blob: 6114c88953c482176d1d8d3601bc2266c0ecc2a6 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// A parser for "old" Go source files using the old semicolon syntax.
// Input may be provided in a variety of forms (see the various Parse*
// functions); the output is an abstract syntax tree (AST) representing
// the Go source. The oldParser is invoked through one of the Parse*
// functions.
//
// NOTE: This package is deprecated and will be removed once all Go code
// has been converted to using the new syntax and after a reasonable
// grace period.
//
package oldParser
import (
"container/vector"
"fmt"
"go/ast"
"go/scanner"
"go/token"
)
// noPos is used when there is no corresponding source position for a token.
var noPos token.Position
// The mode parameter to the Parse* functions is a set of flags (or 0).
// They control the amount of source code parsed and other optional
// parser functionality.
//
const (
PackageClauseOnly uint = 1 << iota // parsing stops after package clause
ImportsOnly // parsing stops after import declarations
ParseComments // parse comments and add them to AST
Trace // print a trace of parsed productions
)
// The parser structure holds the parser's internal state.
type parser struct {
scanner.ErrorVector
scanner scanner.Scanner
// Tracing/debugging
mode uint // parsing mode
trace bool // == (mode & Trace != 0)
indent uint // indentation used for tracing output
// Comments
comments *ast.CommentGroup // list of collected comments
lastComment *ast.CommentGroup // last comment in the comments list
leadComment *ast.CommentGroup // the last lead comment
lineComment *ast.CommentGroup // the last line comment
// Next token
pos token.Position // token position
tok token.Token // one token look-ahead
lit []byte // token literal
// Non-syntactic parser control
optSemi bool // true if semicolon separator is optional in statement list
exprLev int // < 0: in control clause, >= 0: in expression
// Scopes
pkgScope *ast.Scope
fileScope *ast.Scope
topScope *ast.Scope
}
// scannerMode returns the scanner mode bits given the parser's mode bits.
func scannerMode(mode uint) uint {
if mode&ParseComments != 0 {
return scanner.ScanComments
}
return 0
}
func (p *parser) init(filename string, src []byte, mode uint) {
p.scanner.Init(filename, src, p, scannerMode(mode))
p.mode = mode
p.trace = mode&Trace != 0 // for convenience (p.trace is used frequently)
p.next()
}
// ----------------------------------------------------------------------------
// Parsing support
func (p *parser) printTrace(a ...interface{}) {
const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " +
". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
const n = uint(len(dots))
fmt.Printf("%5d:%3d: ", p.pos.Line, p.pos.Column)
i := 2 * p.indent
for ; i > n; i -= n {
fmt.Print(dots)
}
fmt.Print(dots[0:i])
fmt.Println(a)
}
func trace(p *parser, msg string) *parser {
p.printTrace(msg, "(")
p.indent++
return p
}
// Usage pattern: defer un(trace(p, "..."));
func un(p *parser) {
p.indent--
p.printTrace(")")
}
// Advance to the next token.
func (p *parser) next0() {
// Because of one-token look-ahead, print the previous token
// when tracing as it provides a more readable output. The
// very first token (p.pos.Line == 0) is not initialized (it
// is token.ILLEGAL), so don't print it .
if p.trace && p.pos.Line > 0 {
s := p.tok.String()
switch {
case p.tok.IsLiteral():
p.printTrace(s, string(p.lit))
case p.tok.IsOperator(), p.tok.IsKeyword():
p.printTrace("\"" + s + "\"")
default:
p.printTrace(s)
}
}
p.pos, p.tok, p.lit = p.scanner.Scan()
p.optSemi = false
}
// Consume a comment and return it and the line on which it ends.
func (p *parser) consumeComment() (comment *ast.Comment, endline int) {
// /*-style comments may end on a different line than where they start.
// Scan the comment for '\n' chars and adjust endline accordingly.
endline = p.pos.Line
if p.lit[1] == '*' {
for _, b := range p.lit {
if b == '\n' {
endline++
}
}
}
comment = &ast.Comment{p.pos, p.lit}
p.next0()
return
}
// Consume a group of adjacent comments, add it to the parser's
// comments list, and return the line of which the last comment
// in the group ends. An empty line or non-comment token terminates
// a comment group.
//
func (p *parser) consumeCommentGroup() int {
list := new(vector.Vector)
endline := p.pos.Line
for p.tok == token.COMMENT && endline+1 >= p.pos.Line {
var comment *ast.Comment
comment, endline = p.consumeComment()
list.Push(comment)
}
// convert list
group := make([]*ast.Comment, list.Len())
for i := 0; i < list.Len(); i++ {
group[i] = list.At(i).(*ast.Comment)
}
// add comment group to the comments list
g := &ast.CommentGroup{group, nil}
if p.lastComment != nil {
p.lastComment.Next = g
} else {
p.comments = g
}
p.lastComment = g
return endline
}
// Advance to the next non-comment token. In the process, collect
// any comment groups encountered, and remember the last lead and
// and line comments.
//
// A lead comment is a comment group that starts and ends in a
// line without any other tokens and that is followed by a non-comment
// token on the line immediately after the comment group.
//
// A line comment is a comment group that follows a non-comment
// token on the same line, and that has no tokens after it on the line
// where it ends.
//
// Lead and line comments may be considered documentation that is
// stored in the AST.
//
func (p *parser) next() {
p.leadComment = nil
p.lineComment = nil
line := p.pos.Line // current line
p.next0()
if p.tok == token.COMMENT {
if p.pos.Line == line {
// The comment is on same line as previous token; it
// cannot be a lead comment but may be a line comment.
endline := p.consumeCommentGroup()
if p.pos.Line != endline {
// The next token is on a different line, thus
// the last comment group is a line comment.
p.lineComment = p.lastComment
}
}
// consume successor comments, if any
endline := -1
for p.tok == token.COMMENT {
endline = p.consumeCommentGroup()
}
if endline >= 0 && endline+1 == p.pos.Line {
// The next token is following on the line immediately after the
// comment group, thus the last comment group is a lead comment.
p.leadComment = p.lastComment
}
}
}
func (p *parser) errorExpected(pos token.Position, msg string) {
msg = "expected " + msg
if pos.Offset == p.pos.Offset {
// the error happened at the current position;
// make the error message more specific
msg += ", found '" + p.tok.String() + "'"
if p.tok.IsLiteral() {
msg += " " + string(p.lit)
}
}
p.Error(pos, msg)
}
func (p *parser) expect(tok token.Token) token.Position {
pos := p.pos
if p.tok != tok {
p.errorExpected(pos, "'"+tok.String()+"'")
}
p.next() // make progress in any case
return pos
}
// ----------------------------------------------------------------------------
// Common productions
func (p *parser) parseIdent() *ast.Ident {
obj := ast.NewObj(ast.Err, p.pos, "")
if p.tok == token.IDENT {
obj.Name = string(p.lit)
p.next()
} else {
p.expect(token.IDENT) // use expect() error handling
}
return &ast.Ident{obj.Pos, obj}
}
func (p *parser) parseIdentList() []*ast.Ident {
if p.trace {
defer un(trace(p, "IdentList"))
}
list := new(vector.Vector)
list.Push(p.parseIdent())
for p.tok == token.COMMA {
p.next()
list.Push(p.parseIdent())
}
// convert vector
idents := make([]*ast.Ident, list.Len())
for i := 0; i < list.Len(); i++ {
idents[i] = list.At(i).(*ast.Ident)
}
return idents
}
func (p *parser) parseExprList() []ast.Expr {
if p.trace {
defer un(trace(p, "ExpressionList"))
}
list := new(vector.Vector)
list.Push(p.parseExpr())
for p.tok == token.COMMA {
p.next()
list.Push(p.parseExpr())
}
// convert list
exprs := make([]ast.Expr, list.Len())
for i := 0; i < list.Len(); i++ {
exprs[i] = list.At(i).(ast.Expr)
}
return exprs
}
// ----------------------------------------------------------------------------
// Types
func (p *parser) parseType() ast.Expr {
if p.trace {
defer un(trace(p, "Type"))
}
typ := p.tryType()
if typ == nil {
p.errorExpected(p.pos, "type")
p.next() // make progress
return &ast.BadExpr{p.pos}
}
return typ
}
func (p *parser) parseQualifiedIdent() ast.Expr {
if p.trace {
defer un(trace(p, "QualifiedIdent"))
}
var x ast.Expr = p.parseIdent()
if p.tok == token.PERIOD {
// first identifier is a package identifier
p.next()
sel := p.parseIdent()
x = &ast.SelectorExpr{x, sel}
}
return x
}
func (p *parser) parseTypeName() ast.Expr {
if p.trace {
defer un(trace(p, "TypeName"))
}
return p.parseQualifiedIdent()
}
func (p *parser) parseArrayType(ellipsisOk bool) ast.Expr {
if p.trace {
defer un(trace(p, "ArrayType"))
}
lbrack := p.expect(token.LBRACK)
var len ast.Expr
if ellipsisOk && p.tok == token.ELLIPSIS {
len = &ast.Ellipsis{p.pos, nil}
p.next()
} else if p.tok != token.RBRACK {
len = p.parseExpr()
}
p.expect(token.RBRACK)
elt := p.parseType()
return &ast.ArrayType{lbrack, len, elt}
}
func (p *parser) makeIdentList(list *vector.Vector) []*ast.Ident {
idents := make([]*ast.Ident, list.Len())
for i := 0; i < list.Len(); i++ {
ident, isIdent := list.At(i).(*ast.Ident)
if !isIdent {
pos := list.At(i).(ast.Expr).Pos()
p.errorExpected(pos, "identifier")
idents[i] = &ast.Ident{pos, ast.NewObj(ast.Err, pos, "")}
}
idents[i] = ident
}
return idents
}
func (p *parser) parseFieldDecl() *ast.Field {
if p.trace {
defer un(trace(p, "FieldDecl"))
}
doc := p.leadComment
// a list of identifiers looks like a list of type names
list := new(vector.Vector)
for {
// TODO(gri): do not allow ()'s here
list.Push(p.parseType())
if p.tok == token.COMMA {
p.next()
} else {
break
}
}
// if we had a list of identifiers, it must be followed by a type
typ := p.tryType()
// optional tag
var tag []*ast.BasicLit
if p.tok == token.STRING {
tag = p.parseStringList(nil)
}
// analyze case
var idents []*ast.Ident
if typ != nil {
// IdentifierList Type
idents = p.makeIdentList(list)
} else {
// Type (anonymous field)
if list.Len() == 1 {
// TODO(gri): check that this looks like a type
typ = list.At(0).(ast.Expr)
} else {
p.errorExpected(p.pos, "anonymous field")
typ = &ast.BadExpr{p.pos}
}
}
return &ast.Field{doc, idents, typ, tag, nil}
}
func (p *parser) parseStructType() *ast.StructType {
if p.trace {
defer un(trace(p, "StructType"))
}
pos := p.expect(token.STRUCT)
lbrace := p.expect(token.LBRACE)
list := new(vector.Vector)
for p.tok == token.IDENT || p.tok == token.MUL {
f := p.parseFieldDecl()
if p.tok != token.RBRACE {
p.expect(token.SEMICOLON)
}
f.Comment = p.lineComment
list.Push(f)
}
rbrace := p.expect(token.RBRACE)
p.optSemi = true
// convert vector
fields := make([]*ast.Field, list.Len())
for i := list.Len() - 1; i >= 0; i-- {
fields[i] = list.At(i).(*ast.Field)
}
return &ast.StructType{pos, lbrace, fields, rbrace, false}
}
func (p *parser) parsePointerType() *ast.StarExpr {
if p.trace {
defer un(trace(p, "PointerType"))
}
star := p.expect(token.MUL)
base := p.parseType()
return &ast.StarExpr{star, base}
}
func (p *parser) tryParameterType(ellipsisOk bool) ast.Expr {
if ellipsisOk && p.tok == token.ELLIPSIS {
pos := p.pos
p.next()
typ := p.tryType()
if p.tok != token.RPAREN {
p.Error(pos, "can use '...' for last parameter only")
}
return &ast.Ellipsis{pos, typ}
}
return p.tryType()
}
func (p *parser) parseParameterType(ellipsisOk bool) ast.Expr {
typ := p.tryParameterType(ellipsisOk)
if typ == nil {
p.errorExpected(p.pos, "type")
p.next() // make progress
typ = &ast.BadExpr{p.pos}
}
return typ
}
func (p *parser) parseParameterDecl(ellipsisOk bool) (*vector.Vector, ast.Expr) {
if p.trace {
defer un(trace(p, "ParameterDecl"))
}
// a list of identifiers looks like a list of type names
list := new(vector.Vector)
for {
// TODO(gri): do not allow ()'s here
list.Push(p.parseParameterType(ellipsisOk))
if p.tok == token.COMMA {
p.next()
} else {
break
}
}
// if we had a list of identifiers, it must be followed by a type
typ := p.tryParameterType(ellipsisOk)
return list, typ
}
func (p *parser) parseParameterList(ellipsisOk bool) []*ast.Field {
if p.trace {
defer un(trace(p, "ParameterList"))
}
list, typ := p.parseParameterDecl(ellipsisOk)
if typ != nil {
// IdentifierList Type
idents := p.makeIdentList(list)
list.Resize(0, 0)
list.Push(&ast.Field{nil, idents, typ, nil, nil})
for p.tok == token.COMMA {
p.next()
idents := p.parseIdentList()
typ := p.parseParameterType(ellipsisOk)
list.Push(&ast.Field{nil, idents, typ, nil, nil})
}
} else {
// Type { "," Type } (anonymous parameters)
// convert list of types into list of *Param
for i := 0; i < list.Len(); i++ {
list.Set(i, &ast.Field{Type: list.At(i).(ast.Expr)})
}
}
// convert list
params := make([]*ast.Field, list.Len())
for i := 0; i < list.Len(); i++ {
params[i] = list.At(i).(*ast.Field)
}
return params
}
func (p *parser) parseParameters(ellipsisOk bool) []*ast.Field {
if p.trace {
defer un(trace(p, "Parameters"))
}
var params []*ast.Field
p.expect(token.LPAREN)
if p.tok != token.RPAREN {
params = p.parseParameterList(ellipsisOk)
}
p.expect(token.RPAREN)
return params
}
func (p *parser) parseResult() []*ast.Field {
if p.trace {
defer un(trace(p, "Result"))
}
var results []*ast.Field
if p.tok == token.LPAREN {
results = p.parseParameters(false)
} else if p.tok != token.FUNC {
typ := p.tryType()
if typ != nil {
results = make([]*ast.Field, 1)
results[0] = &ast.Field{Type: typ}
}
}
return results
}
func (p *parser) parseSignature() (params []*ast.Field, results []*ast.Field) {
if p.trace {
defer un(trace(p, "Signature"))
}
params = p.parseParameters(true)
results = p.parseResult()
return
}
func (p *parser) parseFuncType() *ast.FuncType {
if p.trace {
defer un(trace(p, "FuncType"))
}
pos := p.expect(token.FUNC)
params, results := p.parseSignature()
return &ast.FuncType{pos, params, results}
}
func (p *parser) parseMethodSpec() *ast.Field {
if p.trace {
defer un(trace(p, "MethodSpec"))
}
doc := p.leadComment
var idents []*ast.Ident
var typ ast.Expr
x := p.parseQualifiedIdent()
if ident, isIdent := x.(*ast.Ident); isIdent && p.tok == token.LPAREN {
// method
idents = []*ast.Ident{ident}
params, results := p.parseSignature()
typ = &ast.FuncType{noPos, params, results}
} else {
// embedded interface
typ = x
}
return &ast.Field{doc, idents, typ, nil, nil}
}
func (p *parser) parseInterfaceType() *ast.InterfaceType {
if p.trace {
defer un(trace(p, "InterfaceType"))
}
pos := p.expect(token.INTERFACE)
lbrace := p.expect(token.LBRACE)
list := new(vector.Vector)
for p.tok == token.IDENT {
m := p.parseMethodSpec()
if p.tok != token.RBRACE {
p.expect(token.SEMICOLON)
}
m.Comment = p.lineComment
list.Push(m)
}
rbrace := p.expect(token.RBRACE)
p.optSemi = true
// convert vector
methods := make([]*ast.Field, list.Len())
for i := list.Len() - 1; i >= 0; i-- {
methods[i] = list.At(i).(*ast.Field)
}
return &ast.InterfaceType{pos, lbrace, methods, rbrace, false}
}
func (p *parser) parseMapType() *ast.MapType {
if p.trace {
defer un(trace(p, "MapType"))
}
pos := p.expect(token.MAP)
p.expect(token.LBRACK)
key := p.parseType()
p.expect(token.RBRACK)
value := p.parseType()
return &ast.MapType{pos, key, value}
}
func (p *parser) parseChanType() *ast.ChanType {
if p.trace {
defer un(trace(p, "ChanType"))
}
pos := p.pos
dir := ast.SEND | ast.RECV
if p.tok == token.CHAN {
p.next()
if p.tok == token.ARROW {
p.next()
dir = ast.SEND
}
} else {
p.expect(token.ARROW)
p.expect(token.CHAN)
dir = ast.RECV
}
value := p.parseType()
return &ast.ChanType{pos, dir, value}
}
func (p *parser) tryRawType(ellipsisOk bool) ast.Expr {
switch p.tok {
case token.IDENT:
return p.parseTypeName()
case token.LBRACK:
return p.parseArrayType(ellipsisOk)
case token.STRUCT:
return p.parseStructType()
case token.MUL:
return p.parsePointerType()
case token.FUNC:
return p.parseFuncType()
case token.INTERFACE:
return p.parseInterfaceType()
case token.MAP:
return p.parseMapType()
case token.CHAN, token.ARROW:
return p.parseChanType()
case token.LPAREN:
lparen := p.pos
p.next()
typ := p.parseType()
rparen := p.expect(token.RPAREN)
return &ast.ParenExpr{lparen, typ, rparen}
}
// no type found
return nil
}
func (p *parser) tryType() ast.Expr { return p.tryRawType(false) }
// ----------------------------------------------------------------------------
// Blocks
func makeStmtList(list *vector.Vector) []ast.Stmt {
stats := make([]ast.Stmt, list.Len())
for i := 0; i < list.Len(); i++ {
stats[i] = list.At(i).(ast.Stmt)
}
return stats
}
func (p *parser) parseStmtList() []ast.Stmt {
if p.trace {
defer un(trace(p, "StatementList"))
}
list := new(vector.Vector)
expectSemi := false
for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF {
if expectSemi {
p.expect(token.SEMICOLON)
expectSemi = false
}
list.Push(p.parseStmt())
if p.tok == token.SEMICOLON {
p.next()
} else if p.optSemi {
p.optSemi = false // "consume" optional semicolon
} else {
expectSemi = true
}
}
return makeStmtList(list)
}
func (p *parser) parseBlockStmt(idents []*ast.Ident) *ast.BlockStmt {
if p.trace {
defer un(trace(p, "BlockStmt"))
}
lbrace := p.expect(token.LBRACE)
list := p.parseStmtList()
rbrace := p.expect(token.RBRACE)
p.optSemi = true
return &ast.BlockStmt{lbrace, list, rbrace}
}
// ----------------------------------------------------------------------------
// Expressions
func (p *parser) parseStringList(x *ast.BasicLit) []*ast.BasicLit {
if p.trace {
defer un(trace(p, "StringList"))
}
list := new(vector.Vector)
if x != nil {
list.Push(x)
}
for p.tok == token.STRING {
list.Push(&ast.BasicLit{p.pos, token.STRING, p.lit})
p.next()
}
// convert list
strings := make([]*ast.BasicLit, list.Len())
for i := 0; i < list.Len(); i++ {
strings[i] = list.At(i).(*ast.BasicLit)
}
return strings
}
func (p *parser) parseFuncTypeOrLit() ast.Expr {
if p.trace {
defer un(trace(p, "FuncTypeOrLit"))
}
typ := p.parseFuncType()
if p.tok != token.LBRACE {
// function type only
return typ
}
p.exprLev++
body := p.parseBlockStmt(nil)
p.optSemi = false // function body requires separating ";"
p.exprLev--
return &ast.FuncLit{typ, body}
}
// parseOperand may return an expression or a raw type (incl. array
// types of the form [...]T. Callers must verify the result.
//
func (p *parser) parseOperand() ast.Expr {
if p.trace {
defer un(trace(p, "Operand"))
}
switch p.tok {
case token.IDENT:
return p.parseIdent()
case token.INT, token.FLOAT, token.CHAR, token.STRING:
x := &ast.BasicLit{p.pos, p.tok, p.lit}
p.next()
if p.tok == token.STRING && p.tok == token.STRING {
return &ast.StringList{p.parseStringList(x)}
}
return x
case token.LPAREN:
lparen := p.pos
p.next()
p.exprLev++
x := p.parseExpr()
p.exprLev--
rparen := p.expect(token.RPAREN)
return &ast.ParenExpr{lparen, x, rparen}
case token.FUNC:
return p.parseFuncTypeOrLit()
default:
t := p.tryRawType(true) // could be type for composite literal or conversion
if t != nil {
return t
}
}
p.errorExpected(p.pos, "operand")
p.next() // make progress
return &ast.BadExpr{p.pos}
}
func (p *parser) parseSelectorOrTypeAssertion(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "SelectorOrTypeAssertion"))
}
p.expect(token.PERIOD)
if p.tok == token.IDENT {
// selector
sel := p.parseIdent()
return &ast.SelectorExpr{x, sel}
}
// type assertion
p.expect(token.LPAREN)
var typ ast.Expr
if p.tok == token.TYPE {
// type switch: typ == nil
p.next()
} else {
typ = p.parseType()
}
p.expect(token.RPAREN)
return &ast.TypeAssertExpr{x, typ}
}
func (p *parser) parseIndexOrSlice(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "IndexOrSlice"))
}
p.expect(token.LBRACK)
p.exprLev++
index := p.parseExpr()
if p.tok == token.COLON {
p.next()
var end ast.Expr
if p.tok != token.RBRACK {
end = p.parseExpr()
}
x = &ast.SliceExpr{x, index, end}
} else {
x = &ast.IndexExpr{x, index}
}
p.exprLev--
p.expect(token.RBRACK)
return x
}
func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr {
if p.trace {
defer un(trace(p, "CallOrConversion"))
}
lparen := p.expect(token.LPAREN)
p.exprLev++
var args []ast.Expr
if p.tok != token.RPAREN {
args = p.parseExprList()
}
p.exprLev--
rparen := p.expect(token.RPAREN)
return &ast.CallExpr{fun, lparen, args, rparen}
}
func (p *parser) parseElement() ast.Expr {
if p.trace {
defer un(trace(p, "Element"))
}
x := p.parseExpr()
if p.tok == token.COLON {
colon := p.pos
p.next()
x = &ast.KeyValueExpr{x, colon, p.parseExpr()}
}
return x
}
func (p *parser) parseElementList() []ast.Expr {
if p.trace {
defer un(trace(p, "ElementList"))
}
list := new(vector.Vector)
for p.tok != token.RBRACE && p.tok != token.EOF {
list.Push(p.parseElement())
if p.tok == token.COMMA {
p.next()
} else {
break
}
}
// convert list
elts := make([]ast.Expr, list.Len())
for i := 0; i < list.Len(); i++ {
elts[i] = list.At(i).(ast.Expr)
}
return elts
}
func (p *parser) parseCompositeLit(typ ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "CompositeLit"))
}
lbrace := p.expect(token.LBRACE)
var elts []ast.Expr
if p.tok != token.RBRACE {
elts = p.parseElementList()
}
rbrace := p.expect(token.RBRACE)
return &ast.CompositeLit{typ, lbrace, elts, rbrace}
}
// TODO(gri): Consider different approach to checking syntax after parsing:
// Provide a arguments (set of flags) to parsing functions
// restricting what they are supposed to accept depending
// on context.
// checkExpr checks that x is an expression (and not a type).
func (p *parser) checkExpr(x ast.Expr) ast.Expr {
// TODO(gri): should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.BasicLit:
case *ast.StringList:
case *ast.FuncLit:
case *ast.CompositeLit:
case *ast.ParenExpr:
case *ast.SelectorExpr:
case *ast.IndexExpr:
case *ast.SliceExpr:
case *ast.TypeAssertExpr:
if t.Type == nil {
// the form X.(type) is only allowed in type switch expressions
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos()}
}
case *ast.CallExpr:
case *ast.StarExpr:
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos()}
}
case *ast.BinaryExpr:
default:
// all other nodes are not proper expressions
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos()}
}
return x
}
// isTypeName returns true iff x is type name.
func isTypeName(x ast.Expr) bool {
// TODO(gri): should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.ParenExpr:
return isTypeName(t.X) // TODO(gri): should (TypeName) be illegal?
case *ast.SelectorExpr:
return isTypeName(t.X)
default:
return false // all other nodes are not type names
}
return true
}
// isCompositeLitType returns true iff x is a legal composite literal type.
func isCompositeLitType(x ast.Expr) bool {
// TODO(gri): should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.ParenExpr:
return isCompositeLitType(t.X)
case *ast.SelectorExpr:
return isTypeName(t.X)
case *ast.ArrayType:
case *ast.StructType:
case *ast.MapType:
default:
return false // all other nodes are not legal composite literal types
}
return true
}
// checkExprOrType checks that x is an expression or a type
// (and not a raw type such as [...]T).
//
func (p *parser) checkExprOrType(x ast.Expr) ast.Expr {
// TODO(gri): should provide predicate in AST nodes
switch t := x.(type) {
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.errorExpected(x.Pos(), "expression")
x = &ast.BadExpr{x.Pos()}
}
case *ast.ArrayType:
if len, isEllipsis := t.Len.(*ast.Ellipsis); isEllipsis {
p.Error(len.Pos(), "expected array length, found '...'")
x = &ast.BadExpr{x.Pos()}
}
}
// all other nodes are expressions or types
return x
}
func (p *parser) parsePrimaryExpr() ast.Expr {
if p.trace {
defer un(trace(p, "PrimaryExpr"))
}
x := p.parseOperand()
L: for {
switch p.tok {
case token.PERIOD:
x = p.parseSelectorOrTypeAssertion(p.checkExpr(x))
case token.LBRACK:
x = p.parseIndexOrSlice(p.checkExpr(x))
case token.LPAREN:
x = p.parseCallOrConversion(p.checkExprOrType(x))
case token.LBRACE:
if isCompositeLitType(x) && (p.exprLev >= 0 || !isTypeName(x)) {
x = p.parseCompositeLit(x)
} else {
break L
}
default:
break L
}
}
return x
}
func (p *parser) parseUnaryExpr() ast.Expr {
if p.trace {
defer un(trace(p, "UnaryExpr"))
}
switch p.tok {
case token.ADD, token.SUB, token.NOT, token.XOR, token.ARROW, token.AND, token.RANGE:
pos, op := p.pos, p.tok
p.next()
x := p.parseUnaryExpr()
return &ast.UnaryExpr{pos, op, p.checkExpr(x)}
case token.MUL:
// unary "*" expression or pointer type
pos := p.pos
p.next()
x := p.parseUnaryExpr()
return &ast.StarExpr{pos, p.checkExprOrType(x)}
}
return p.parsePrimaryExpr()
}
func (p *parser) parseBinaryExpr(prec1 int) ast.Expr {
if p.trace {
defer un(trace(p, "BinaryExpr"))
}
x := p.parseUnaryExpr()
for prec := p.tok.Precedence(); prec >= prec1; prec-- {
for p.tok.Precedence() == prec {
pos, op := p.pos, p.tok
p.next()
y := p.parseBinaryExpr(prec + 1)
x = &ast.BinaryExpr{p.checkExpr(x), pos, op, p.checkExpr(y)}
}
}
return x
}
// TODO(gri): parseExpr may return a type or even a raw type ([..]int) -
// should reject when a type/raw type is obviously not allowed
func (p *parser) parseExpr() ast.Expr {
if p.trace {
defer un(trace(p, "Expression"))
}
return p.parseBinaryExpr(token.LowestPrec + 1)
}
// ----------------------------------------------------------------------------
// Statements
func (p *parser) parseSimpleStmt(labelOk bool) ast.Stmt {
if p.trace {
defer un(trace(p, "SimpleStmt"))
}
x := p.parseExprList()
switch p.tok {
case token.COLON:
// labeled statement
p.next()
if labelOk && len(x) == 1 {
if label, isIdent := x[0].(*ast.Ident); isIdent {
return &ast.LabeledStmt{label, p.parseStmt()}
}
}
p.Error(x[0].Pos(), "illegal label declaration")
return &ast.BadStmt{x[0].Pos()}
case
token.DEFINE, token.ASSIGN, token.ADD_ASSIGN,
token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN,
token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN,
token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN, token.AND_NOT_ASSIGN:
// assignment statement
pos, tok := p.pos, p.tok
p.next()
y := p.parseExprList()
return &ast.AssignStmt{x, pos, tok, y}
}
if len(x) > 1 {
p.Error(x[0].Pos(), "only one expression allowed")
// continue with first expression
}
if p.tok == token.INC || p.tok == token.DEC {
// increment or decrement
s := &ast.IncDecStmt{x[0], p.tok}
p.next() // consume "++" or "--"
return s
}
// expression
return &ast.ExprStmt{x[0]}
}
func (p *parser) parseCallExpr() *ast.CallExpr {
x := p.parseExpr()
if call, isCall := x.(*ast.CallExpr); isCall {
return call
}
p.errorExpected(x.Pos(), "function/method call")
return nil
}
func (p *parser) parseGoStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "GoStmt"))
}
pos := p.expect(token.GO)
call := p.parseCallExpr()
if call != nil {
return &ast.GoStmt{pos, call}
}
return &ast.BadStmt{pos}
}
func (p *parser) parseDeferStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "DeferStmt"))
}
pos := p.expect(token.DEFER)
call := p.parseCallExpr()
if call != nil {
return &ast.DeferStmt{pos, call}
}
return &ast.BadStmt{pos}
}
func (p *parser) parseReturnStmt() *ast.ReturnStmt {
if p.trace {
defer un(trace(p, "ReturnStmt"))
}
pos := p.pos
p.expect(token.RETURN)
var x []ast.Expr
if p.tok != token.SEMICOLON && p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE {
x = p.parseExprList()
}
return &ast.ReturnStmt{pos, x}
}
func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt {
if p.trace {
defer un(trace(p, "BranchStmt"))
}
s := &ast.BranchStmt{p.pos, tok, nil}
p.expect(tok)
if tok != token.FALLTHROUGH && p.tok == token.IDENT {
s.Label = p.parseIdent()
}
return s
}
func (p *parser) makeExpr(s ast.Stmt) ast.Expr {
if s == nil {
return nil
}
if es, isExpr := s.(*ast.ExprStmt); isExpr {
return p.checkExpr(es.X)
}
p.Error(s.Pos(), "expected condition, found simple statement")
return &ast.BadExpr{s.Pos()}
}
func (p *parser) parseControlClause(isForStmt bool) (s1, s2, s3 ast.Stmt) {
if p.tok != token.LBRACE {
prevLev := p.exprLev
p.exprLev = -1
if p.tok != token.SEMICOLON {
s1 = p.parseSimpleStmt(false)
}
if p.tok == token.SEMICOLON {
p.next()
if p.tok != token.LBRACE && p.tok != token.SEMICOLON {
s2 = p.parseSimpleStmt(false)
}
if isForStmt {
// for statements have a 3rd section
p.expect(token.SEMICOLON)
if p.tok != token.LBRACE {
s3 = p.parseSimpleStmt(false)
}
}
} else {
s1, s2 = nil, s1
}
p.exprLev = prevLev
}
return s1, s2, s3
}
func (p *parser) parseIfStmt() *ast.IfStmt {
if p.trace {
defer un(trace(p, "IfStmt"))
}
pos := p.expect(token.IF)
s1, s2, _ := p.parseControlClause(false)
body := p.parseBlockStmt(nil)
var else_ ast.Stmt
if p.tok == token.ELSE {
p.next()
else_ = p.parseStmt()
}
return &ast.IfStmt{pos, s1, p.makeExpr(s2), body, else_}
}
func (p *parser) parseCaseClause() *ast.CaseClause {
if p.trace {
defer un(trace(p, "CaseClause"))
}
// SwitchCase
pos := p.pos
var x []ast.Expr
if p.tok == token.CASE {
p.next()
x = p.parseExprList()
} else {
p.expect(token.DEFAULT)
}
colon := p.expect(token.COLON)
body := p.parseStmtList()
return &ast.CaseClause{pos, x, colon, body}
}
func (p *parser) parseTypeList() []ast.Expr {
if p.trace {
defer un(trace(p, "TypeList"))
}
list := new(vector.Vector)
list.Push(p.parseType())
for p.tok == token.COMMA {
p.next()
list.Push(p.parseType())
}
// convert list
exprs := make([]ast.Expr, list.Len())
for i := 0; i < list.Len(); i++ {
exprs[i] = list.At(i).(ast.Expr)
}
return exprs
}
func (p *parser) parseTypeCaseClause() *ast.TypeCaseClause {
if p.trace {
defer un(trace(p, "TypeCaseClause"))
}
// TypeSwitchCase
pos := p.pos
var types []ast.Expr
if p.tok == token.CASE {
p.next()
types = p.parseTypeList()
} else {
p.expect(token.DEFAULT)
}
colon := p.expect(token.COLON)
body := p.parseStmtList()
return &ast.TypeCaseClause{pos, types, colon, body}
}
func isExprSwitch(s ast.Stmt) bool {
if s == nil {
return true
}
if e, ok := s.(*ast.ExprStmt); ok {
if a, ok := e.X.(*ast.TypeAssertExpr); ok {
return a.Type != nil // regular type assertion
}
return true
}
return false
}
func (p *parser) parseSwitchStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "SwitchStmt"))
}
pos := p.expect(token.SWITCH)
s1, s2, _ := p.parseControlClause(false)
if isExprSwitch(s2) {
lbrace := p.expect(token.LBRACE)
cases := new(vector.Vector)
for p.tok == token.CASE || p.tok == token.DEFAULT {
cases.Push(p.parseCaseClause())
}
rbrace := p.expect(token.RBRACE)
p.optSemi = true
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace}
return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body}
}
// type switch
// TODO(gri): do all the checks!
lbrace := p.expect(token.LBRACE)
cases := new(vector.Vector)
for p.tok == token.CASE || p.tok == token.DEFAULT {
cases.Push(p.parseTypeCaseClause())
}
rbrace := p.expect(token.RBRACE)
p.optSemi = true
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace}
return &ast.TypeSwitchStmt{pos, s1, s2, body}
}
func (p *parser) parseCommClause() *ast.CommClause {
if p.trace {
defer un(trace(p, "CommClause"))
}
// CommCase
pos := p.pos
var tok token.Token
var lhs, rhs ast.Expr
if p.tok == token.CASE {
p.next()
if p.tok == token.ARROW {
// RecvExpr without assignment
rhs = p.parseExpr()
} else {
// SendExpr or RecvExpr
rhs = p.parseExpr()
if p.tok == token.ASSIGN || p.tok == token.DEFINE {
// RecvExpr with assignment
tok = p.tok
p.next()
lhs = rhs
if p.tok == token.ARROW {
rhs = p.parseExpr()
} else {
p.expect(token.ARROW) // use expect() error handling
}
}
// else SendExpr
}
} else {
p.expect(token.DEFAULT)
}
colon := p.expect(token.COLON)
body := p.parseStmtList()
return &ast.CommClause{pos, tok, lhs, rhs, colon, body}
}
func (p *parser) parseSelectStmt() *ast.SelectStmt {
if p.trace {
defer un(trace(p, "SelectStmt"))
}
pos := p.expect(token.SELECT)
lbrace := p.expect(token.LBRACE)
cases := new(vector.Vector)
for p.tok == token.CASE || p.tok == token.DEFAULT {
cases.Push(p.parseCommClause())
}
rbrace := p.expect(token.RBRACE)
p.optSemi = true
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace}
return &ast.SelectStmt{pos, body}
}
func (p *parser) parseForStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "ForStmt"))
}
pos := p.expect(token.FOR)
s1, s2, s3 := p.parseControlClause(true)
body := p.parseBlockStmt(nil)
if as, isAssign := s2.(*ast.AssignStmt); isAssign {
// possibly a for statement with a range clause; check assignment operator
if as.Tok != token.ASSIGN && as.Tok != token.DEFINE {
p.errorExpected(as.TokPos, "'=' or ':='")
return &ast.BadStmt{pos}
}
// check lhs
var key, value ast.Expr
switch len(as.Lhs) {
case 2:
value = as.Lhs[1]
fallthrough
case 1:
key = as.Lhs[0]
default:
p.errorExpected(as.Lhs[0].Pos(), "1 or 2 expressions")
return &ast.BadStmt{pos}
}
// check rhs
if len(as.Rhs) != 1 {
p.errorExpected(as.Rhs[0].Pos(), "1 expressions")
return &ast.BadStmt{pos}
}
if rhs, isUnary := as.Rhs[0].(*ast.UnaryExpr); isUnary && rhs.Op == token.RANGE {
// rhs is range expression; check lhs
return &ast.RangeStmt{pos, key, value, as.TokPos, as.Tok, rhs.X, body}
} else {
p.errorExpected(s2.Pos(), "range clause")
return &ast.BadStmt{pos}
}
} else {
// regular for statement
return &ast.ForStmt{pos, s1, p.makeExpr(s2), s3, body}
}
panic() // unreachable
return nil
}
func (p *parser) parseStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "Statement"))
}
switch p.tok {
case token.CONST, token.TYPE, token.VAR:
decl, _ := p.parseDecl(false) // do not consume trailing semicolon
return &ast.DeclStmt{decl}
case
// tokens that may start a top-level expression
token.IDENT, token.INT, token.FLOAT, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operand
token.LBRACK, token.STRUCT, // composite type
token.MUL, token.AND, token.ARROW, token.ADD, token.SUB, token.XOR: // unary operators
return p.parseSimpleStmt(true)
case token.GO:
return p.parseGoStmt()
case token.DEFER:
return p.parseDeferStmt()
case token.RETURN:
return p.parseReturnStmt()
case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH:
return p.parseBranchStmt(p.tok)
case token.LBRACE:
return p.parseBlockStmt(nil)
case token.IF:
return p.parseIfStmt()
case token.SWITCH:
return p.parseSwitchStmt()
case token.SELECT:
return p.parseSelectStmt()
case token.FOR:
return p.parseForStmt()
case token.SEMICOLON, token.RBRACE:
// don't consume the ";", it is the separator following the empty statement
return &ast.EmptyStmt{p.pos}
}
// no statement found
p.errorExpected(p.pos, "statement")
p.next() // make progress
return &ast.BadStmt{p.pos}
}
// ----------------------------------------------------------------------------
// Declarations
type parseSpecFunction func(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool)
// Consume semicolon if there is one and getSemi is set, and get any line comment.
// Return the comment if any and indicate if a semicolon was consumed.
//
func (p *parser) parseComment(getSemi bool) (comment *ast.CommentGroup, gotSemi bool) {
if getSemi && p.tok == token.SEMICOLON {
p.next()
gotSemi = true
}
return p.lineComment, gotSemi
}
func parseImportSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) {
if p.trace {
defer un(trace(p, "ImportSpec"))
}
var ident *ast.Ident
if p.tok == token.PERIOD {
ident = &ast.Ident{p.pos, ast.NewObj(ast.Err, p.pos, ".")}
p.next()
} else if p.tok == token.IDENT {
ident = p.parseIdent()
}
var path []*ast.BasicLit
if p.tok == token.STRING {
path = p.parseStringList(nil)
} else {
p.expect(token.STRING) // use expect() error handling
}
comment, gotSemi := p.parseComment(getSemi)
return &ast.ImportSpec{doc, ident, path, comment}, gotSemi
}
func parseConstSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) {
if p.trace {
defer un(trace(p, "ConstSpec"))
}
idents := p.parseIdentList()
typ := p.tryType()
var values []ast.Expr
if typ != nil || p.tok == token.ASSIGN {
p.expect(token.ASSIGN)
values = p.parseExprList()
}
comment, gotSemi := p.parseComment(getSemi)
return &ast.ValueSpec{doc, idents, typ, values, comment}, gotSemi
}
func parseTypeSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) {
if p.trace {
defer un(trace(p, "TypeSpec"))
}
ident := p.parseIdent()
typ := p.parseType()
comment, gotSemi := p.parseComment(getSemi)
return &ast.TypeSpec{doc, ident, typ, comment}, gotSemi
}
func parseVarSpec(p *parser, doc *ast.CommentGroup, getSemi bool) (spec ast.Spec, gotSemi bool) {
if p.trace {
defer un(trace(p, "VarSpec"))
}
idents := p.parseIdentList()
typ := p.tryType()
var values []ast.Expr
if typ == nil || p.tok == token.ASSIGN {
p.expect(token.ASSIGN)
values = p.parseExprList()
}
comment, gotSemi := p.parseComment(getSemi)
return &ast.ValueSpec{doc, idents, typ, values, comment}, gotSemi
}
func (p *parser) parseGenDecl(keyword token.Token, f parseSpecFunction, getSemi bool) (decl *ast.GenDecl, gotSemi bool) {
if p.trace {
defer un(trace(p, keyword.String()+"Decl"))
}
doc := p.leadComment
pos := p.expect(keyword)
var lparen, rparen token.Position
list := new(vector.Vector)
if p.tok == token.LPAREN {
lparen = p.pos
p.next()
for p.tok != token.RPAREN && p.tok != token.EOF {
doc := p.leadComment
spec, semi := f(p, doc, true) // consume semicolon if any
list.Push(spec)
if !semi {
break
}
}
rparen = p.expect(token.RPAREN)
if getSemi && p.tok == token.SEMICOLON {
p.next()
gotSemi = true
} else {
p.optSemi = true
}
} else {
spec, semi := f(p, nil, getSemi)
list.Push(spec)
gotSemi = semi
}
// convert vector
specs := make([]ast.Spec, list.Len())
for i := 0; i < list.Len(); i++ {
specs[i] = list.At(i).(ast.Spec)
}
return &ast.GenDecl{doc, pos, keyword, lparen, specs, rparen}, gotSemi
}
func (p *parser) parseReceiver() *ast.Field {
if p.trace {
defer un(trace(p, "Receiver"))
}
pos := p.pos
par := p.parseParameters(false)
// must have exactly one receiver
if len(par) != 1 || len(par) == 1 && len(par[0].Names) > 1 {
p.errorExpected(pos, "exactly one receiver")
return &ast.Field{Type: &ast.BadExpr{noPos}}
}
recv := par[0]
// recv type must be TypeName or *TypeName
base := recv.Type
if ptr, isPtr := base.(*ast.StarExpr); isPtr {
base = ptr.X
}
if !isTypeName(base) {
p.errorExpected(base.Pos(), "type name")
}
return recv
}
func (p *parser) parseFunctionDecl() *ast.FuncDecl {
if p.trace {
defer un(trace(p, "FunctionDecl"))
}
doc := p.leadComment
pos := p.expect(token.FUNC)
var recv *ast.Field
if p.tok == token.LPAREN {
recv = p.parseReceiver()
}
ident := p.parseIdent()
params, results := p.parseSignature()
var body *ast.BlockStmt
if p.tok == token.LBRACE {
body = p.parseBlockStmt(nil)
}
return &ast.FuncDecl{doc, recv, ident, &ast.FuncType{pos, params, results}, body}
}
func (p *parser) parseDecl(getSemi bool) (decl ast.Decl, gotSemi bool) {
if p.trace {
defer un(trace(p, "Declaration"))
}
var f parseSpecFunction
switch p.tok {
case token.CONST:
f = parseConstSpec
case token.TYPE:
f = parseTypeSpec
case token.VAR:
f = parseVarSpec
case token.FUNC:
decl = p.parseFunctionDecl()
_, gotSemi := p.parseComment(getSemi)
return decl, gotSemi
default:
pos := p.pos
p.errorExpected(pos, "declaration")
decl = &ast.BadDecl{pos}
gotSemi = getSemi && p.tok == token.SEMICOLON
p.next() // make progress in any case
return decl, gotSemi
}
return p.parseGenDecl(p.tok, f, getSemi)
}
func (p *parser) parseDeclList() []ast.Decl {
if p.trace {
defer un(trace(p, "DeclList"))
}
list := new(vector.Vector)
for p.tok != token.EOF {
decl, _ := p.parseDecl(true) // consume optional semicolon
list.Push(decl)
}
// convert vector
decls := make([]ast.Decl, list.Len())
for i := 0; i < list.Len(); i++ {
decls[i] = list.At(i).(ast.Decl)
}
return decls
}
// ----------------------------------------------------------------------------
// Source files
func (p *parser) parseFile() *ast.File {
if p.trace {
defer un(trace(p, "File"))
}
// package clause
doc := p.leadComment
pos := p.expect(token.PACKAGE)
ident := p.parseIdent()
// Common error: semicolon after package clause.
// Accept and report it for better error synchronization.
if p.tok == token.SEMICOLON {
p.Error(p.pos, "expected declaration, found ';'")
p.next()
}
var decls []ast.Decl
// Don't bother parsing the rest if we had errors already.
// Likely not a Go source file at all.
if p.ErrorCount() == 0 && p.mode&PackageClauseOnly == 0 {
// import decls
list := new(vector.Vector)
for p.tok == token.IMPORT {
decl, _ := p.parseGenDecl(token.IMPORT, parseImportSpec, true) // consume optional semicolon
list.Push(decl)
}
if p.mode&ImportsOnly == 0 {
// rest of package body
for p.tok != token.EOF {
decl, _ := p.parseDecl(true) // consume optional semicolon
list.Push(decl)
}
}
// convert declaration list
decls = make([]ast.Decl, list.Len())
for i := 0; i < list.Len(); i++ {
decls[i] = list.At(i).(ast.Decl)
}
}
return &ast.File{doc, pos, ident, decls, p.comments}
}