the frame is allocated, this will set R20 to 0 and |
| // invoke BRK. The debugger should write the argument |
| // frame for the call at SP+8, set up argument registers, |
| // set the LR as the signal PC + 4, set the PC to the function |
| // to call, set R26 to point to the closure (if a closure call), |
| // and resume execution. |
| // |
| // If the function returns, this will set R20 to 1 and invoke |
| // BRK. The debugger can then inspect any return value saved |
| // on the stack at SP+8 and in registers. To resume execution, |
| // the debugger should restore the LR from (SP). |
| // |
| // If the function panics, this will set R20 to 2 and invoke BRK. |
| // The interface{} value of the panic will be at SP+8. The debugger |
| // can inspect the panic value and resume execution again. |
| #define DEBUG_CALL_DISPATCH(NAME,MAXSIZE) \ |
| CMP $MAXSIZE, R0; \ |
| BGT 5(PC); \ |
| MOVD $NAME(SB), R0; \ |
| MOVD R0, 8(RSP); \ |
| CALL runtime·debugCallWrap(SB); \ |
| JMP restore |
| |
| MOVD 256(RSP), R0 // the argument frame size |
| DEBUG_CALL_DISPATCH(debugCall32<>, 32) |
| DEBUG_CALL_DISPATCH(debugCall64<>, 64) |
| DEBUG_CALL_DISPATCH(debugCall128<>, 128) |
| DEBUG_CALL_DISPATCH(debugCall256<>, 256) |
| DEBUG_CALL_DISPATCH(debugCall512<>, 512) |
| DEBUG_CALL_DISPATCH(debugCall1024<>, 1024) |
| DEBUG_CALL_DISPATCH(debugCall2048<>, 2048) |
| DEBUG_CALL_DISPATCH(debugCall4096<>, 4096) |
| DEBUG_CALL_DISPATCH(debugCall8192<>, 8192) |
| DEBUG_CALL_DISPATCH(debugCall16384<>, 16384) |
| DEBUG_CALL_DISPATCH(debugCall32768<>, 32768) |
| DEBUG_CALL_DISPATCH(debugCall65536<>, 65536) |
| // The frame size is too large. Report the error. |
| MOVD $debugCallFrameTooLarge<>(SB), R0 |
| MOVD R0, 8(RSP) |
| MOVD $20, R0 |
| MOVD R0, 16(RSP) // length of debugCallFrameTooLarge string |
| MOVD $8, R20 |
| BREAK |
| JMP restore |
| |
| restore: |
| // Calls and failures resume here. |
| // |
| // Set R20 to 16 and invoke BRK. The debugger should restore |
| // all registers except for PC and RSP and resume execution. |
| MOVD $16, R20 |
| BREAK |
| // We must not modify flags after this point. |
| |
| // Restore pointer-containing registers, which may have been |
| // modified from the debugger's copy by stack copying. |
| LDP (30*8)(RSP), (R27, g) |
| LDP (28*8)(RSP), (R25, R26) |
| LDP (26*8)(RSP), (R23, R24) |
| LDP (24*8)(RSP), (R21, R22) |
| LDP (22*8)(RSP), (R19, R20) |
| LDP (20*8)(RSP), (R16, R17) |
| LDP (18*8)(RSP), (R14, R15) |
| LDP (16*8)(RSP), (R12, R13) |
| LDP (14*8)(RSP), (R10, R11) |
| LDP (12*8)(RSP), (R8, R9) |
| LDP (10*8)(RSP), (R6, R7) |
| LDP (8*8)(RSP), (R4, R5) |
| LDP (6*8)(RSP), (R2, R3) |
| LDP (4*8)(RSP), (R0, R1) |
| |
| LDP -8(RSP), (R29, R27) |
| ADD $288, RSP, RSP // Add 16 more bytes, see saveSigContext |
| MOVD -16(RSP), R30 // restore old lr |
| JMP (R27) |
| |
| // runtime.debugCallCheck assumes that functions defined with the |
| // DEBUG_CALL_FN macro are safe points to inject calls. |
| #define DEBUG_CALL_FN(NAME,MAXSIZE) \ |
| TEXT NAME(SB),WRAPPER,$MAXSIZE-0; \ |
| NO_LOCAL_POINTERS; \ |
| MOVD $0, R20; \ |
| BREAK; \ |
| MOVD $1, R20; \ |
| BREAK; \ |
| RET |
| DEBUG_CALL_FN(debugCall32<>, 32) |
| DEBUG_CALL_FN(debugCall64<>, 64) |
| DEBUG_CALL_FN(debugCall128<>, 128) |
| DEBUG_CALL_FN(debugCall256<>, 256) |
| DEBUG_CALL_FN(debugCall512<>, 512) |
| DEBUG_CALL_FN(debugCall1024<>, 1024) |
| DEBUG_CALL_FN(debugCall2048<>, 2048) |
| DEBUG_CALL_FN(debugCall4096<>, 4096) |
| DEBUG_CALL_FN(debugCall8192<>, 8192) |
| DEBUG_CALL_FN(debugCall16384<>, 16384) |
| DEBUG_CALL_FN(debugCall32768<>, 32768) |
| DEBUG_CALL_FN(debugCall65536<>, 65536) |
| |
| // func debugCallPanicked(val interface{}) |
| TEXT runtime·debugCallPanicked(SB),NOSPLIT,$16-16 |
| // Copy the panic value to the top of stack at SP+8. |
| MOVD val_type+0(FP), R0 |
| MOVD R0, 8(RSP) |
| MOVD val_data+8(FP), R0 |
| MOVD R0, 16(RSP) |
| MOVD $2, R20 |
| BREAK |
| RET |
| |
| // Note: these functions use a special calling convention to save generated code space. |
| // Arguments are passed in registers, but the space for those arguments are allocated |
| // in the caller's stack frame. These stubs write the args into that stack space and |
| // then tail call to the corresponding runtime handler. |
| // The tail call makes these stubs disappear in backtraces. |
| // |
| // Defined as ABIInternal since the compiler generates ABIInternal |
| // calls to it directly and it does not use the stack-based Go ABI. |
| TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16 |
| JMP runtime·goPanicIndex<ABIInternal>(SB) |
| TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16 |
| JMP runtime·goPanicIndexU<ABIInternal>(SB) |
| TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R1, R0 |
| MOVD R2, R1 |
| JMP runtime·goPanicSliceAlen<ABIInternal>(SB) |
| TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R1, R0 |
| MOVD R2, R1 |
| JMP runtime·goPanicSliceAlenU<ABIInternal>(SB) |
| TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R1, R0 |
| MOVD R2, R1 |
| JMP runtime·goPanicSliceAcap<ABIInternal>(SB) |
| TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R1, R0 |
| MOVD R2, R1 |
| JMP runtime·goPanicSliceAcapU<ABIInternal>(SB) |
| TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16 |
| JMP runtime·goPanicSliceB<ABIInternal>(SB) |
| TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16 |
| JMP runtime·goPanicSliceBU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R2, R0 |
| MOVD R3, R1 |
| JMP runtime·goPanicSlice3Alen<ABIInternal>(SB) |
| TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R2, R0 |
| MOVD R3, R1 |
| JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R2, R0 |
| MOVD R3, R1 |
| JMP runtime·goPanicSlice3Acap<ABIInternal>(SB) |
| TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R2, R0 |
| MOVD R3, R1 |
| JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R1, R0 |
| MOVD R2, R1 |
| JMP runtime·goPanicSlice3B<ABIInternal>(SB) |
| TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R1, R0 |
| MOVD R2, R1 |
| JMP runtime·goPanicSlice3BU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16 |
| JMP runtime·goPanicSlice3C<ABIInternal>(SB) |
| TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16 |
| JMP runtime·goPanicSlice3CU<ABIInternal>(SB) |
| TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOVD R2, R0 |
| MOVD R3, R1 |
| JMP runtime·goPanicSliceConvert<ABIInternal>(SB) |
| |
| TEXT ·getfp<ABIInternal>(SB),NOSPLIT|NOFRAME,$0 |
| MOVD R29, R0 |
| RET |